CSE 594: Combinatorial and Graph Algorithms Lecturer: Hung Q. Ngo
SUNY at Buffalo, Spring 2004 Scribe: Hung Q. Ngo

Linear Algebra and Examples

Standard texts on Linear Algebra and Algebra are [1, 6].

1 Preliminaries

1.1 Vectors and matrices

We shall useR to denote the set of real numbers &ido denote the set of complex numbers. For any
c = a+ bi € C, thecomplex conjugatef c, denoted by is defined to b& = a — bi. Themodulusof c,
denoted byc|, is va? + b2. Itis easy to see that|? = cc.

If we mention the word “vector” alone, it is understood to be a column vectornAliimensional
vectorz hasn entries in some field of numbers, suchfasr C:

z1

Z2
xr=

Tn

The set of alln-dimensional vectors ovéR (respectivelyC) is denoted byR"™ (respectivelyC™). They
are also calledeal vectorsandcomplex vectorgespectively.

Similar to vectors, matrices need an underlying field. We thus have complex matrices and real matri-
ces just as in the case of vectors. In factpadimensional vector is nothing but anx 1 matrix. In the
discussion that follows, the concepts of complex conjugates, transposes, and conjugate transposes also
apply to vectors in this sense.

Given anm x n matrix A = (a;;), thecomplex conjugatel of 4 is a matrix obtained frond by
replacing each entry;; of A by the corresponding complex conjugate. ThetransposeA® of A is the
matrix obtained fromA4 by turning its rows into columns and vice versa. For example,

—2
0

1

10 31 T
A_[_Q 0 1],andA =

—= w O

Theconjugate transposd* of A is defined to b A)”". A square matrix4 is symmetridff A = A7,
and isHermitianiff A = A*.
Given a real vector € R", thelength||z|| of z is

lall = \/e2 + 23+ -+ a2, (1)

Notice that||z|> = z2™. Whenz is a complex vector, we use instead ofz”. Hence, in general we
define||z|| = vVzz* = va*z. (You should check thatz* = z*xz, and that it is a real number so that the
square root makes sense.)



The length||z|| is also referred to as thBy-norm of vector z, denoted byj|z||2. In general, the

L,-normof ann-dimensional vectot, denoted by|z||,, wherep =1, 2,. .., is defined to be
1
[zllp := (lzaf” + -+ [zn?) 7, )
and
[2]loo == max |, @)
i=1..n

The following identities are easy to show, yet of great importance. Giverxa matrix A and a
g X r matrix B, we have
(AB)T = BTAT (4)
(AB)" = B*A* (5)
(Question: what are the dimensions of the matricé8)” and(AB)*?)
A square matrixA4 is said to besingularif there is no unique solution to the equatida: = b. For

A to be singular, it does not matter whats. The uniqueness of a solution #for = b is an intrinsic
property ofA alone. If there is one and only onesuch thatdz = b, thenA is said to benon-singular

1.2 Determinant and trace

Given a square matrid = (a;;) of ordern, the equatiomdz = 0 has a unique solution if and only if
det A # 0, wheredet A denotes theleterminanbf A, which is defined by

det A = Z (—-1)f™ Ham(z‘) = Z sign(r) Ham(i)- (6)
TESK i=1 TESR i=1

Here,S,, denotes the set of all permutations on the[sét= {1,...,n}. (S, is more often referred to
as thesymmetric groupf ordern.) Given a permutatiom € S,,, we usel () to denote the number of
inversionsof 7, which is the number of pairgr(:), 7(j)) for whichi < j andn (i) > = (j). Thesignof
a permutationr, denoted by sigfrr), is defined to be sigmr) = (—1)1(7).

Exercise 1.1.Find an involution forS,, to show that, fom > 2, there are as many permutations with
negative sign as permutations with positive sign.

Let us take an example far = 3. In this caseS,, consists ob permutations:
S, = {123,132,213,231, 312, 321}.

Notationally, we writer = 132 to mean a permutation wherg1l) = 1, 7(2) = 3, andn(3) = 2.

Thus, whenr = 132 we have sigfwr) = —1 since there is only one “out-of-order” pai8,2). To
be more precise, sigh23) = 1, sign(132) = —1, sign(312) = 1, sign(213) = —1, sign(231) = 1,
sign(321) = —1.
Consequently, for
0 3 1
A=|-2 0 1

-1 2 2

we have
det A = airagazs + (—1)anazsase + (—1)arzas ass + a12as3az +
a13azasz + (—1)aizazzaz

= 0:0-24(=1)-0-1-24(=1)-3-(=2)-24+3-1-(=1) +
1-(=2)-24(=1)-1-0-(=1)
=5



Thetrace of a square matrix4, denoted by trd is the sum of its diagonal entries. The matrx
above has
trA=0+0+2=2.

