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More Approximation Algorithms Based on Linear Programming

We discuss several other problems with approximation algorithms based on linear programming.
Most of these problems require a certain level of ingenuity which does not fit perfectly into the frame-
works presented in earlier lectures (rounding, randomized rounding, primal-dual).

1 Multicutin trees

In the MuLTICUT problem, we are given a gragh = (V, E') with edge capacity function: £ — Z*,
andm pairs of verticess;, t;), i € [m]. The pairs are different, but the vertices in different pairs do not
have to be distinct. Anulticutis a set of edges whose removal disconnectndt;, for all i € [m]. The
problem is to find a multicut with minimum capacity.

Exercise 1. Show that MuLTICUT is NP-hard even whertr is a tree by a reduction from BRTEX
COVER.

Throughout this section, we assur@eis a tree, so that there is a unique p&thfrom s; to ¢; in
G. This can be viewed as &$ CoVER problem in which an edge covers alls;, ¢;-paths that contain
e. We will show that the algorithm ®MAL -DUAL WITH REVERSE DELETIONQives an approximation
ratio 2 for this problem.

The LP-relaxation of the IP for this problem is

min E CeTe

eck
subjectto > x.>1 i€ [m], 1)
ecP;
. >0, Ve€ FE.

The dual program is

m
max E Y;
—

(]
subjectto > yi<c. ec€e, @)
i: e€EP;
y; >0, Vie[m].

In the context of this problem, we need to be very specific on choosing an unceyetgeath at
each iteration. Fix a vertexof G as the root of the tree. For each pgir, t;), letLCA(s;, t;) denote the
least common ancestoif s; and¢;, which is the vertex at the intersection of the paths frgrto » and
from ¢; to r. Note thatLCA(s;, t;) could bes; or ¢;. Letd(s;,t;) denote thalepthof LCA(s;, t;), which
is the distance betweerandLCA (s;, t;). Our primal-dual based algorithm is as follows.

PRIMAL -DUAL FOR MULTICUT IN TREES

1: C—0,y«—0,j«0
2: while C is not a multicutdo
3:  Choose an uncovered path with largestd (s, tx)



4:  Increasgy, until there is a saturated edgge
5. Adde;intoC

6: end while

7: C « REVERSEDELETE(C')

Theorem 1.1. The algorithm above gives approximation ragio

Proof. Let C' be an infeasible set of edges. Létbe a minimal augmentation @f. Let P be the
uncovered path returned by the algorithm in line 3. We only have to show that there are atedgst
of P, on A. (Recall Theorem 7.4 in the previous lecture.)

Let v = LCA(sk,tx). Suppose there are at le&sedges ofA on P,. These edges are not @.
Without loss of generality, assume there are two edgeandes of A on the part ofP, from s, to v
(otherwise, there are at least two edges on the part framv). Suppose; is closer tov thanes. Since
A is minimal, e has to be on som@; to separates; and¢; which C does not disconnect. However,
d(s;,t;) > d(sg,tr), implying thatC' already disconneat; andt;, otherwiseP; would have been chosen
instead ofP,. This is a contradiction. O

Note that the integer version of (2) is tRenXIMUM INTEGER MULTI -COMMODITY FLOW problem
in trees. The algorithm above implicitly gives a feasible solution for this problem (defined hy the
This feasible solution is at least half of the optimal cost of the primal IP, hence it is alap@roximation
for the multi-commodity flow problem.

Open Problem 1. No non-trivial approximation algorithm is known for tie\XIMUM INTEGER MULTI -
COMMODITY FLOW problem on graphs more general than trees. (Trivial ones give fa¢tor.)

Exercise 2. Suppose instead of doirRgevERSEDELETE (which deletes edges in the reverse order of
which they were added int¢'), we apply the following procedure: sort edges in the fi@aby de-
creasing capacity and remove redundant edges in this order. What factor can you prove for the modified
algorithm?

Exercise 3. Give a polynomial time algorithm to compute a maximum integer multi-commodity flow
on trees with unit edge-capacities. You can use as a subroutine a maximum matching algeéfithm. (
dynamic programming.)

2 Metric uncapacitated facility location

FAcILITY LoCATION is a fundamental optimization problem appearing in various context. In the un-
capacitated version of the problem, we are given a complete bipartite graph(F, C; E) where F’
represents a set of “facilities” ard a set of “cities.” The cost of opening facilityis f;, and the cost of
assigning city;j to facility ¢ is ¢;;. The problem is to find a subsetC F' of facilities to be open and an
assignment : C' — I assigning every city to some facilitya(j) to minimize the cost function

Yo fit D cat
iel jec

In the metric version of the problem, the cegtsatisfies the triangle inequality.
Designate a variable; indicating if facility 7 is open andy;; indicating if city j is assigned to facility



1, we get the following integer program:
min > firi+ > oyt
i€F ieF,jeC

subjectto ) yi; > 1 jec, 3)
1EF
in—yijzo iEF,jEC,
:z:i,yijE{O,l}, iEF,jEC.

