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Linear Algebra and Examples

Standard texts on Linear Algebra and Algebra are [1,6].

1 Preliminaries

1.1 Vectors and matrices

We shall useR to denote the set of real numbers andC to denote the set of complex numbers. For any
c = a + bi ∈ C, thecomplex conjugateof c, denoted bȳc is defined to bēc = a− bi. Themodulusof c,
denoted by|c|, is

√
a2 + b2. It is easy to see that|c|2 = cc̄.

If we mention the word “vector” alone, it is understood to be a column vector. Ann-dimensional
vectorx hasn entries in some field of numbers, such asR or C:

x =


x1

x2
...

xn

 .

The set of alln-dimensional vectors overR (respectivelyC) is denoted byRn (respectivelyCn). They
are also calledreal vectorsandcomplex vectors, respectively.

Similar to vectors, matrices need an underlying field. We thus have complex matrices and real matri-
ces just as in the case of vectors. In fact, ann-dimensional vector is nothing but ann× 1 matrix. In the
discussion that follows, the concepts of complex conjugates, transposes, and conjugate transposes also
apply to vectors in this sense.

Given anm × n matrix A = (aij), thecomplex conjugatēA of A is a matrix obtained fromA by
replacing each entryaij of A by the corresponding complex conjugateāij . ThetransposeAT of A is the
matrix obtained fromA by turning its rows into columns and vice versa. For example,

A =
[

0 3 1
−2 0 1

]
, andAT =

0 −2
3 0
1 1

 .

Theconjugate transposeA∗ of A is defined to be(Ā)T . A square matrixA is symmetriciff A = AT ,
and isHermitian iff A = A∗.

Given a real vectorx ∈ Rn, thelength‖x‖ of x is

‖x‖ =
√

x2
1 + x2

2 + · · ·+ x2
n. (1)

Notice that‖x‖2 = xxT . Whenx is a complex vector, we usex∗ instead ofxT . Hence, in general we
define‖x‖ =

√
xx∗ =

√
x∗x. (You should check thatxx∗ = x∗x, and that it is a real number so that the

square root makes sense.)
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The length‖x‖ is also referred to as theL2-norm of vectorx, denoted by‖x‖2. In general, the
Lp-normof ann-dimensional vectorx, denoted by‖x‖p, wherep = 1, 2, . . . , is defined to be

‖x‖p := (|x1|p + · · ·+ |xn|p)
1
p , (2)

and
‖x‖∞ := max

i=1..n
|xi|. (3)

The following identities are easy to show, yet of great importance. Given ap × q matrix A and a
q × r matrixB, we have

(AB)T = BT AT (4)

(AB)∗ = B∗A∗ (5)

(Question: what are the dimensions of the matrices(AB)T and(AB)∗?)
A square matrixA is said to besingular if there is no unique solution to the equationAx = b. For

A to be singular, it does not matter whatb is. The uniqueness of a solution toAx = b is an intrinsic
property ofA alone. If there is one and only onex such thatAx = b, thenA is said to benon-singular.

1.2 Determinant and trace

Given a square matrixA = (aij) of ordern, the equationAx = 0 has a unique solution if and only if
det A 6= 0, wheredet A denotes thedeterminantof A, which is defined by

det A =
∑
π∈Sn

(−1)I(π)
n∏

i=1

aiπ(i) =
∑
π∈Sn

sign(π)
n∏

i=1

aiπ(i). (6)

Here,Sn denotes the set of all permutations on the set[n] = {1, . . . , n}. (Sn is more often referred to
as thesymmetric groupof ordern.) Given a permutationπ ∈ Sn, we useI(π) to denote the number of
inversionsof π, which is the number of pairs(π(i), π(j)) for which i < j andπ(i) > π(j). Thesignof
a permutationπ, denoted by sign(π), is defined to be sign(π) = (−1)I(π).

Exercise 1.1.Find an involution forSn to show that, forn ≥ 2, there are as many permutations with
negative sign as permutations with positive sign.

Let us take an example forn = 3. In this caseSn consists of6 permutations:

Sn = {123, 132, 213, 231, 312, 321}.

Notationally, we writeπ = 132 to mean a permutation whereπ(1) = 1, π(2) = 3, andπ(3) = 2.
Thus, whenπ = 132 we have sign(π) = −1 since there is only one “out-of-order” pair(3, 2). To
be more precise, sign(123) = 1, sign(132) = −1, sign(312) = 1, sign(213) = −1, sign(231) = 1,
sign(321) = −1.

Consequently, for

A =

 0 3 1
−2 0 1
−1 2 2


we have

det A = a11a22a33 + (−1)a11a23a32 + (−1)a12a21a33 + a12a23a31 +
a13a21a32 + (−1)a13a22a31

= 0 · 0 · 2 + (−1) · 0 · 1 · 2 + (−1) · 3 · (−2) · 2 + 3 · 1 · (−1) +
1 · (−2) · 2 + (−1) · 1 · 0 · (−1)

= 5
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The trace of a square matrixA, denoted by trA is the sum of its diagonal entries. The matrixA
above has

tr A = 0 + 0 + 2 = 2.

