CSE 713: Random Graphs and Applications Lecturer: Hung Q. Ngo
SUNY at Buffalo, Fall 2003 Scribe: Hung Q. Ngo

Lecture 4: Inequalities and Asymptotic Estimates

We draw materials from [2,5,8-10,17, 18]. Unless specified otherwise, we, useto denote the
mean and variance of the the variable under consideration. This note shall be updated throughout the
seminar as | find more useful inequalities.

1 Basic inequalities

Theorem 1.1 (Markov’s Inequality). If X is a random variable taking only non-negative values, then

foranya > 0
E[X]

a
Proof. We show this for the discrete case only, the continuous case is similar. By definition, we have

E[X] = Za:p(x) = pr(m) + pr(a:) > Z ap(z) = aPr[X > al.

z<a r>a r>a

PriX >a] < (1)

O

Intuitively, whena < E[X] the inequality is trivial. For > E[X], it means the larget is relative
to the mean, the harder it is to hade> a. Thus, the inequality meets common sense. A slightly more
intuitive form of (1) is
1
Pr[X > au] < —. (2
a

Theorem 1.2 (Chebyshev’s Inequality).If X is a random variable with meam and variances2, then
foranya > 0,

[\

g
Pr{X —y 2 a] < 7. (3)
Proof. This inequality makes a lot of sense. The probability thais far from its mean gets smaller
when X is further, and smaller when its variance is smaller. The proof is almost an immediate corollary
of Markov's. LetZ = (X — u)?, thenE[Z] = &2 by definition of variance. SincgX — pu| > a iff
Z > a?, applying Markov’s inequality completes the proof. O

Again, there is a more intuitive way of writing (3):

1
Pr{|X — | > ao] < —. 4)
Theorem 1.3. )
o
PriX=0< ——. 5
X =00< 57 ©)



Proof. We show this for the discrete case. The continuous case is shown similarly.

2
u2 = (Z 2Pr[X = ;E]) < (Z 2?Pr[X = x]) (Z Pr(X = x}) =0%(1-Pr[X =0]).

x7#0 T#£0 x#0
L]

Theorem 1.4 (One-sided Chebyshev Inequality)Let X be a random variable witlE[X] = p and
Var [ X] = o2, then for anya > 0,

o2

Pr[X > < 2 6
r[X > p+a] < o (6)
2
g
PriX <pu—a < —2 . 7
rX <p—d < 50 @)

Proof. Lett > —pu be a variable. Thert, = (X + t)? has and
E)Y] = E[X?] +2tp +t* = 0% + (t + p)*.
Thus, by Markov’s inequality we get

o + (t+ p)?

PriX > p+a] SPrY 2 (uta+1)°] < Tommm

The right most expression is minimized whes: o2 /a — p, in which case it becomeg’ /(02 + a?) as
desired. The other inequality is proven similarly. O

A twice-differentiable functiory is convexf f”(z) > 0 for all z, andconcavewhen f”(x) > 0 for
all .

Theorem 1.5 (Jenssen’s inequality)Let f(x) be a convex function, then
E[f(X)] > f(E[X]). (8)
The same result holds for multiple random variables.
Proof. Taylor’'s theorem gives
f@) = f() + ()@ = p) + [ (@ - n)?/2,
where¢ is some number betweenandy.. Whenf (z) is convex,f”(£) > 0, which implies
f@) = f() + () (@ — p).

Consequently,
E[f(X)] = f(u) + [ (WE[X — u] = f(u).



2 Elementary Inequalities and Asymptotic Estimates

Fact 2.1. Forp € [0, 1], (1 — p) < e ?. The inequality is good for sma.
Fact 2.2. For anyx € [—1,1], (1 + z) < e*. The inequality is good for smatl.
The following theorem was shown by Robbins [16].

Theorem 2.3 (Stirling’s approximation). For each positive integer, there is ana,, whereﬁJrl <
oy, < 72, such that

n\”
| — ) eon
n! 2mn <e) e, 9
We often find it useful to remember the asymptotic form of Stirling’s approximation:
n\n
| — ki
n! = v/2mn (e) (1+ o(1)). (10)

The following theorem follows from trivial applications of the Taylor’'s expansiondif¢r + ¢) and
In(1 —1¢).

Theorem 2.4 (Estimates ofn(1 +t)). (a) Ift > —1, then

. 1 1
In(1+t) < min{t, t — 5152 + §t3}. (11)
(b) .
In(l+1¢) >t— §t2. (12)
(c) . .
In(1+1t)>t— §t2 + Zt3. (13)
(d)
In(1—1t) > —t -t (14)
©) 1 1
2 3
(1l —1) > —t = ot* = ot (15)

Lemma 2.5. Letcosh(z) = (e + e™*)/2, andsinh(z) = (e* — e~*)/2. Then for all realsa, = with
ol <1,
cosh(x) + asinh(z) < et /2o, (16)

Proof. This follows from elementary analysis. O
Corollary 2.6. The following are often more useful than the general result above
(i) cosh(t) < et/2.

(i) Forall p € [0,1], and allt,
pe!17P) 4 (1 — ple™ < /8 (17)

Proof. Firstly, (i) follows from Lemma 2.5 by setting = 0, ¢ = 2. On the other hand, (ii) follows by
settingp = (1 + «)/2 andt = 2z. O



3 Chernoff bounds

The following idea from Chernoff (1952, [6]) is infuential on showing many different “tail inequalities”.