1.3 Combinations of vectors and vector spaces
A vectorw is alinear combinatiorof m vectorsuy, . . ., v, if w can be written as
W= a1 + a2 + ... amVm.- @)

The number; is called thecoefficienbf the vector; in this linear combination. Note that, as usual, we
have to fix the underlying field such &sor C. If, additionally, we also have; + as + -- - + a,, = 1,
thenw is called amaffine combinatiomf the v;.

A canonical combinatiois a linear combination in whict; > 0, Vj; and aconvex combinatiois an
affine combination which is also canonical. Tilrear (affine, canonical, convex) haf {vy, ..., vy} is
the set of all linear (affine, canonical, convex) combinations obthélote that in the above definitions,
m could be infinite. The convex hull of a finite set of vectors is calleatbag or more specifically a
convex polyhedral cone

A real vector spacés a setV of real vectors so that a linear combination of any subset of vectors
in V is also inV. In other words, vector spaces have todi@sedunder taking linear combinations.
Technically speaking, this is an incomplete definition, but it is sufficient for our purposes. One can also
replace the word “real” by “complex”. Aubspac®f a vector spac” is a subset of” which is closed
under taking linear combinations.

Given asel/ = {v1,..., vy} of vectors, the set of all linear combinations of theforms a vector
space, denoted by sp&f/)}, or span{(vi,...,vm)}. Thecolumn spacef a matrix A is the span of
its column vectors. Theow spaceof A is the span ofd’s rows. Note that equatioAz = b (with A not
necessarily a square matrix) has a solution if and orllyiés in the column space of. The coordinates
of = form the coefficients of the column vectors4fin a linear combination to forrh.

AsetV = {v,...,v,} of (real, complex) vectors is said to beearly independenit

a1v1 + asvs + ... amvy, = 0 only happens whemy = as = ...a,, = 0.

Otherwise, the vectors Wi are said to be (linearlyjependent

The dimensionof a vector space is the maximum number of linearly independent vectors in the
space. Théasisof a vector spac®” is a subsefvy, ..., v, } of V which is linearly independent and
span{(vi,...,vy)} = V. Itis easy to show that: is actually the dimension df. A vector space
typically has infinitely many bases. All bases of a vector sgadeve the same size, which is also the
dimension ofl/. The setR™ andC™ are vector spaces by themselves.

In ann-dimensional vector space, a setof> n vectors must be linearly dependent.

The dimensions of a matriX’s column space and row space are equal, and is referred to emthe
of A. This fact is not very easy to show, but not too difficult either. Gaussian elimination is of great use
here.

Exercise 1.2.Show that for any basi® of a vector spac& and some vectas € V, there is exactly
one way to writev as a linear combination of vectors i

1.4 Inverses

We use diadu, . . ., a,) to denote the matri¥d = (a;;) wherea;; = 0 for i # j anda; = a;,Vi. The
identity matrix often denoted by, is defined to be diad, . .., 1).
Given a square matri¥, theinverseof A, denoted byA~! is a matrixB such that

AB=BA=1, or AA7'=A"t4=1.



Exercise 1.3.Show that, ifA and B both have inverses, then the inversedd® can be calculated easily

by
(AB)"'=B7tA™L. (8)

Similarly, the same rule holds f@ror more matrices. For example,
(ABCD)™' = D~ lc7'B~tA~

If A has an inverse, it is said to bevertible Not all matrices are invertible. There are many
conditions to test if a matrix has an inverse, including: non-singularity, non-zero determinant, non-zero
eigenvalues (to be defined), linearly independent column vectors, linearly independent row vectors.

2 Eigenvalues and eigenvectors

In this section, we shall be concerned with square matrices only, unless stated otherwise.
Theeigenvaluesf a matrixA are the numbers such that the equatiadz = Az, or (AT — A)z = 0,

has a non-zero solution vector, in which case the solution vedocalled a\-eigenvector
Thecharacteristic polynomigp4 () of a matrix A is defined to be

pa(A) :=det(AI — A).