1.3 Combinations of vectors and vector spaces

A vectorw is a linear combinationof m vectorsv1, . . . , vm if w can be written as

w = a1v1 + a2v2 + . . . amvm. (7)

The numberaj is called thecoefficientof the vectorvj in this linear combination. Note that, as usual, we
have to fix the underlying field such asR or C. If, additionally, we also havea1 + a2 + · · · + am = 1,
thenw is called anaffine combinationof thevi.

A canonical combinationis a linear combination in whichaj ≥ 0,∀j; and aconvex combinationis an
affine combination which is also canonical. Thelinear (affine, canonical, convex) hullof {v1, . . . , vm} is
the set of all linear (affine, canonical, convex) combinations of thevj . Note that in the above definitions,
m could be infinite. The convex hull of a finite set of vectors is called acone, or more specifically a
convex polyhedral cone.

A real vector spaceis a setV of real vectors so that a linear combination of any subset of vectors
in V is also inV . In other words, vector spaces have to beclosedunder taking linear combinations.
Technically speaking, this is an incomplete definition, but it is sufficient for our purposes. One can also
replace the word “real” by “complex”. Asubspaceof a vector spaceV is a subset ofV which is closed
under taking linear combinations.

Given a setV = {v1, . . . , vm} of vectors, the set of all linear combinations of thevj forms a vector
space, denoted by span{(V )}, or span{(v1, . . . , vm)}. Thecolumn spaceof a matrixA is the span of
its column vectors. Therow spaceof A is the span ofA’s rows. Note that equationAx = b (with A not
necessarily a square matrix) has a solution if and only ifb lies in the column space ofA. The coordinates
of x form the coefficients of the column vectors ofA in a linear combination to formb.

A setV = {v1, . . . , vm} of (real, complex) vectors is said to belinearly independentif

a1v1 + a2v2 + . . . amvm = 0 only happens whena1 = a2 = . . . am = 0.

Otherwise, the vectors inV are said to be (linearly)dependent.
The dimensionof a vector space is the maximum number of linearly independent vectors in the

space. Thebasisof a vector spaceV is a subset{v1, . . . , vm} of V which is linearly independent and
span{(v1, . . . , vm)} = V . It is easy to show thatm is actually the dimension ofV . A vector space
typically has infinitely many bases. All bases of a vector spaceV have the same size, which is also the
dimension ofV . The setsRn andCn are vector spaces by themselves.

In ann-dimensional vector space, a set ofm > n vectors must be linearly dependent.
The dimensions of a matrixA’s column space and row space are equal, and is referred to as therank

of A. This fact is not very easy to show, but not too difficult either. Gaussian elimination is of great use
here.

Exercise 1.2.Show that for any basisB of a vector spaceV and some vectorv ∈ V , there is exactly
one way to writev as a linear combination of vectors inB.

1.4 Inverses

We use diag(a1, . . . , an) to denote the matrixA = (aij) whereaij = 0 for i 6= j andaii = ai,∀i. The
identity matrix, often denoted byI, is defined to be diag(1, . . . , 1).

Given a square matrixA, theinverseof A, denoted byA−1 is a matrixB such that

AB = BA = I, or AA−1 = A−1A = I.
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Exercise 1.3.Show that, ifA andB both have inverses, then the inverse ofAB can be calculated easily
by

(AB)−1 = B−1A−1. (8)

Similarly, the same rule holds for3 or more matrices. For example,

(ABCD)−1 = D−1C−1B−1A−1.

If A has an inverse, it is said to beinvertible. Not all matrices are invertible. There are many
conditions to test if a matrix has an inverse, including: non-singularity, non-zero determinant, non-zero
eigenvalues (to be defined), linearly independent column vectors, linearly independent row vectors.

2 Eigenvalues and eigenvectors

In this section, we shall be concerned with square matrices only, unless stated otherwise.
Theeigenvaluesof a matrixA are the numbersλ such that the equationAx = λx, or (λI−A)x = 0,

has a non-zero solution vector, in which case the solution vectorx is called aλ-eigenvector.
Thecharacteristic polynomialpA(λ) of a matrixA is defined to be

pA(λ) := det(λI −A).

Since the all-0 vector, denoted by~0, is always a solution to(λI − A)x = 0, it would be the only
solution if det(λI − A) 6= 0. Hence, the eigenvalues are solutions to the equationpA(λ) = 0. For
example, if

A =
[

2 1
−2 3

]
,

then,

pA(λ) = det
[
λ− 2 −1
+2 λ− 3

]
= (λ− 2)(λ− 3) + 2 = λ2 − 5λ + 8.

Hence, the eigenvalues ofA are(5/2± i
√

7/2).
If we work on the complex numbers, then equationpA(λ) = 0 always hasn roots (up to multi-

plicities). However, we shall be concerned greatly with matrices which have real eigenvalues. We shall
establish sufficient conditions for a matrix to have real eigenvalues, as shall be seen in later sections.

