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More Approximation Algorithms Based on Linear Programming

We discuss several other problems with approximation algorithms based on linear programming.
Most of these problems require a certain level of ingenuity which does not fit perfectly into the frame-
works presented in earlier lectures (rounding, randomized rounding, primal-dual).

1 Multicut in trees

In the MULTICUT problem, we are given a graphG = (V,E) with edge capacity functionc : E → Z+,
andm pairs of vertices(si, ti), i ∈ [m]. The pairs are different, but the vertices in different pairs do not
have to be distinct. Amulticut is a set of edges whose removal disconnectssi andti, for all i ∈ [m]. The
problem is to find a multicut with minimum capacity.

Exercise 1. Show that MULTICUT is NP-hard even whenG is a tree by a reduction from VERTEX

COVER.

Throughout this section, we assumeG is a tree, so that there is a unique pathPi from si to ti in
G. This can be viewed as a SET COVER problem in which an edgee covers allsi, ti-paths that contain
e. We will show that the algorithm PRIMAL -DUAL WITH REVERSE DELETIONgives an approximation
ratio2 for this problem.

The LP-relaxation of the IP for this problem is

min
∑
e∈E

cexe

subject to
∑
e∈Pi

xe ≥ 1 i ∈ [m],

xe ≥ 0, ∀e ∈ E.

(1)

The dual program is

max
m∑

i=1

yi

subject to
∑

i: e∈Pi

yi ≤ ce e ∈ e,

yi ≥ 0, ∀i ∈ [m].

(2)

In the context of this problem, we need to be very specific on choosing an uncoveredsk, tk-path at
each iteration. Fix a vertexr of G as the root of the tree. For each pair(si, ti), let LCA(si, ti) denote the
least common ancestorof si andti, which is the vertex at the intersection of the paths fromsi to r and
from ti to r. Note thatLCA(si, ti) could besi or ti. Let d(si, ti) denote thedepthof LCA(si, ti), which
is the distance betweenr andLCA(si, ti). Our primal-dual based algorithm is as follows.

PRIMAL -DUAL FOR MULTICUT IN TREES

1: C ← ∅, y ← 0, j ← 0
2: while C is not a multicutdo
3: Choose an uncovered pathPk with largestd(sk, tk)
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4: Increaseyk until there is a saturated edgeej

5: Add ej into C
6: end while
7: C ← REVERSE-DELETE(C)

Theorem 1.1. The algorithm above gives approximation ratio2.

Proof. Let C be an infeasible set of edges. LetA be a minimal augmentation ofC. Let Pk be the
uncovered path returned by the algorithm in line 3. We only have to show that there are at most2 edges
of Pk onA. (Recall Theorem 7.4 in the previous lecture.)

Let v = LCA(sk, tk). Suppose there are at least3 edges ofA on Pk. These edges are not inC.
Without loss of generality, assume there are two edgese1 ande2 of A on the part ofPk from sk to v
(otherwise, there are at least two edges on the part fromtk to v). Supposee1 is closer tov thane2. Since
A is minimal, e2 has to be on somePi to separatesi and ti which C does not disconnect. However,
d(si, ti) > d(sk, tk), implying thatC already disconnectsi andti, otherwisePi would have been chosen
instead ofPk. This is a contradiction.

Note that the integer version of (2) is theMAXIMUM INTEGER MULTI -COMMODITY FLOW problem
in trees. The algorithm above implicitly gives a feasible solution for this problem (defined by theyk).
This feasible solution is at least half of the optimal cost of the primal IP, hence it is also a2 approximation
for the multi-commodity flow problem.

Open Problem 1.No non-trivial approximation algorithm is known for theMAXIMUM INTEGER MULTI -
COMMODITY FLOW problem on graphs more general than trees. (Trivial ones give factorΩ(n).)

Exercise 2. Suppose instead of doingREVERSE-DELETE (which deletes edges in the reverse order of
which they were added intoC), we apply the following procedure: sort edges in the finalC by de-
creasing capacity and remove redundant edges in this order. What factor can you prove for the modified
algorithm?

Exercise 3. Give a polynomial time algorithm to compute a maximum integer multi-commodity flow
on trees with unit edge-capacities. You can use as a subroutine a maximum matching algorithm. (Hint :
dynamic programming.)