Since the all vector, denoted by, is always a solution tg ] — A)x = 0, it would be the only
solution if det(A\I — A) # 0. Hence, the eigenvalues are solutions to the equatign) = 0. For

example, if
2 1
e

A—2 -1
+2 A-3

then,

pA()\):det[ }:()\2)()\3)+2:)\25)\+8.

Hence, the eigenvalues dfare(5/2 4 i/7/2).

If we work on the complex numbers, then equation\) = 0 always has: roots (up to multi-
plicities). However, we shall be concerned greatly with matrices which have real eigenvalues. We shall
establish sufficient conditions for a matrix to have real eigenvalues, as shall be seen in later sections.

Theorem 2.1.Let Ay, ..., A, be the eigenvalues of anx n complex matrix4, then

() M+ + Ay =tr A,
(i) Ai... )\, = det A.

Proof. In the complex domainy4(\) hasn complex roots since it is a polynomial of degree The
eigenvalues\;, ..., \, are the roots op4 (). Hence, we can write

paN) =] =X) = A"+ ot X" 4t ad + .

()

It is evident that

Cpn—1 = _()\1++)\n)
0 = (—1)"A1... A,



On the other hand, by definition we have

A — ail —ai2 e —Q1n
—a9n A — asy ... —Qao2n
pa(N) = det
—Qpl —Qnp2 R QApn,

Expandingp 4 () in this way, the coefficient oX”~! (whichisc,, 1) is precisely—(ai1 +as+- - +ann);
and the coefficient ok® (which iscg) is (—1)" det A (think carefully about this statement!). O
2.1 The diagonal form

Proposition 2.2. Suppose the x n matrix A hasn linearly independent eigenvectats, . . . , x,, Where
X; is a \;-eigenvector. Lef be the matrix whose columns are the vectorsthenS—1AS = A, where
A =diag (A1, ..., A\n).

Proof. Note that since the column vectors $fare independeng is invertible and writingS—! makes
sense. We want to sho~' AS = A, which is the same as showintS = SA. SinceAx; = x; )\, it
follows that

AS=A|x1 ... x| = [Ax7 ... Ax,| = [Mx1 ... X, | = SA.

I I o
O

In general, if a matrixS satisfies the property th&t—! AS is a diagonal matrix, thess' is said to
diagonalizeA, and A is said to bediagonalizable It is easy to see from the above proof thatifis
diagonalizable byS, then the columns of are eigenvectors afl; moreover, since is invertible by
definition, the columns of must be linearly independent. In other words, we just proved

Theorem 2.3. A matrix is diagonalizable if and only if it hasindependent eigenvectors.

Proposition 2.4. If x1,...xz; are eigenvectors corresponding to distinct eigenvalyes .. \;, then
x1, ...z are linearly independent.

Proof. Whenk = 2, supposeciz; + coxo = 0. Multiplying by A givesciA1z1 + cahazes = 0.
Subtracting\, times the previous equation we get

Cl()\l - )\2)561 =0.
Hence,c; = 0 sinceA; # Ay andz; # 0. The general case follows trivially by induction. O
Exercise 2.5.1f 1, ...\, are eigenvalues of, then)\}, ... \* are eigenvalues of*. If S diagonalizes

A,i.e. STLAS = A, thenS—1AkS = Ak

2.2 Symmetric and Hermitian matrices

For any two vectors,y € C", theinner productof x andy is defined to be
X"‘y — )—(Ty — jlyl + -+ jnyn

Two vectors are@rthogonalto one another if their inner products The vector0 is orthogonal to all
vectors. Two orthogonal non-zero vectors must be linearly independent. ¥ty, i 0 andax+by = 0,

5



then0 = ax*x + bx*y = ax*x. This impliesa = 0, which in turns implies) = 0 also. With the
same reasoning, one easily shows that a set of pairwise orthogonal non-zero vectors must be linearly
independent.

If A is any complex matrix, recall that tHeermitian transposed* of A is defined to bed”, and
that A is said to beHermitianif A = A*. A real matrix is Hermitian if and only if it is symmetric.
Also notice that the diagonal entries of a Hermitian matrix must be real, because they are equal to their
respective complex conjugates. The next lemma lists several useful properties of a Hermitian matrix.

Lemma 2.6. Let A be a Hermitian matrix, then
(i) forall x € C", x*Ax is real.
(i) every eigenvalue ofl is real.

(iii) the eigenvectors ofd, if correspond to distinct eigenvalues, are orthogonal to one another.