Theorem 2.1. Letλ1, . . . , λn be the eigenvalues of ann× n complex matrixA, then

(i) λ1 + · · ·+ λn = tr A.

(ii) λ1 . . . λn = detA.

Proof. In the complex domain,pA(λ) hasn complex roots since it is a polynomial of degreen. The
eigenvaluesλ1, . . . , λn are the roots ofpA(λ). Hence, we can write

pA(λ) =
∏

i

(λ− λi) = λn + cn−1λ
n−1 + · · ·+ c1λ + c0.

It is evident that

cn−1 = − (λ1 + · · ·+ λn)
c0 = (−1)nλ1 . . . λn.
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On the other hand, by definition we have

pA(λ) = det


λ− a11 −a12 . . . −a1n

−a21 λ− a22 . . . −a2n
... . . . . . .

...
−an1 −an2 . . . λ− ann

 .

ExpandingpA(λ) in this way, the coefficient ofλn−1 (which iscn−1) is precisely−(a11+a22+· · ·+ann);
and the coefficient ofλ0 (which isc0) is (−1)n det A (think carefully about this statement!).

2.1 The diagonal form

Proposition 2.2. Suppose then×n matrixA hasn linearly independent eigenvectorsx1, . . . ,xn, where
xi is a λi-eigenvector. LetS be the matrix whose columns are the vectorsxi, thenS−1AS = Λ, where
Λ = diag (λ1, . . . , λn).

Proof. Note that since the column vectors ofS are independent,S is invertible and writingS−1 makes
sense. We want to showS−1AS = Λ, which is the same as showingAS = SΛ. SinceAxi = xiλi, it
follows that

AS = A

 | . . . |
x1 . . . xn

| . . . |

 =

 | . . . |
Ax1 . . . Axn

| . . . |

 =

 | . . . |
λ1x1 . . . λnxn

| . . . |

 = SΛ.

In general, if a matrixS satisfies the property thatS−1AS is a diagonal matrix, thenS is said to
diagonalizeA, andA is said to bediagonalizable. It is easy to see from the above proof that ifA is
diagonalizable byS, then the columns ofS are eigenvectors ofA; moreover, sinceS is invertible by
definition, the columns ofS must be linearly independent. In other words, we just proved

Theorem 2.3. A matrix is diagonalizable if and only if it hasn independent eigenvectors.

Proposition 2.4. If x1, . . . xk are eigenvectors corresponding to distinct eigenvaluesλ1, . . . λk, then
x1, . . . xk are linearly independent.

Proof. When k = 2, supposec1x1 + c2x2 = 0. Multiplying by A gives c1λ1x1 + c2λ2x2 = 0.
Subtractingλ2 times the previous equation we get

c1(λ1 − λ2)x1 = 0.

Hence,c1 = 0 sinceλ1 6= λ2 andx1 6= 0. The general case follows trivially by induction.

Exercise 2.5.If λ1, . . . λn are eigenvalues ofA, thenλk
1, . . . λ

k
n are eigenvalues ofAk. If S diagonalizes

A, i.e. S−1AS = Λ, thenS−1AkS = Λk

2.2 Symmetric and Hermitian matrices

For any two vectorsx,y ∈ Cn, theinner productof x andy is defined to be

x∗y = x̄Ty = x̄1y1 + · · ·+ x̄nyn

Two vectors areorthogonalto one another if their inner product is0. The vector~0 is orthogonal to all
vectors. Two orthogonal non-zero vectors must be linearly independent. For, ifx∗y = 0 andax+by = 0,
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then0 = ax∗x + bx∗y = ax∗x. This impliesa = 0, which in turns impliesb = 0 also. With the
same reasoning, one easily shows that a set of pairwise orthogonal non-zero vectors must be linearly
independent.

If A is any complex matrix, recall that theHermitian transposeA∗ of A is defined to beĀT , and
that A is said to beHermitian if A = A∗. A real matrix is Hermitian if and only if it is symmetric.
Also notice that the diagonal entries of a Hermitian matrix must be real, because they are equal to their
respective complex conjugates. The next lemma lists several useful properties of a Hermitian matrix.

Lemma 2.6. LetA be a Hermitian matrix, then

(i) for all x ∈ Cn, x∗Ax is real.

(ii) every eigenvalue ofA is real.

(iii) the eigenvectors ofA, if correspond to distinct eigenvalues, are orthogonal to one another.

Proof. It is straightforward that

(i) (x∗Ax)∗ = x∗A∗x∗∗ = x∗Ax.

(ii) Ax = λx impliesλ = x∗Ax
x∗x .

(iii) SupposeAx = λ1x, Ay = λ2y, andλ1 6= λ2, then

(λ1x)∗y = (Ax)∗y = x∗Ay = x∗(λ2y).

Hence,(λ1 − λ2)x∗y = 0, implying x∗y = 0.