2 Metric uncapacitated facility location

FACILITY LOCATION is a fundamental optimization problem appearing in various context. In the un-
capacitated version of the problem, we are given a complete bipartite graphG = (F,C;E) whereF
represents a set of “facilities” andC a set of “cities.” The cost of opening facilityi is fi, and the cost of
assigning cityj to facility i is cij . The problem is to find a subsetI ⊆ F of facilities to be open and an
assignmenta : C → I assigning every cityj to some facilitya(j) to minimize the cost function∑

i∈I

fi +
∑
j∈C

ca(j),j .

In the metric version of the problem, the costcij satisfies the triangle inequality.
Designate a variablexi indicating if facility i is open andyij indicating if cityj is assigned to facility
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i, we get the following integer program:

min
∑
i∈F

fixi +
∑

i∈F,j∈C

cijyij

subject to
∑
i∈F

yij ≥ 1 j ∈ C,

xi − yij ≥ 0 i ∈ F, j ∈ C,
xi, yij ∈ {0, 1}, i ∈ F, j ∈ C.

(3)

Relaxing this integer program gives the following linear program

min
∑
i∈F

fixi +
∑

i∈F,j∈C

cijyij

subject to
∑
i∈F

yij ≥ 1 j ∈ C,

xi − yij ≥ 0 i ∈ F, j ∈ C,
xi, yij ≥ 0, i ∈ F, j ∈ C.

(4)

The dual linear program is

max
∑
j∈C

sj

subject to
∑
j∈C

tij ≤ fi i ∈ F,

sj − tij ≤ cij i ∈ F, j ∈ C,
sj , tij ≥ 0, i ∈ F, j ∈ C.

(5)

This primal-dual pair does not fit nicely into the covering primal-dual approximation framework we
discussed. In particular, there are negative coefficients. The general idea of applying the primal-dual
method to this problem is still to find some sort of “maximal” dual-feasible solution, and then set to1
the primal variables corresponding to saturated primal constraints.

PRIMAL -DUAL FOR METRIC UNCAPACITATED FACILITY LOCATION

Phase 1.

1: O ← ∅; // set of temporarily open facilities
2: J ← ∅; // set of connected cities thus far
3: s← 0; t← 0
4: while J 6= C do
5: Increase uniformly allsj , j ∈ C − J
6: After a while, if for some edgeij, we reachsj − tij = cij , then increase uniformlytij also.
7: // Edges withsj − tij = cij are called “tight” Edges withtij > 0 are called “special”
8: As soon as an edgeij becomes tight, ifi ∈ O then addj into J and declarei the “connection

witness” forj
9: After a while, there is somei such thatfi =

∑
j∈C

tij .

10: for each suchi in any orderdo
11: O ← O ∪ {i}
12: for each tight edgeij with j /∈ J do
13: J ← J ∪ {j} // i is called a “connection witness” forj
14: end for
15: end for
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16: end while

Phase 2.

1: Let H = (O,C) be the bipartite graph containing only special edges
2: Let I be a maximal subset ofO such that there is no path of length2 in H between any two vertices

in I
3: for eachj ∈ C do
4: if ∃i ∈ I such thatij is specialthen
5: a(j)← i // call j “directly connected” toi
6: else
7: Let i be the connection witness forj
8: if i ∈ I then
9: a(j)← i call j “directly connected” toi // note thatij is tight but not special

10: else
11: There must be somei′ ∈ I within H-distance2 from i
12: a(j)← i′ call j “indirectly connected” toi′

13: end if
14: end if
15: end for

We shall use(s̄, t̄) to denote the returned dual-feasible solution(s, t).

Theorem 2.1. The algorithm above gives approximation ratio3.

Proof. The idea is to compare the cost of the approximated solution∑
i∈I

fi +
∑
j∈C

ca(j),j

to the cost of the dual-feasible solution(s̄, t̄), which is
∑

j∈C s̄j .

We shall break each̄sj into two parts, and writēsj = s̄f
j + s̄c

j in the following way. Ifj is directly

connected toi = a(j), then set̄sf
j = t̄ij ands̄c

j = cij . If j is indirectly connected toi = a(j), then set

s̄f
j = 0 ands̄c

j = s̄j . Intuitively, the terms̄f
j is the contribution ofj into opening facilityi, and the term

s̄c
j is the contribution ofj to the cost of having edgeij.