Proof. Itis straightforward that

() (x*Ax)* = x*A*x*™* = x*Ax.

(i) Ax = Ax implies) = X4x,
(i) Supposedx = A\1x, Ay = Aoy, andA; # Ag, then
(Mx)"y = (4x)"y = x"Ay = x"(A2y).

Hence,(\; — A2)x*y = 0, implying x*y = 0.

2.3 Orthonormal and unitary matrices

A real matrix@ is said to beorthogonalif Q7 Q = I. A complex matrixU is unitaryif U*U = I. In
other words, the columns &f (and@) areorthonormal Obviously being orthogonal is a special case of
being unitary. We state without proof a simple proposition.

Proposition 2.7. LetU be a unitary matrix, then
() (Ux)"(Uy) =x"y, and||Ux|]* = ||x|/*.
(i) Every eigenvalue\ of U has modulud (i.e. |A| = A*A = 1).
(iii) Eigenvectors corresponding to distinct eigenvalueg/adre orthogonal.

(iv) If U’ is another unitary matrix, the&’U’ is unitary.

3 The Spectral Theorem and the Jordan canonical form

Two matricesA and B are said to beimilar iff there is an invertible matrix\/ such thatM ~*AM =

B. Thus, a matrix is diagonalizable iff it is similar to a diagonal matrix. Similarity is obviously an
equivalence relation. The following proposition shows what is common among matrices in the same
similarity equivalent class.

Proposition 3.1. If B = M~ AM, thenA and B have the same eigenvalues. Moreover, an eigenvector
x of A corresponds to an eigenvectdf ~!x of B.



Proof. Ax = Ax implies(M~'A)x = AM~!x, or (BM~Y)x = A\(M~'x). O

An eigenvector corresponding to an eigenvalug called a\-eigenvector The vector space spanned
by all A-eigenvectors is called theeigenspaceWe shall often us®), to denote this space.

Corollary 3.2. If A and B are similar, then the corresponding eigenspacegl@nd B have the same
dimension.

Proof. SupposeB = M ~!AM, then the mapping : + — M 'z is an invertible linear transformation
from one eigenspace of to the corresponding eigenspaceit O

If two matricesA and B are similar, then we can say a lot aboditif we know B. Hence, we
would like to find B similar to A where B is as “simple” as possible. The first “simple” form is the
upper-triangular form, as shown by the following Lemma, which is sometime referred to as the Jacobi
Theorem.

Lemma 3.3 (Schur’s lemma). For any n x n matrix A, there is a unitary matriX/ such thatB =
U~LAU is upper triangular. Hence, the eigenvalues/bére on the diagonal oB.

Proof. We show this by induction on. The lemma holds when = 1. Whenn > 1, overC A must
have at least one eigenvalde. Letx be a corresponding eigenvector. Use @ram-Schmidprocess
to extendz to an orthonormal basisx1, xa, . .., x,} of C". LetU; be the matrix whose columns are
these vectors in order. From the fact thgt' = Uy, it is easy to see that

Al * % *
0 * =x *
UtAU = | 0« *
0 * =x *

Now, let A’ = (Ul‘lAUl)H (crossing off rowl and columni of Ul‘lAUl). Then, by induction there
exists an(n — 1) x (n — 1) unitary matrix M such thath/—' A’ M is upper triangular. Let/; be the
n x n matrix obtained by adding a new row and new columm/{awith all new entries equal except
(Us)11 = 1. Clearly Uy is unitary andU, ' (U; AU, )Us is upper triangular. Letting/ = U;U»
completes the proof. m

The following theorem is one of the most important theorems in elementary linear algebra, beside
the Jordan form.

Theorem 3.4 (Spectral theorem).Every real symmetric matrix can be diagonalized by an orthogonal
matrix, and every Hermitian matrix can be diagonalized by a unitary matrix:

(real case) Q 'AQ = A, (complex case)U 1AU = A
Moreover, in both cases all the eigenvalues are real.

Proof. The real case follows from the complex case. Firstly, by Schur's lemma there is a unitary matrix
U such that/ ~! AU is upper triangular. Moreover,

(UTAU)* = U A (U~ ) = U A,

i.e. UL AU is also Hermitian. But an upper triangular Hermitian matrix must be diagonal. The realness
of the eigenvalues follow from Lemma 2.6. O

! have not define linear transformation yet. The thing to remember is that if there is an invertible linear transformation
from one vector space to another, then the two vector spaces have the same dimension. Invertible linear transformations are
like isomorphisms or bijections, in some sense. A curious student should try to prove this fact directly without using the term
linear transformation.