2.3 Orthonormal and unitary matrices

A real matrixQ is said to beorthogonalif QT Q = I. A complex matrixU is unitary if U∗U = I. In
other words, the columns ofU (andQ) areorthonormal. Obviously being orthogonal is a special case of
being unitary. We state without proof a simple proposition.

Proposition 2.7. LetU be a unitary matrix, then

(i) (Ux)∗(Uy) = x∗y, and‖Ux‖2 = ‖x‖2.

(ii) Every eigenvalueλ of U has modulus1 (i.e. |λ| = λ∗λ = 1).

(iii) Eigenvectors corresponding to distinct eigenvalues ofU are orthogonal.

(iv) If U ′ is another unitary matrix, thenUU ′ is unitary.

3 The Spectral Theorem and the Jordan canonical form

Two matricesA andB are said to besimilar iff there is an invertible matrixM such thatM−1AM =
B. Thus, a matrix is diagonalizable iff it is similar to a diagonal matrix. Similarity is obviously an
equivalence relation. The following proposition shows what is common among matrices in the same
similarity equivalent class.

Proposition 3.1. If B = M−1AM , thenA andB have the same eigenvalues. Moreover, an eigenvector
x of A corresponds to an eigenvectorM−1x of B.
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Proof. Ax = λx implies(M−1A)x = λM−1x, or (BM−1)x = λ(M−1x).

An eigenvector corresponding to an eigenvalueλ is called aλ-eigenvector. The vector space spanned
by all λ-eigenvectors is called theλ-eigenspace. We shall often useVλ to denote this space.

Corollary 3.2. If A andB are similar, then the corresponding eigenspaces ofA andB have the same
dimension.

Proof. SupposeB = M−1AM , then the mappingφ : x → M−1x is an invertible linear transformation
from one eigenspace ofA to the corresponding eigenspace ofB.1

If two matricesA andB are similar, then we can say a lot aboutA if we know B. Hence, we
would like to findB similar to A whereB is as “simple” as possible. The first “simple” form is the
upper-triangular form, as shown by the following Lemma, which is sometime referred to as the Jacobi
Theorem.

Lemma 3.3 (Schur’s lemma).For any n × n matrix A, there is a unitary matrixU such thatB =
U−1AU is upper triangular. Hence, the eigenvalues ofA are on the diagonal ofB.

Proof. We show this by induction onn. The lemma holds whenn = 1. Whenn > 1, overC A must
have at least one eigenvalueλ1. Let x′1 be a corresponding eigenvector. Use theGram-Schmidtprocess
to extendx′1 to an orthonormal basis{x1,x2, . . . ,xn} of Cn. Let U1 be the matrix whose columns are
these vectors in order. From the fact thatU−1

1 = U∗
1 , it is easy to see that

U−1
1 AU1 =


λ1 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
0 ∗ ∗ . . . ∗
. . . . . . . . . . . . . . . . .
0 ∗ ∗ . . . ∗

 .

Now, let A′ = (U−1
1 AU1)11 (crossing off row1 and column1 of U−1

1 AU1). Then, by induction there
exists an(n − 1) × (n − 1) unitary matrixM such thatM−1A′M is upper triangular. LetU2 be the
n × n matrix obtained by adding a new row and new column toM with all new entries equal0 except
(U2)11 = 1. Clearly U2 is unitary andU−1

2 (U−1
1 AU1)U2 is upper triangular. LettingU = U1U2

completes the proof.

The following theorem is one of the most important theorems in elementary linear algebra, beside
the Jordan form.

Theorem 3.4 (Spectral theorem).Every real symmetric matrix can be diagonalized by an orthogonal
matrix, and every Hermitian matrix can be diagonalized by a unitary matrix:

(real case) Q−1AQ = Λ, (complex case)U−1AU = Λ

Moreover, in both cases all the eigenvalues are real.

Proof. The real case follows from the complex case. Firstly, by Schur’s lemma there is a unitary matrix
U such thatU−1AU is upper triangular. Moreover,

(U−1AU)∗ = U∗A∗(U−1)∗ = U−1AU,

i.e. U−1AU is also Hermitian. But an upper triangular Hermitian matrix must be diagonal. The realness
of the eigenvalues follow from Lemma 2.6.

1I have not define linear transformation yet. The thing to remember is that if there is an invertible linear transformation
from one vector space to another, then the two vector spaces have the same dimension. Invertible linear transformations are
like isomorphisms or bijections, in some sense. A curious student should try to prove this fact directly without using the term
linear transformation.
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Theorem 3.5 (The Jordan canonical form).If a matrixA hass linearly independent eigenvectors, then
it is similar to a matrix which is inJordan formwith s square blocks on the diagonal:

M−1AM =


B1 0 0 . . . 0
0 B2 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Bs


Each block has exactly one1-dimensional eigenspace, one eigenvalue, and1’s just above the diago-

nal:

Bj =


λj 1 0 . . . 0
0 λj 1 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . 1
0 0 0 . . . λj


Proof. A proof could be read from Appendix B of [6]. Another proof is presented in [2], which has a
nice combinatorial presentation in terms of digraphs. The fact that each Jordan block has exactly one1-
dimensional eigenspace is straightforward. The main statement is normally shown by induction in three
steps.