Firstly, if i ∈ I andij is special, thenj is directly connected toi. Consequently∑
i∈I

fi =
∑
i∈I

∑
j:ij special

t̄ij =
∑
j∈C

s̄f
j .

Secondly, we claim thatcij ≤ 3s̄c
j , wherei = a(j). If j is directly connected toi, thencij = s̄c

j by
definition. Whenj is indirectly connected toi, there is ani′ ∈ I, j′ ∈ C such thatij′ andi′j′ are special,
and thati′ is a connection witness forj. By the triangle inequality, it is sufficient to prove that all three
of ci′j , ci′j′ , andcij′ are at most̄sj .

Sincei′ is a connection witness forj, the edgei′j is tight, implyingci′j ≤ s̄j . If we can show that
sj′ ≤ sj , then the other two inequalities follow. Sincei′ is a connection witness forj, sj got increased
until right at or after the timei′ became temporarily open. Since bothi′j′ andij′ are special,sj′ could
not have gotten increased after the timei′ became temporarily open. We thus havesj′ ≤ sj .

Consequently, ∑
i∈I

fi +
∑
j∈C

ca(j),j ≤
∑
j∈C

(
s̄f
j + 3s̄c

j

)
≤ 3OPT.
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Exercise 4. The vector̄s found by the algorithm above is maximal in the sense that, if we increase any
s̄j and keep other̄sj the same, then there is no way to adjust thet̄ij so that(s̄, t̄) is still dual-feasible. Is
every maximal solution̄s within 3 times the optimal solution to the dual linear program?

Hint : considern facilities with opening cost of1 each,n cities connected to distinct facilities with
costε each. In addition, there is another city that is connected to each facility with an edge of cost1.

Exercise 5. Suppose the cost of connecting cityi to facility j is c2
ij , where the costscij still satisfy the

triangle inequality (but their squares may not). Show that our algorithm gives performance ratio9.

Exercise 6. Suppose we slightly change the problem in the following way. Each cityj has a demand
dj . The cost of connectingj to an open facilityi is now cijdj . (Previously, alldj are1.) Modify our
algorithm to get a3-approximation for this problem. (Hint : raisesj at ratedj .)

3 Metric k-median

Thek-MEDIAN problem is very similar to theFACILITY LOCATION problem. The difference is that there
is no cost for opening facilities. On the other hand, there is an upper bound ofk on the number of open
facilities.

Keepingxi andyij as in the previous section, we can obtain an integer program for thek-MEDIAN

problem. Its LP-relaxation is as follows.

min
∑

i∈F,j∈C

cijyij

subject to
∑
i∈F

yij ≥ 1 j ∈ C,

xi − yij ≥ 0 i ∈ F, j ∈ C,∑
i∈F

(−xi) ≥ −k

xi, yij ≥ 0, i ∈ F, j ∈ C.

(6)

The dual linear program is

max
∑
j∈F

sj − ku

subject to
∑
j∈C

tij ≤ u i ∈ F,

sj − tij ≤ cij i ∈ F, j ∈ C,
sj , tij , u ≥ 0, i ∈ F, j ∈ C.

(7)

This primal-dual pair looks strikingly similar to the primal-dual pair of theFACILITY LOCATION

problem. In fact, if we assign a cost ofu to each facility in theFACILITY LOCATION problem and solve
for the primal optimal solution(x,y) and dual optimal solution(s, t), then by strong duality∑

i∈F

uxi +
∑

i∈F,j∈C

cijyij =
∑
j∈F

sj .

Consequently, if there is a value ofu such that the primal optimal solution(x,y) opens exactlyk facilities
(fractionally), i.e.

∑
i∈F xi = k, then it is clear that(x,y) and (s, t, u) are optimal solutions to the

primal-dual pair of thek-MEDIAN problem.
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On the same line of thought, suppose we can find a value ofu for which the approximation algorithm
for FACILITY LOCATION returns an integral solution(x,y) and a dual-feasible solution(s, t) such that
exactlyk facilities are open, then

3
∑
i∈F

uxi +
∑

i∈F,j∈C

cijyij = 3
∑
i∈I

fi +
∑
j∈C

ca(j),j

≤ 3
∑
j∈C

(sf
j + sc

j)

= 3
∑
j∈C

sj .