Theorem 3.5 (The Jordan canonical form).If a matrix A hass linearly independent eigenvectors, then
it is similar to a matrix which is infdJordan formwith s square blocks on the diagonal:

B, 0 0 ... 0
0 By, 0 ... 0
M7'AM=1|: o . ... 0
0 0 o0 B,

nal:

Aio100 0
0 A 1 0
Bj = 0 . 0
................ 1
0 0 0 A

Proof. A proof could be read from Appendix B of [6]. Another proof is presented in [2], which has a
nice combinatorial presentation in terms of digraphs. The fact that each Jordan block has exakttly one
dimensional eigenspace is straightforward. The main statement is normally shown by induction in three
steps. O

Corollary 3.6. Letn()\) be the number of occurrencesobn the diagonal of the Jordan form df. The
following hold

1. rank(A) = 3 5, .0 n(Ai) +n(0) — dim(Vp).

2. If Ais Hermitian, then the\-eigenspace has dimension equal the multiplicitk a6 a solution to
equationp4(x) = 0.

3. Infact, in Hermitian cas€™ = @, V), whereV,, denotes the\;-eigenspace.

Proof. This follows directly from theJordan formand our observation in Corollary 3.2. We are mostly
concerned with the dimensions of eigenspaces, so we can think Abositead ofA. Similar matrices
have the same rank, sband its Jordan form have the same rank. The Jordan formtads rank equal
the total number of non-zero eigenvalues on the diagonal plus the numberinfthe Jordan blocks
corresponding to the eigenval0gwhich is exactlyn(0) — dim(Vj).

When A is Hermitian, it is diagonalizable. Every eigenvector corresponding tacanrrenceof an
eigenvalue) is linearly independent from all others (including the eigenvector corresponding to another
instance of the samg). O

4  The Minimum Polynomial

| found the following very nice theorem stated without proof in a book called “Matrix Methods” by
Richard Bronson. I'm sure we could find a proof in either [4] or [3], but | wasn't able to get them from
the library. Here | present my little proof.



Theorem 4.1. SupposeBy, is a Jordan block of siz€ + 1) x (I + 1) corresponding to the eigenvalue
Ak of A, i.e.

(A 1 0 ... 0
0 X 1 ... O
Bi=|: :
................ 1
0 0 0 ... A
Then, for any polynomiaj(\) € C[)]
B / 1 ) 7]
a(\r) Q(l)!‘k) q (2>'\k) :]l 11()!)%)
0 g) & (1/\!k) o (l—l());k)
aBe) =1 ©
......................... ¢0n)
0 0 0 a(\e) |

Proof. We only need to consider the cage) = 2/, j > 0, and then extend linearly into all polynomials.
The casg = 0 is clear. Suppose equation (9) holds for) = 27—, > 1. Then, wheny(z) = 27 we
have

a(Br) = Bl 'By

N O DN COMTT T 1 0 0]
S A I PV AU () DY A I IR VRS R
................................. COINTZ e 1
|0 0 0 0 Xt | Lo 00 A
AL (DM (%)A?;j ,(?)A?;:IZH_

0 A DM o (DM

.......................... @A

00 0 0 o]

O]

The minimum polynomiatn 4 (\) of ann x n matrix A over the complex numbers is the monic
polynomial of lowest degree such thaty(A) = 0.

Lemma 4.2. With the terminologies just stated, we have
(i) ma(\) dividespa()).

(i) Every root ofp4(A) is also a root ofm4(\). In other words, the eigenvalues dfare roots of
ma(N).

(iii) Ais diagonalizable ifin4(\) has no multiple roots.

(iv) If {\;}5_, are distinct eigenvalues of a Hermitian mate thenm 4 () = [[7_; (A — Xi).

9



Proof. (i) ma(X\) mustdivide every polynomial(\) with ¢(A) = 0, since otherwise(\) = h(A)ma(\)+
r(A) impliesr(A) = 0 while (\) has smaller degree than,4(\). On the other hand, by the
Cayley-Hamilton Theorem (theorem 5.24(A) = 0.

(i) Notice thatAz = Az implies A’z = Xz Thus, for any); eigenvector: of A 0 = m(A)z =
S cAlr =3 i \ix = m(A)z. This implies)y is a root ofm(\).