Relaxing this integer program gives the following linear program

min Zfz'wi + Z CijYij

i€l icF,jeC
subject to Zyij >1 JjeC, (4)
ieF

xi—yi; >0 i€F, jeC,
l‘z»?/ngO, iGF,jGC.

The dual linear program is

max ZSJ
jec
subjectto Y "ty < fi ieF, 5)
jec
sj—tijgcij 1eF, jeC,
84, tij >0, ieF, jeC.

This primal-dual pair does not fit nicely into the covering primal-dual approximation framework we
discussed. In particular, there are negative coefficients. The general idea of applying the primal-dual
method to this problem is still to find some sort of “maximal” dual-feasible solution, and then et to
the primal variables corresponding to saturated primal constraints.

PRIMAL -DUAL FOR METRIC UNCAPACITATED FACILITY LOCATION
Phase 1.

1: O « 0; [l set of temporarily open facilities
2: J < ; Il set of connected cities thus far
3s—0;t<—0
4: while J # C do
:  Increase uniformly als;, j € C — J
After a while, if for some edgéj, we reachs; — ¢;; = c;;, then increase uniformls; also.
Il Edges withs; — t;; = ¢;; are called “tight” Edges witl;; > 0 are called “special”
As soon as an edgg becomes tight, if € O then add; into J and declareg the “connection
witness” forj
9:  After a while, there is somésuch thatf; = Z tij.

© N o g

jeC
10:  for each suchi in any orderdo
11: O —0U{i}
12: for each tight edge; with j ¢ J do
13: J — Ju{j} Iliis called a“connection witness” fgr
14: end for
15:  end for



16: end while
Phase 2.
1: Let H = (O, C) be the bipartite graph containing only special edges
2. Let I be a maximal subset @? such that there is no path of lengtlin H between any two vertices
in 7
3: for eachj € C do

4: if 4i € I such thatj is speciathen

5: a(j) < ¢ [l call j “directly connected” ta

6: else

7 Let ¢ be the connection witness fgr

8: if ¢ € I then

9: a(j) <« ¢ call j “directly connected” ta // note thatij is tight but not special
10: else

11: There must be somé € I within H-distance2 from ¢
12: a(j) < ' call j “indirectly connected” ta’

13: end if

14:  endif

15: end for

We shall us€s, t) to denote the returned dual-feasible solutisrt).
Theorem 2.1. The algorithm above gives approximation rasio

Proof. The idea is to compare the cost of the approximated solution

D+ catyi

il jeC

to the cost of the dual-feasible solutiesn #), whichis) . 5.

We shall break each; into two parts, and writg; = Ef + s in the following way. If; is directly

connected ta = a(j), then se‘r§§c = t;; ands; = ¢;;. If j is indirectly connected té = a(j), then set
§§C = 0 ands§ = s;. Intuitively, the termgf is the contribution ofj into opening facilityi, and the term
§; is the contribution ofj to the cost of having edgg.

Firstly, if i € I andij is special, ther is directly connected td Consequently

IS DD SR )

iel i€l j:ij special jeC

Secondly, we claim that;; < 3s7, wherei = a(j). If jis directly connected to, thenc;; = s; by
definition. Whery is indirectly connected tg there isan’ € I, ;' € C such that;’ andi’;’ are special,
and thati’ is a connection witness fgr. By the triangle inequality, it is sufficient to prove that all three
of ¢y74, cirjr, andc;;» are at moss;.

Sincei’ is a connection witness fgy, the edge’; is tight, implyingc;/; < 5;. If we can show that
sj» < sj, then the other two inequalities follow. Sin€ds a connection witness fgr, s; got increased
until right at or after the time¢’ became temporarily open. Since batff andi;’ are specials; could
not have gotten increased after the tithbecame temporarily open. We thus haye< s;.

Consequently,
Z fi+ Z Ca(j),j = Z (Ef + 355) < 30PT.

el jeC jecC



Exercise 4. The vectors found by the algorithm above is maximal in the sense that, if we increase any
5; and keep othe¥; the same, then there is no way to adjustfheso that(s, t) is still dual-feasible. Is
every maximal solutioB within 3 times the optimal solution to the dual linear program?

Hint: considem facilities with opening cost of each,n cities connected to distinct facilities with
coste each. In addition, there is another city that is connected to each facility with an edge of cost

Exercise 5. Suppose the cost of connecting citto facility j is cfj, where the costs;; still satisfy the
triangle inequality (but their squares may not). Show that our algorithm gives performance ratio

Exercise 6. Suppose we slightly change the problem in the following way. Eachjditgs a demand
d;. The cost of connecting to an open facility; is nowc;;d;. (Previously, alld; are1.) Modify our
algorithm to get &-approximation for this problemHint: raises; at rated;.)