This implies ∑
i∈F,j∈C

cijyij =
∑
j∈C

ca(j),j ≤ 3

∑
j∈C

sj − ku

 ,

and we would have gotten a3-approximation algorithm for thek-MEDIAN problem. Unfortunately, it is
an open problem to find au so that this happens. We will take a different path.

Let nc be the number of cities,nf number of facilities,n = nc + nf , andm = ncnf the number of
edges in the graph.

In the algorithm forFACILITY LOCATION , the largeru is the fewer number of facilities will be
opened. (More edges will become tight before the costu is reached.) Whenu = 0, all facilities will
be opened. Whenu = nccmax, wherecmax is the maximumcij andn is the number of cities, only one
facility will be opened, because all edges are tight when this cost is reached. Assuming we break ties
canonically, it is easy to see that the number of opened facilities is inversely proportional tou.

Apply binary search on the interval[0, nccmax] to find two valuesu1 < u2 such that the correspond-
ing number of opened facilitiesk1, k2 satisfyk1 > k > k2 and thatu2 − u1 ≤ cmin/(12n2

f ), wherecmin

is the minimum value ofcij . (If we can find a value ofu for which the number of opened facilities isk,
then we are done.) Let the corresponding integral primal solutions be(x(1),y(1)) and(x(2),y(2)), and
the corresponding (fractional) dual solutions be(s(1), t(1)) and(s(2), t(2)), respectively.

First, the idea is to get a convex combination

(x,y) = α(x(1),y(1)) + β(x(2),y(2))

such that(x,y) opensk facilities fractionally. This meansαk1 +βk2 = k andα+β = 1, which implies
α = k−k2

k1−k2
, andβ = k1−k

k1−k2
. Let

(s, t) = α(s(1), t(1)) + β(s(2), t(2)).

Note that(s, t, u2) is a feasible solution to the dual program (7).
Let us estimate how good this fractional combination is. We have

∑
i∈F,j∈C

cijy
(1)
ij ≤ 3

∑
j∈C

s
(1)
j − k1u1

 (8)

∑
i∈F,j∈C

cijy
(2)
ij ≤ 3

∑
j∈C

s
(2)
j − k2u2

 . (9)

We want to turnu1 in the first inequality intou2 with a small increase in the factor3, and then take the
convex combination to estimate the cost of(x,y). Using the facts thatu2 − u1 ≤ cmin

12n2
f
, k1 ≤ nf , and
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cmin ≤
∑

i∈F,j∈C cijy
(1)
ij , we get

∑
i∈F,j∈C

cijy
(1)
ij ≤ (3 + 1/nf )

∑
j∈C

s
(1)
j − k1u2

 . (10)

Now, anα, β convex combination of (10) and (9) gives

∑
i∈F,j∈C

cijyij ≤ (3 + 1/nf )

∑
j∈C

sj − ku2

 .

Thus, the fractional solution(x,y) is within (3 + 1/nf ) of the optimal. To turn the fractional solution
into an integral solution, we apply randomized rounding.

Let I1 andI2 be the set of facilities returned by the algorithm corresponding tou1 andu2 respectively.
We know|I1| = k1 and|I2| = k2, and thatk1 > k > k2. The fractionsα andβ indicate how much the
solution should be leaning towardsI1 andI2. Hence, it is natural to use them as rounding probability.
The trouble is thatI2 does not have enough elements, whileI1 has too many elements.

We resolve this problem in the following way. For eachi in I2, let ν(i) be a facility inI1 nearest to
i. Let Iν be the set of theseν(i). Clearly|Iν | ≤ k2 < k1. We arbitrarily padIν with elements fromI1

until |Iν | = k2. Our rounding procedure goes as follows.

• Open all facilities inI2 with probabilityβ and all facilities inIν with probabilityα.

• Pick uniformly a subsetI3 of I1 − Iν of size|I3| = k − k2 and open all facilities inI3. Note that
each element inI1 − Iν has a probability of(

k1−k2−1
k−k2−1

)(
k1−k2

k−k2

) =
k − k2

k1 − k2
= α

of being chosen.

• Return the setI of k opened facilities.