(iiiy (=). SupposeM 1AM = A for some invertible matrix\/, and )y, . .., A are distinct eigen-
values of A. By (i) and (ii), we only need to show is a root ofma(\) = [[_; (A — Ni).
It is easy to see that for any polynomigl)\), ¢(A) = Mq(A)M~!. In particular,m4(A) =
M~Yma(A)M = 0, sincem4(A) = 0.
(«<). Now we assumen 4 () has no multiple root, which impliesi4(X) = []7_; (A — A;). By
Proposition 2.2, we shall show thdthasn linearly independent eigenvectors. Firstly, notice that
if the Jordan form of4 is

By 0 0 0
0 By O 0
MT7AM=1|: o " ... 0
0 0 0 B |
Then, for anyg(\) € C[\] we have
By 0 0 ... O]
0 By 0 ... 0
M~7q(AM = q||: o . ... 0
0 0 0 Bs|
[q(B1) 0 0 0 ]
0 q(B2) 0 0
= 0 0
| 0 0 0 q(Bs) ]

So,[[;_1(A—XNI) =0implies]]’_,(By, — A\iI) =0forallk =1,...,s. If Adoes not have
linearly independent eigenvectors, one of the bloBamust have size- 1. Applying Theorem
4.1 withq(X) = T[7_; (A — \i), we see thay(By,) does not vanish sincg(\;) # 0,Vi € [s].
Contradiction!

(iv) Follows from (iii) since a Hermitian matrix is diagonalizable.

5 Two Motivating Theorems

5.1 The statements

We examine two elegant theorems which illustrate beautifully the inter-relations between Combinatorics,
Algebra, and Graph Theory. These two theorems are presented not only for the purpose of demonstrating

10



the relationships, but they will also be used to develop some of our later materials on Algebraic Graph
Theory.

Theorem 5.1 (Cayley-Hamilton). Let A be ann x n matrix over any field. Lep4(x) := det(xI — A)
be the characteristic polynomial of. Thenp4(A) = 0.

I will give a proof of this theorem combinatorially, following the presentation in [5]. A typical
algebraic proof of this theorem would first shows that a weak version whésediagonal holds, then
extend to all matrices ovét. To show the most general version we stated, the Fundamental Theorem of
Algebra is used. (FTA say8 is algebraically closed, or anyc C[z] has roots irC).

Theorem 5.2 (Matrix-Tree). Let G be a labeled graph ofn] := {1,...,n}. Let A be the adjacency
matrix of G andd; := deg(i) be the degree of vertex Then the number of spanning treegdbfs any
cofactor of L, whereL = D — A, D is diagonal with diagonal entried;; = d;,

The matrix L is often referred to as theaplacian of G. A cofactor of a square matriX is
(—1)""7 det L;; where L;; is the matrix obtained by crossing off roinand columnj of L. This the-
orem also has a beautiful combinatorial proof. See [5] for details. | will present the typical proof of this
theorem which uses the Cauchy-Binet theorem on matrix expansion. This proof is also very elegant and
helps us develope a bit of linear algebra. Actually, for weighted graphs, a minimum spanning tree can be
shown to be a tree which minimizes certain determinant.

5.2 The proofs
Combinatorial proof of Cayley-Hamilton Theorer(by Straubing 1983 [7]).

pa(z) :==det(xl — A) := Z sgn(m) H(m[ — A)ir(i)
i=1

WGS’n

Let the set fixed points of a permutatianbe denoted byfp(w) := {i € [n] | 7(i) = i}. Each
i € fp(r) contributes eithex or —a;; to a term. Eachi ¢ fp(w) contributes—a,.(;). Hence, thinking
of I as the set of fixed points contributingwe get

pA(x) = Z Sgn(ﬂ—) Z (_1)n_|F|$‘F|Haiﬂ'(z)

— Z sgn() Z Dol IS\HQ (i)
TESY SC[n], i€S
[n]-SCfp(r)

Now we exchange the summation indices by first fixing a particular choige ®her will be the ones
with [n] — S C fp(w), i.e. the permutations which fix everything not.$h Let P(S) be the set of
permutations ord, then

Zx" K Z Z sgn(m 1)’“Ham(i).