Corollary 3.6. Letn(λ) be the number of occurrences ofλ on the diagonal of the Jordan form ofA. The
following hold

1. rank(A) =
∑

λi 6=0 n(λi) + n(0)− dim(V0).

2. If A is Hermitian, then theλ-eigenspace has dimension equal the multiplicity ofλ as a solution to
equationpA(x) = 0.

3. In fact, in Hermitian caseCn =
⊕

i Vλi
whereVλi

denotes theλi-eigenspace.

Proof. This follows directly from theJordan formand our observation in Corollary 3.2. We are mostly
concerned with the dimensions of eigenspaces, so we can think aboutΛ instead ofA. Similar matrices
have the same rank, soA and its Jordan form have the same rank. The Jordan form ofA has rank equal
the total number of non-zero eigenvalues on the diagonal plus the number of1’s in the Jordan blocks
corresponding to the eigenvalue0, which is exactlyn(0)− dim(V0).

WhenA is Hermitian, it is diagonalizable. Every eigenvector corresponding to anoccurrenceof an
eigenvalueλ is linearly independent from all others (including the eigenvector corresponding to another
instance of the sameλ).

4 The Minimum Polynomial

I found the following very nice theorem stated without proof in a book called “Matrix Methods” by
Richard Bronson. I’m sure we could find a proof in either [4] or [3], but I wasn’t able to get them from
the library. Here I present my little proof.
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Theorem 4.1. SupposeBk is a Jordan block of size(l + 1) × (l + 1) corresponding to the eigenvalue
λk of A, i.e.

Bk =


λk 1 0 . . . 0
0 λk 1 . . . 0
...

...
... . . .

...
. . . . . . . . . . . . . . . . 1
0 0 0 . . . λk

 .

Then, for any polynomialq(λ) ∈ C[λ]

q(Bk) =



q(λk)
q′(λk)

1!
q′′(λk)

2! . . . q(l)(λk)
l!

0 q(λk)
q′(λk)

1! . . . q(l−1)(λk)
(l−1)!

...
...

... . . .
...

. . . . . . . . . . . . . . . . . . . . . . . . . q′(λk)
1!

0 0 0 . . . q(λk)


(9)

Proof. We only need to consider the caseq(x) = xj , j ≥ 0, and then extend linearly into all polynomials.
The casej = 0 is clear. Suppose equation (9) holds forq(x) = xj−1, j ≥ 1. Then, whenq(x) = xj we
have

q(Bk) = Bj−1
k Bk

=


λj−1

k

(
j−1
1

)
λj−2

k

(
j−1
2

)
λj−3

k . . .
(
j−1

l

)
λj−l−1

k

0 λj−1
k

(
j−1
1

)
λj−2

k . . .
(
j−1
l−1

)
λj−l

k
...

...
... . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(
j−1
1

)
λj−2

k

0 0 0 0 λj−1
k




λk 1 0 . . . 0
0 λk 1 . . . 0
...

...
... . . .

...
. . . . . . . . . . . . . . . . 1
0 0 0 . . . λk



=


λj

k

(
j
1

)
λj−1

k

(
j
2

)
λj−2

k . . .
(
j
l

)
λj−l

k

0 λj
k

(
j
1

)
λj−1

k . . .
(

j
l−1

)
λj−l+1

k
...

...
... . . .

...
. . . . . . . . . . . . . . . . . . . . . . . . . .

(
j
1

)
λj−1

k

0 0 0 0 λj
k



The minimum polynomialmA(λ) of an n × n matrix A over the complex numbers is the monic
polynomial of lowest degree such thatmA(A) = 0.

Lemma 4.2. With the terminologies just stated, we have

(i) mA(λ) dividespA(λ).

(ii) Every root ofpA(λ) is also a root ofmA(λ). In other words, the eigenvalues ofA are roots of
mA(λ).

(iii) A is diagonalizable iffmA(λ) has no multiple roots.

(iv) If {λi}s
i=1 are distinct eigenvalues of a Hermitian matrixA, thenmA(λ) =

∏s
i=1(λ− λi).
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Proof. (i) mA(λ) must divide every polynomialq(λ) with q(A) = 0, since otherwiseq(λ) = h(λ)mA(λ)+
r(λ) implies r(A) = 0 while r(λ) has smaller degree thanmA(λ). On the other hand, by the
Cayley-Hamilton Theorem (theorem 5.1),pA(A) = 0.

(ii) Notice thatAx = λx impliesAix = λix. Thus, for anyλk eigenvectorx of A ~0 = mA(A)x =∑
i ciA

ix =
∑

i ciλ
i
kx = m(λk)x. This impliesλk is a root ofm(λ).