The next thing to do is to assign cities to these opened facilities. Consider any cityj. Let i1 andi2 be
the facilities thatj was connected to in the solutionsI1 andI2. In the first case, supposei1 ∈ Iν . Since
eitheri1 or i2 is open, we seta(j) to be the open facility. In the second case, supposei1 /∈ Iν , in which
case we connectj to i1 if it is open (i.e. i1 ∈ I3), otherwise toi2 if it is open. If bothi1 andi2 are not
open, we connectj to i3 = ν(i2).

We estimate the expected cost of connectingj to a(j). In the first case (i1 ∈ Iν),

E[ca(j),j ] = αci1j + βci2j .

In the second case wheni1 6 inIν , there is a probability ofα thati1 is in I3, a probability of(1−α)β = β2

thati1 /∈ I3 but i2 is open, and a probability of(1−α)(1−β) = αβ thatj will be connected toi3. Thus,
in this case

E[ca(j),j ] = αci1j + β2ci2j + αβci3j .

By the triangle inequality, we have

ci3j ≤ ci3i2 + ci2j ≤ ci1i2 + ci2j ≤ ci1j + 2ci2j .

Consequently,

E[ca(j),j ] ≤ α(1 + β)ci1j + β(1 + α)ci2j ≤ (1 + max{α, β})[αci1j + βci2j ].

We have just shown the following theorem.
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Theorem 3.1. The above rounding procedure gives expected cost at most(1 + max{α, β}) the cost of
(x,y).

Thus, in total the rounded solution is of cost at most(3+1/nf )(1+max{α, β}) of the optimal. Since
max{α, β} is at mostnf/(nf +1), and(3+1/nf )(1+nf/(nf +1)) ≤ 6, we obtain a6-approximation.

The algorithm can be derandomized with the method of conditional expectation. Note that the expec-
tations E[ca(j),j ] can be calculated explicitly and efficiently. To derandomize this algorithm, we compute
the expectations of the final cost given that we openI2 or Iν . We then follow the smaller expectation (in
theα or β weighted sense). To compute whichI3 to open, we can compute the conditional expectations
of the cost given that elementsi1, . . . , ik2−k1 of I1 − I2 are inI3, then repeat this process.

Exercise 7(Vazirani’s book - Exercise 25.3). Use Lagrangian relaxation technique to give a constant fac-
tor approximation algorithm for the following common generalization of theFACILITY LOCATION and
k-MEDIAN problems. Consider theUNCAPACITATED FACILITY LOCATION problem with the additional
constraint that at mostk facilities can be opened.

Exercise 8(Jain and Vazirani [10]). Consider thel22-CLUSTERING problem. Given a set ofn points
S = {v1, . . . , vn} in Rd and a positive integerk, the problem is to find a minimum costk-clustering, i.e.,
to findk points, calledcenters, f1, . . . , fk ∈ Rd, so as to minimize the sum of squares of distances from
each pointvi to its closest center. This naturally defines a partitioning of then points intok clusters.
Give a constant factor approximation algorithm for this problem.

(Hint : first show that restricting the centers to a subset ofS increases the cost of the optimization
solution by a factor of at most2.)

Historical Notes

The2-approximation for multicut in trees was due to Garg, Vazirani, and Yannakakis [6]. Recent works
on integer multi-commodity flow can be found in [3–5,7,14]. For an example of multi-commodity flow
in networking, see [12].

For the UNCAPACITATED FACILITY LOCATION problem, Hochbaum [8] obtained ratioO(lg n),
Shmoys, Tardos, and Aardal [13] got3.16 ratio with an LP-rounding based algorithm. The3-approximation
algorithm we described was due to Jain and Vazirani [10]. Jain, Mahdian and Saberi [9] reduce the ratio
further to1.61 with a greedy algorithm analyzed by the dual-fitting method.

For theMETRIC k-MEDIAN problem, Bartal [] gave the first algorithm which achieved approximation
ratio O(lg n lg lg n). Charikar, Guha, Tardos, and Shmoys [2] achieved62

3 using ideas from Lin and
Vitter [11]. The6-approximation algorithm we described was due to Jain and Vazirani [10]. Arya, Garg,
Khandekar, Meyerson, Munagala, and Pandit [1] achieved ratio(3 + 2/p) with running timeO(np), for
anyp using the local search method. Jain, Mahdian, and Saberi [9] gave a hardness ratio of1 + 2/e for
approximating this problem.
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