SE([ ]) weP(S) (sh

Let c(7) be the number of cycles af, it is easy to see that for € P(S) with |S| = k, sgn(r)(—1)* =
(=1)°™). Thus,

Zw" EDIRD DR I L0

SE([ ]) TeP(S) €S

11



Our objective is to show 4 (A) = 0. We’'ll do so by showindpa(A));; = 0, Vi, j € [n]. Firstly,

n

(pa(A))ij Z (A" k Z Z )¢ (™ Ham(l)

k=0 Se(["]) TeP(S) les

Let Pi’fj be the set of all directed walks of lengthfrom i to j in K, - the complete directed graph

onn vertices. Let an edge = (4,j) € E(K,) be weighted byw(e) = a;;. For anyP € 7?1’3, let
w(P) = [[.epw(e). It follows that

(A" )= > w(P)

peppF

To this end, let(S, 7, P) be a triple satisfying (&p C [n]; (b) 7 € P(S); and (c)P € Pfj_|3|.
Definew(S, 7, P) := w(P)w(r), wherew(n) = [[,cq in(t)- L€tSsgN(S, 7, P) := (—=1)°(7), then

(pA(A))ij = Z w(S,ﬂ,P)sgn(S,W,P)

(S,m,P)

To show(pa(A));; = 0, we seek a sign-reversing, weight-preserving involutioon the set of triples
(S, m, P). Letv be the first vertex inP? along the walk such that either @) < S, or (ii) v completes a
cycle in P. Clearly,

e (i) and (ii) are mutually exclusive, since if completes a cycle i® andv € S thenv was inS
before completing the cycle.

e One of (i) and (ii) must hold, since if no satisfy (i) thenP induces a graph on — |S| vertices
with n — |S| edges.P must have a cycle.

Lastly, given the observations above we can descfibs follows. Take the first € [n] satisfying
(i) or (ii). If v € S then letC be the cycle ofr containingv. Let P’ be P with C added right aftep.
S’ =8 — C andn’ ber with the cycleC removed. The image af(S, 7, P) is then(S’, «’, P'). Case
(i) v completes a cycle i before touchings is treated in the exact opposite fashion, i.e. we add the
cycle intor, and remove it fronP. O

To prove the Matrix-Tree Theorem, we first need to show a sequence of lemmas. The first (Cauchy-
Binet Theorem) is commonly stated with = 1.

Lemma 5.3 (Cauchy-Binet Theorem).Let A and B be, respectively; x m andm x r matrices. LetD
be anm x m diagonal matrix with diagonal entries;, i € [m|. For anyr-subsetS of [m], let Ag and
B® denote, respectively, thex r submatrices ofd and B consisting of the columns of, or the rows
of B, indexed bys. Then

det(ADB) Z det Ag det B® H €;.
SE( ) €S

Proof. We will prove this assuming that, ..., e,, are indeterminates. With this assumption in mind,
since(ADB);; = Y -, aikbjer, it is easy to see thatet(ADB) is a homogeneous polynomial in
e, ...,en With degreer.
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Consider a monomiadtlle’;2 .. .e?j;;b, where the number distinct variables that occur i r, i.e.
I{i | t; > 0}] < r. Substitute0 for all other indeterminates thet{'e’’ ... el and its coefficient
are unchanged. But, after this substitutionnk(D) < r, which impliesrank(ADB) < r, making
det(ADB) = 0. So the coefficient of our monomial (s

Put it another way, the coefficient of a monomei:%l ...elm is 0 unless it is a product of distinct
indeterminates, i.e3S € (™)) s.t.el' ... elm = [T;eq e

The coefficient of [, 4 e; can be calculated by setting = 1 for all i € S ande; = 0 forall j ¢ S.
It is not hard to see that the coefficientlist Ag det BS. O

Lemma 5.4. Given a directed graph{ with incident matrixV. Let C'(H) be the set of connected
component off, then
rank(N) = [V(H)| - |C(H)|

Proof. Recall thatV is defined to be a matrix whose rows are indexed/§y? ), whose columns are
indexed byE(H), and

0 if ¢ is not incident tce or e is a loop
Nie=<R1 ife=j—i,j#i

)

—1 ife=i—j,j#i

To showrank(N) = |V (H)| — |C(H)| we only need to show thatim(col(N)*) = |C(H)|. For
any row vectorg € RIVUDI g € col(N)- iff gN = 0, i.e. for any edge = = — y € E(H) we must
haveg(z) = g(y). Consequentlyy € col(N)L iff g is constant on the coordinates corresponding to any
connected component éf. It is thus clear thatlim(col(N)*) = |C(H)). O

Lemma 5.5 (Poincag, 1901).Let M be a square matrix with at most two non-zero entries in each
column, at most ong and at most one-1, thendet M = 0, 1.