3 Metric k-median

Thek-MEDIAN problem is very similar to theaciLITY LOCATION problem. The difference is that there
is no cost for opening facilities. On the other hand, there is an upper boundrothe number of open
facilities.

Keepingz; andy;; as in the previous section, we can obtain an integer program fdr-thepIAN
problem. Its LP-relaxation is as follows.

min Z CijYij
icF,jeC
subjectto  yi; > 1 jec,

i€F 6
xi—yijZO iGF,jEC, ()

:z:i,yijzo, 1€ F, jeC.

The dual linear program is

max Zsj — ku
jEF
subject to Ztij <u ieF, @
jeC
Sj_tijécij 1eF, jeC,
sj,tij,u > 0, 1€ F, j e C.

This primal-dual pair looks strikingly similar to the primal-dual pair of #h&CILITY LOCATION
problem. In fact, if we assign a cost ofto each facility in thecFACILITY LOCATION problem and solve
for the primal optimal solutiorix, y) and dual optimal solutiofs, t), then by strong duality

E ur; + g Cijyij:E Sj-
iEF iEF,jeC JEF

Consequently, if there is a valuewbuch that the primal optimal solutig®, y) opens exactly: facilities
(fractionally), i.e. >, ; = k, then it is clear thatx,y) and (s, t,u) are optimal solutions to the
primal-dual pair of the;-MEDIAN problem.



On the same line of thought, suppose we can find a valudafwhich the approximation algorithm
for FACILITY LOCATION returns an integral solutiofx, y) and a dual-feasible solutigs, t) such that
exactlyk facilities are open, then

3Zux¢+ Z Cij¥Yij = 32]‘}'-1-26@(]'),]‘

i€EF ieF,jeC i€l jeC
< 33 (s +5))
jeC
= 328]‘.
jecC

This implies

S iy =Y cang <3| D s —kul,
ieFjeC jeC jeC
and we would have gottenzapproximation algorithm for the-MEDIAN problem. Unfortunately, it is
an open problem to find@so that this happens. We will take a different path.

Letn. be the number of cities; ; number of facilitiesp, = n. + ny, andm = n.ny the number of
edges in the graph.

In the algorithm forFACILITY LOCATION, the largeru is the fewer number of facilities will be
opened. (More edges will become tight before the eoist reached.) When = 0, all facilities will
be opened. When = n.cmax, Wherecp,.x is the maximunr;; andn is the number of cities, only one
facility will be opened, because all edges are tight when this cost is reached. Assuming we break ties
canonically, it is easy to see that the number of opened facilities is inversely proportienal to

Apply binary search on the intervl, n.cmax| to find two values:; < uy such that the correspond-
ing number of opened facilitiels , ko satisfyk; > k > ks and thatus — u; < cmin/(12n§), wherecpin
is the minimum value of;;. (If we can find a value of. for which the number of opened facilitiesis
then we are done.) Let the corresponding integral primal solutioris®& y()) and (x(?, y(?)), and
the corresponding (fractional) dual solutions(be’, t(1)) and(s(?), t(?)), respectively.

First, the idea is to get a convex combination

(x,y) = a(xW, yD) + g(x?, y@)

such thaix, y) opensk facilities fractionally. This meansk; + Sko = k anda+ 3 = 1, which implies

_ k—ko _ k1—k
o= =5, andg = i Let

(s,t) = a(sM), 61) 4 A(s2), £2).

Note that(s, t, uo) is a feasible solution to the dual program (7).
Let us estimate how good this fractional combination is. We have

Z Cz‘jyg) < 3 Z Sg»l) — k1uy 8
icF,jeC jeC

Z ClJy7,(32) < 3 Z 852) - kQ’LLQ . (9)
el jeC jec

We want to turnu; in the first inequality intaz; with a small increase in the fact8r and then take the
convex combination to estimate the cost®fy). Using the facts thaty — u; < fQ? k1 < ny, and
f

6



1)
Cmin < ZieF,jeC cijy;; » we get

> Cijyi(}) < (3+1/ny) ng'l) — kiua | . (10)

ieF,jeC jeC

Now, ana, 8 convex combination of (10) and (9) gives

> ey < B+ 1/ng) [ D85 — kug

ieFjeC jeC

Thus, the fractional solutio(x, y) is within (3 + 1/n) of the optimal. To turn the fractional solution
into an integral solution, we apply randomized rounding.

Let I; and/s be the set of facilities returned by the algorithm corresponding tndu, respectively.
We know|I;| = ky and|I;| = ko, and that; > k > ko. The fractionsy and indicate how much the
solution should be leaning towards and I,. Hence, it is natural to use them as rounding probability.
The trouble is thaf; does not have enough elements, whtildas too many elements.