(iii) (⇒). SupposeM−1AM = Λ for some invertible matrixM , andλ1, . . . , λs are distinct eigen-
values ofA. By (i) and (ii), we only need to showA is a root ofmA(λ) =

∏s
i=1(λ − λi).

It is easy to see that for any polynomialq(λ), q(A) = Mq(Λ)M−1. In particular,mA(A) =
M−1mA(Λ)M = 0, sincemA(Λ) = 0.

(⇐). Now we assumemA(λ) has no multiple root, which impliesmA(λ) =
∏s

i=1(λ − λi). By
Proposition 2.2, we shall show thatA hasn linearly independent eigenvectors. Firstly, notice that
if the Jordan form ofA is

M−1AM =


B1 0 0 . . . 0
0 B2 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Bs

 .

Then, for anyq(λ) ∈ C[λ] we have

M−1q(A)M = q




B1 0 0 . . . 0
0 B2 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . .
0 0 0 . . . Bs





=


q(B1) 0 0 . . . 0

0 q(B2) 0 . . . 0
... 0

... . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . q(Bs)



So,
∏s

i=1(A− λiI) = 0 implies
∏s

i=1(Bk − λiI) = 0 for all k = 1, . . . , s. If A does not haven
linearly independent eigenvectors, one of the blocksBk must have size> 1. Applying Theorem
4.1 with q(λ) =

∏s
i=1(λ − λi), we see thatq(Bk) does not vanish sinceq′(λi) 6= 0,∀i ∈ [s].

Contradiction!

(iv) Follows from (iii) since a Hermitian matrix is diagonalizable.

5 Two Motivating Theorems

5.1 The statements

We examine two elegant theorems which illustrate beautifully the inter-relations between Combinatorics,
Algebra, and Graph Theory. These two theorems are presented not only for the purpose of demonstrating
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the relationships, but they will also be used to develop some of our later materials on Algebraic Graph
Theory.

Theorem 5.1 (Cayley-Hamilton). LetA be ann× n matrix over any field. LetpA(x) := det(xI −A)
be the characteristic polynomial ofA. ThenpA(A) = 0.

I will give a proof of this theorem combinatorially, following the presentation in [5]. A typical
algebraic proof of this theorem would first shows that a weak version whereA is diagonal holds, then
extend to all matrices overC. To show the most general version we stated, the Fundamental Theorem of
Algebra is used. (FTA saysC is algebraically closed, or anyp ∈ C[x] has roots inC).

Theorem 5.2 (Matrix-Tree). Let G be a labeled graph on[n] := {1, . . . , n}. Let A be the adjacency
matrix ofG anddi := deg(i) be the degree of vertexi. Then the number of spanning trees ofG is any
cofactor ofL, whereL = D −A, D is diagonal with diagonal entriesdii = di,

The matrix L is often referred to as theLaplacian of G. A cofactor of a square matrixL is
(−1)i+j det Lij whereLij is the matrix obtained by crossing off rowi and columnj of L. This the-
orem also has a beautiful combinatorial proof. See [5] for details. I will present the typical proof of this
theorem which uses the Cauchy-Binet theorem on matrix expansion. This proof is also very elegant and
helps us develope a bit of linear algebra. Actually, for weighted graphs, a minimum spanning tree can be
shown to be a tree which minimizes certain determinant.

5.2 The proofs

Combinatorial proof of Cayley-Hamilton Theorem.(by Straubing 1983 [7]).

pA(x) := det(xI −A) :=
∑
π∈Sn

sgn(π)
n∏

i=1

(xI −A)iπ(i)

Let the set fixed points of a permutationπ be denoted byfp(π) := {i ∈ [n] | π(i) = i}. Each
i ∈ fp(π) contributes eitherx or−aii to a term. Eachi /∈ fp(π) contributes−aiπ(i). Hence, thinking
of F as the set of fixed points contributingx, we get

pA(x) =
∑
π∈Sn

sgn(π)
∑

F⊆fp(π)

(−1)n−|F |x|F |
∏
i/∈F

aiπ(i)

=
∑
π∈Sn

sgn(π)
∑

S⊆[n],
[n]−S⊆fp(π)

(−1)|S|xn−|S|
∏
i∈S

aiπ(i).

Now we exchange the summation indices by first fixing a particular choice ofS. Theπ will be the ones
with [n] − S ⊆ fp(π), i.e. the permutations which fix everything not inS. Let P (S) be the set of
permutations onS, then

pA(x) =
n∑

k=0

xn−k
∑

S∈([n]
k )

∑
π∈P (S)

sgn(π)(−1)k
∏
i∈S

aiπ(i).