Proof. This can be done easily by induction. If every column has exactlyaad a—1, then the sum
of all row vectors ofM is 0, makingdet M = 0. Otherwise, expand the determinantidfalong the
column with at most one-1 and use the induction hypothesis. O

Proof the Matrix-Tree Theoreme will first show that the Theorem holds for tliecofactors for all
i € [n]. Then, we shall show that thg-cofactors are all equal for ajl € [n], which completes the
proof. We can safely assume > n — 1, since otherwise there is no spanning tree and at the same time
det(NNT) = 0.

Step 1. IfG’ is any orientation o, and N is the incident matrix oy, thenL = NN7. (Recall
that L is the Laplacian of7.) For anyi # j € [n], if i is adjacent tgi then clearly(NNT);; = —1. On
the other hand,N N7);; is obviously the number of edges incidentito

Step 2. IfBisan(n — 1) x (n — 1) submatrix ofN, thendet B = 0 if the corresponding: — 1
edges contain a cycle, anttt B = +1 if they form a spanning tree @f. Clearly, B is obtained by
removing a row ofNg for some(n — 1)-subsetS of E(H). By Lemma 5.4ank(Ng) = n — 1 iff
the edges corresponding fform a spanning tree. Moreover, since the sum of all row#&/efis the
0-vector,rank(B) = rank(Ng). Hencedet B # 0 iff S form a spanning tree. Whe$idoes not form
a spanning tree, Lemma 5.5 impliést B = +1.

Step 3.Calculatingdet L;;, i.e. theii-cofactor ofL. Letm = |E(G)|. Let M be the matrix obtained
from N by deleting rowi of N, thenL;; = M M7. Applying Cauchy-Binet theorem with;, = 1, Vi,
we get
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det(MM") = )" det Mgdet(M")"
se(y™)
= > (detMg)
se(y™)
= # of spanning trees a¥

The following Lemma is my solution to exercise 2.2.18 in [8]. The Lemma completes the proof
becausd. is a matrix whose columns sum to thevector. O

Lemma 5.6. Given ann x n matrix A = (a;;) whose columns sum to ttievector. Letb;; =
(—1)"* det A;;, then for a fixed, we haveh;; = by, Vj, 5.

Proof. Let B = (bw’)T = (bji), then

(AB)Z] = Zaikbjk
k=1
Obviously,(AB);; = 0;; det A whered;; is the Kronecker delta. To see this, imagine replacing row
j of Abyrowi of A and expandet A along row;, we get exactly the expression above. In other words,
AB = (det A)I.

Let a; denote column of A, then by assumptiol; d; = 0. Hencedet A = 0 anddim(col(A)) <
n—1.If dim(col(A)) < n—1thenrank(A;;) < n—1, makingb;; = 0. Otherwise, ifdim(col(A)) =
n — 1 thenn — 1 vectorsaj — di, 2 < j < n are linearly independent. MoreovetB = (det A)I =0
andy", a; = 0 implies that for alli

(biz — bi1) (@3 — a1) + (bis — bin)(ds — i) + - ... (bin — bir)(dr, — di) =0
SO,bij — bil =0, \V/j > 2. O

Corollary 5.7 (Cayley Formula). The number of labeled trees @ is n™ 2.

Proof. Cayley formula is usually proved by using Prufer correspondence. Here | use the Matrix-Tree
theorem to give us a different proof. Clearly the number of labeled tregg @the number of spanning
trees ofK,,. Hence, by the Matrix-Tree theorem, itdst(n/ — J) where.J is the alll’'s matrix, and/

andJ are matrices of ordet — 1 (we are taking thé 1-cofactor).
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mn—1 -1 -1 -1
-1 n—1 -1 .. -1
det(nl —J) = det | —1 -1 n-1 ... -1
1 -1 -1 n—1
n—1 -1 -1 —1
(n-2) - _
0 55 (?”12) P
_ — n(n— —
= det 0 ni—nl n—1 n—1
_ _ 2
L 0 T a2 |
n —1 -1 -1 -1 7
(n-2) - _
0 55 (‘%113) R
— nin— —_
= det 0 0 n—29 e T_n2
.................. - (73)
| 0 = =
m-1 -1 -1 1]
(n-2) - _
0 55 3%13) = P
nin— —
............................. n(nf(nfl))
L 0 0 0 n—(n—2) J
— nn72
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