We resolve this problem in the following way. For eaah I, letv(i) be a facility in7; nearest to
i. Let I, be the set of these(i). Clearly|I,| < ko < k1. We arbitrarily padl,, with elements from/;
until |I,,| = k2. Our rounding procedure goes as follows.

e Open all facilities inl, with probability 5 and all facilities inZ,, with probability ..

e Pick uniformly a subsefs of I; — I, of size|I3| = k — ko and open all facilities if;. Note that
each element id; — I,, has a probability of

o) k—ky

Gy Tk

of being chosen.

e Return the sef of k£ opened facilities.

The next thing to do is to assign cities to these opened facilities. Consider anjy tigti; andiy be
the facilities thatj was connected to in the solutiofisands. In the first case, suppose € I,,. Since
eitheri; or i2 is open, we set(j) to be the open facility. In the second case, suppose I,,, in which
case we connegtto ¢, if it is open (i.e.i; € I3), otherwise tds if it is open. If bothi; andis are not
open, we connectto iz = v(ia).

We estimate the expected cost of conneclitga(;j). In the first caseif € I,),

Elcaj),;] = aciyj + Beiyy-

In the second case when /in 1, there is a probability of thati; is in I3, a probability of(1—a)3 = 32
thati; ¢ I5 butiy is open, and a probability ¢f — a)(1 — 3) = a3 that;j will be connected tas. Thus,
in this case

E[ca(j)’j} =acij + ﬁ2cz-2j + afciy;j.
By the triangle inequality, we have
Cigj < Cigiy + Cinj < Cigig + Cigj < Ciyj + 2Ciy;.
Consequently,
Elca),;] < a(l + B)ciyj + B(1+ a)ciy; < (14 max{a, B})[ac,;j + Beiyjl-

We have just shown the following theorem.



Theorem 3.1. The above rounding procedure gives expected cost at fhestnax{«, 3}) the cost of
(%, ¥)-

Thus, in total the rounded solution is of cost at m@st 1/n¢)(1+max{«, 5}) of the optimal. Since
max{c, B} isatmostuy/(ng+1),and(3+1/ns)(1+nys/(ny+1)) < 6, we obtain &-approximation.

The algorithm can be derandomized with the method of conditional expectation. Note that the expec-
tations Hc,(; ;] can be calculated explicitly and efficiently. To derandomize this algorithm, we compute
the expectations of the final cost given that we opgar I,,.. We then follow the smaller expectation (in
thea or 8 weighted sense). To compute whighto open, we can compute the conditional expectations
of the cost given that elements . . ., ix,_x, Of I} — Iy are inl3, then repeat this process.

Exercise 7(Vazirani's book - Exercise 25.3)Jse Lagrangian relaxation technique to give a constant fac-
tor approximation algorithm for the following common generalization of#ReILITY LOCATION and
k-MEDIAN problems. Consider theNCAPACITATED FACILITY LOCATION problem with the additional
constraint that at mogt facilities can be opened.

Exercise 8(Jain and Vazirani [10]) Consider thé3-CLUSTERING problem. Given a set of points
S =A{v1,...,v,}in R%and a positive integét, the problem is to find a minimum coktclustering, i.e.,
to find k points, calleccenters fi, ..., fr € R%, so as to minimize the sum of squares of distances from
each point; to its closest center. This naturally defines a partitioning ofrilgoints intok clusters.
Give a constant factor approximation algorithm for this problem.

(Hint: first show that restricting the centers to a subse$ @ficreases the cost of the optimization
solution by a factor of at mo£t)

Historical Notes

The2-approximation for multicut in trees was due to Garg, Vazirani, and Yannakakis [6]. Recent works
on integer multi-commodity flow can be found in [3-5, 7, 14]. For an example of multi-commodity flow
in networking, see [12].

For the UNCAPACITATED FACILITY LOCATION problem, Hochbaum [8] obtained rat@(lgn),
Shmoys, Tardos, and Aardal [13] gb1 6 ratio with an LP-rounding based algorithm. Thapproximation
algorithm we described was due to Jain and Vazirani [10]. Jain, Mahdian and Saberi [9] reduce the ratio
further to1.61 with a greedy algorithm analyzed by the dual-fitting method.

For theMETRIC k-MEDIAN problem, Bartal [] gave the first algorithm which achieved approximation
ratio O(lgnlglgn). Charikar, Guha, Tardos, and Shmoys [2] achie@édjsing ideas from Lin and
Vitter [11]. The6-approximation algorithm we described was due to Jain and Vazirani [10]. Arya, Garg,
Khandekar, Meyerson, Munagala, and Pandit [1] achieved (atio2/p) with running timeO(n?), for
any p using the local search method. Jain, Mahdian, and Saberi [9] gave a hardness rati@ 6f for
approximating this problem.
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