Let c(π) be the number of cycles ofπ, it is easy to see that forπ ∈ P (S) with |S| = k, sgn(π)(−1)k =
(−1)c(π). Thus,

pA(x) =
n∑

k=0

xn−k
∑

S∈([n]
k )

∑
π∈P (S)

(−1)c(π)
∏
i∈S

aiπ(i)

11



Our objective is to showpA(A) = 0. We’ll do so by showing(pA(A))ij = 0, ∀i, j ∈ [n]. Firstly,

(pA(A))ij =
n∑

k=0

(An−k)ij

∑
S∈([n]

k )

∑
π∈P (S)

(−1)c(π)
∏
l∈S

alπ(l)

Let Pk
ij be the set of all directed walks of lengthk from i to j in Kn - the complete directed graph

on n vertices. Let an edgee = (i, j) ∈ E(Kn) be weighted byw(e) = aij . For anyP ∈ Pk
ij , let

w(P ) =
∏

e∈P w(e). It follows that

(An−k)ij =
∑

P∈Pn−k
ij

w(P )

To this end, let(S, π, P ) be a triple satisfying (a)S ⊆ [n]; (b) π ∈ P (S); and (c)P ∈ Pn−|S|
ij .

Definew(S, π, P ) := w(P )w(π), wherew(π) =
∏

t∈S atπ(t). Let sgn(S, π, P ) := (−1)c(π), then

(pA(A))ij =
∑

(S,π,P )

w(S, π, P )sgn(S, π, P )

To show(pA(A))ij = 0, we seek a sign-reversing, weight-preserving involutionφ on the set of triples
(S, π, P ). Let v be the first vertex inP along the walk such that either (i)v ∈ S, or (ii) v completes a
cycle inP . Clearly,

• (i) and (ii) are mutually exclusive, since ifv completes a cycle inP andv ∈ S thenv was inS
before completing the cycle.

• One of (i) and (ii) must hold, since if nov satisfy (i) thenP induces a graph onn − |S| vertices
with n− |S| edges.P must have a cycle.

Lastly, given the observations above we can describeφ as follows. Take the firstv ∈ [n] satisfying
(i) or (ii). If v ∈ S then letC be the cycle ofπ containingv. Let P ′ beP with C added right afterv.
S′ = S − C andπ′ beπ with the cycleC removed. The image ofφ(S, π, P ) is then(S′, π′, P ′). Case
(ii) v completes a cycle inP before touchingS is treated in the exact opposite fashion, i.e. we add the
cycle intoπ, and remove it fromP .

To prove the Matrix-Tree Theorem, we first need to show a sequence of lemmas. The first (Cauchy-
Binet Theorem) is commonly stated withD = I.

Lemma 5.3 (Cauchy-Binet Theorem).LetA andB be, respectively,r×m andm× r matrices. LetD
be anm ×m diagonal matrix with diagonal entriesei, i ∈ [m]. For anyr-subsetS of [m], let AS and
BS denote, respectively, ther × r submatrices ofA andB consisting of the columns ofA, or the rows
of B, indexed byS. Then

det(ADB) =
∑

S∈([m]
r )

det AS det BS
∏
i∈S

ei.

Proof. We will prove this assuming thate1, . . . , em are indeterminates. With this assumption in mind,
since(ADB)ij =

∑m
k=1 aikbkjek, it is easy to see thatdet(ADB) is a homogeneous polynomial in

e1, . . . , em with degreer.
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Consider a monomialet1
1 et2

2 . . . etm
m , where the number ofdistinct variables that occur is< r, i.e.

|{i | ti > 0}| < r. Substitute0 for all other indeterminates thenet1
1 et2

2 . . . etm
m and its coefficient

are unchanged. But, after this substitution,rank(D) < r, which impliesrank(ADB) < r, making
det(ADB) = 0. So the coefficient of our monomial is0.

Put it another way, the coefficient of a monomialet1
1 . . . etm

m is 0 unless it is a product ofr distinct
indeterminates, i.e.∃S ∈

(
[m]
r

)
s.t. et1

1 . . . etm
m =

∏
i∈S ei.

The coefficient of
∏

i∈S ei can be calculated by settingei = 1 for all i ∈ S andej = 0 for all j /∈ S.
It is not hard to see that the coefficient isdet AS det BS .

Lemma 5.4. Given a directed graphH with incident matrixN . Let C(H) be the set of connected
component ofH, then

rank(N) = |V (H)| − |C(H)|

Proof. Recall thatN is defined to be a matrix whose rows are indexed byV (H), whose columns are
indexed byE(H), and

Ni,e =


0 if i is not incident toe or e is a loop

1 if e = j → i, j 6= i

−1 if e = i → j, j 6= i

To showrank(N) = |V (H)| − |C(H)| we only need to show thatdim(col(N)⊥) = |C(H)|. For
any row vectorg ∈ R|V (H)|, g ∈ col(N)⊥ iff gN = 0, i.e. for any edgee = x → y ∈ E(H) we must
haveg(x) = g(y). Consequently,g ∈ col(N)⊥ iff g is constant on the coordinates corresponding to any
connected component ofH. It is thus clear thatdim(col(N)⊥) = |C(H)|.

Lemma 5.5 (Poincaŕe, 1901).Let M be a square matrix with at most two non-zero entries in each
column, at most one1 and at most one−1, thendet M = 0,±1.

Proof. This can be done easily by induction. If every column has exactly a1 and a−1, then the sum
of all row vectors ofM is ~0, makingdet M = 0. Otherwise, expand the determinant ofM along the
column with at most one±1 and use the induction hypothesis.

Proof the Matrix-Tree Theorem.We will first show that the Theorem holds for theii-cofactors for all
i ∈ [n]. Then, we shall show that theij-cofactors are all equal for allj ∈ [n], which completes the
proof. We can safely assumem ≥ n− 1, since otherwise there is no spanning tree and at the same time
det(NNT ) = 0.

Step 1. IfG′ is any orientation ofG, andN is the incident matrix ofG′, thenL = NNT . (Recall
thatL is the Laplacian ofG.) For anyi 6= j ∈ [n], if i is adjacent toj then clearly(NNT )ij = −1. On
the other hand,(NNT )ii is obviously the number of edges incident toi.

Step 2. IfB is an (n − 1) × (n − 1) submatrix ofN , thendet B = 0 if the correspondingn − 1
edges contain a cycle, anddet B = ±1 if they form a spanning tree ofG. Clearly,B is obtained by
removing a row ofNS for some(n − 1)-subsetS of E(H). By Lemma 5.4,rank(NS) = n − 1 iff
the edges corresponding toS form a spanning tree. Moreover, since the sum of all rows ofNS is the
0-vector,rank(B) = rank(NS). Hence,det B 6= 0 iff S form a spanning tree. WhenS does not form
a spanning tree, Lemma 5.5 impliesdet B = ±1.

Step 3.Calculatingdet Lii, i.e. theii-cofactor ofL. Letm = |E(G)|. LetM be the matrix obtained
from N by deleting rowi of N , thenLii = MMT . Applying Cauchy-Binet theorem withei = 1, ∀i,
we get
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det(MMT ) =
∑

S∈( [m]
n−1)

det MS det(MT )S

=
∑

S∈( [m]
n−1)

(detMS)2

= # of spanning trees ofG

The following Lemma is my solution to exercise 2.2.18 in [8]. The Lemma completes the proof
becauseL is a matrix whose columns sum to the0-vector.

Lemma 5.6. Given ann × n matrix A = (aij) whose columns sum to the0-vector. Letbij =
(−1)i+j det Aij , then for a fixedi, we havebij = bij′ , ∀j, j′.

Proof. Let B = (bij)T = (bji), then

(AB)ij =
n∑

k=1

aikbjk

Obviously,(AB)ij = δij det A whereδij is the Kronecker delta. To see this, imagine replacing row
j of A by row i of A and expanddet A along rowj, we get exactly the expression above. In other words,
AB = (det A)I.

Let ~ai denote columni of A, then by assumption
∑

i ~ai = ~0. Hence,det A = 0 anddim(col(A)) ≤
n− 1. If dim(col(A)) < n− 1 thenrank(Aij) < n− 1, makingbij = 0. Otherwise, ifdim(col(A)) =
n− 1 thenn− 1 vectors~aj − ~a1, 2 ≤ j ≤ n are linearly independent. Moreover,AB = (detA)I = 0
and

∑
i ~ai = ~0 implies that for alli

(bi2 − bi1)( ~a2 − ~a1) + (bi3 − bi1)( ~a3 − ~a1) + . . . (bin − bi1)( ~an − ~a1) = ~0

So,bij − bi1 = 0, ∀j ≥ 2.

Corollary 5.7 (Cayley Formula). The number of labeled trees on[n] is nn−2.

Proof. Cayley formula is usually proved by using Prufer correspondence. Here I use the Matrix-Tree
theorem to give us a different proof. Clearly the number of labeled trees on[n] is the number of spanning
trees ofKn. Hence, by the Matrix-Tree theorem, it isdet(nI − J) whereJ is the all1’s matrix, andI
andJ are matrices of ordern− 1 (we are taking the11-cofactor).
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det(nI − J) = det


n− 1 −1 −1 . . . −1
−1 n− 1 −1 . . . −1
−1 −1 n− 1 . . . −1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−1 −1 −1 . . . n− 1



= det


n− 1 −1 −1 . . . −1

0 n(n−2)
n−1

−n
n−1 . . . −n

n−1

0 −n
n−1

n(n−2)
n−1 . . . −n

n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 −n
n−1

−n
n−1 . . . n(n−2)

n−1



= det


n− 1 −1 −1 . . . −1

0 n(n−2)
n−1

−n
n−1 . . . −n

n−1

0 0 n(n−3)
n−2 . . . −n

n−2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 −n
n−2 . . . n(n−3)

n−2


= . . .

= det


n− 1 −1 −1 . . . −1

0 n(n−2)
n−1

−n
n−1 . . . −n

n−1

0 0 n(n−3)
n−2 . . . −n

n−1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . n(n−(n−1))
n−(n−2)


= nn−2
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