Theorem 3.1 (Chernoff bound). Let X be a random variable with moment generating functidé(t) =
E[e!X]. Then,

<e™M(t) forall t>0
Pr[X <a] <e ™M(t) forall t<O.

Proof. The best bound can be obtained by minimizing the function on the right hand side. We show the
first relation, the second is similar. When- 0, by Markov’s inequality we get

Pr(X > a] = Pr[e'* > '] < E[e"X]e™.
O

Let us first consider a set of mutually independent Bernulli random variatjes. . , X,,, where
Pr(X; = 1] = p;, andPr[X; =0 =1 —p;, for0 < p; < 1. LetS, = X1 +--- + X,,, theny =
E[S,] = p1 + - - - + pn. Note that whem; = p, S,, has the usual Binomial distribution Binom(al p).

Theorem 3.2. Under the above assumptions, for any- 0,
Pr[S, >a] <e " (1+ p(e' — 1))” (18)
Proof. The proof makes use of Chernoff’s idea: for any 0, Markov’s inequality gives

Pr[S, > a] = Pr[e!® > ¢!9] < e E[e!] = ¢ [T M) = oTleg[!i] | E[e!Yn].
(19)
Note that the independence assumption is crucial. On the other hand,

f(pi) = W(E[e"X]) = In(pie’ + (1 — pi)) = In(1 + pi(e" — 1))

is concave imp;, which - by Jensen’s inequality - implies
> I(E[™]) < nln(1+ p(e’ —1)).
=1

Exponentiating both sides and recall inequality (19), we get
Pr[S, >a] <e ' (1+p(e' —1))",
as desired. O

Theorem 3.3. Let X1, ..., X,, be mutually independent random variables with| < ¢; andE[X;] =
0, wherec; > 0is a functionon. LetS = X; +--- + X,,, then

2

Pr[S > a] <exp <2(c%+c~l--+02)>' (20)




Proof. For anyt > 0, Chernoff’'s bound gives
Pr[S > a] < e E[e!¥] = e ME[! X1 T K] = oTlE[X0] | B!,
Note that forz € [—c, c], we havee™ < f(z), where

ect + e—ct ect _ G_Ct

5 5 L= cosh (ct) 4 x sinh (ct).

fz) =

To seee!” < f(x), note thaty = f(x) is the chord through the points = —c,z = ¢ of the convex
curvey = e'*. Thus,

E[c"] < B[f(X))] = f(E[X)]) = f(0) = cosh(c;t) < e(D*/2,

Consequently, o (e
Pr[S > a] < e el nIE

Pickt = a/(>_, ¢7) to minimize the right hand side, we get the desired result. O

4 Martingale Tail Inequalities

Theorem 4.1 (Kolmogorov-Doob Inequality). Let Xy, X1,... be a martingale sequence. Then, for
anya > 0,

E[| X,
Pr[max X; > a] < [ ” (21)
0<i<n a
Proof. TBD. O
The following result was shown by Hoeffding (1963, [12]) and Azuma (1967, [3]).
Theorem 4.2 (Hoeffding-Azuma Inequality). Let X, ..., X,, be a martingale sequence such that for
eachk =1,...,n,
1 Xy — Xpp—1] < ek, (22)
wherec;, is a function ork. Then, for allm > 0, a > 0,
H >4 S @3)
Pr||X,, — Xo| > a] <2exp <m> 23
230k

Condition (22) on a martingale sequence is often called.ipgchitz condition

Proof. Let 7y C F; C --- C F,, be afiltration corresponding to the martingale sequence, i.e.
E[Xk | fk—l] = Xk—17 or E[Xk — Xk:—l | fk—l] = 0.

Note also thatX; is F;-measurable for alj > i, i.e. X; is constant on the elementary eventsiof
Hence, for any functiorf on X;, we haveE|[f(X;) | F;] = f(X;) forall j > i.

Fork=1,...,n,letYy = X; — Xx_1. Then,X,, — Xo =Y1 +--- + Y, and|Yy| < ¢. Itis easy
to see that, for any > 0,

E[etY1+---+tYm] —FE [etyl+"'+tY"L*1E[etYm | Fm—l]] )



We first try to bound the upper tail, proceeding in the same way as in the proof of Theorem 3.3. For any
t > 0, Chernoff bound gives

Pr[Yi +---4+Y, >4

IN

eftaE[etyl +---+tYm]

eftaE [etY1+---+tYm_1E[etYm |f‘m_1]]

_ 2 42
e taecmt /2E |:€tY1+ +thm—l}

IN

7tae(c§+---+c,2n)t2/2‘

IN

e

The rest is the same as in Theorem 3.3. We get half of the right hand side of (23). To show the same
upper bound foPr[X,, — Xo < —al, we can just let), = Xj_1 — X}. d

We next develop two more general versions of tail inequalities for martingales, one comes from
Maurey (1979, [15]), the other from Alon-Kim-Spencer (1997, [1]).

Let A, B be finite setsA? denote the set of all mappings fraBinto A. (It might be instructive to
try to explain the choice of the notatiof” on your own.) For example, iB is a set of edges of a graph
G, andA = {0,1}, thenA” can be thought of as the set of all spanning subgraplis of

Now, let©2 = A, and define a measure 6hby giving valuesg,;, and, for eacly € A, define

Prlg(b) = a] = pab,

whereg(b) are mutually independent.

Fix a gradation) = By C By C --- C B, = B. (Inthe simplest caséB; — B;_1| = 1, m = | B,
and thus the gradation defines a total ordeoh The gradation induces a filtratiogfy € 7 C --- C
Fm On €2, where the elementary eventsBf are sets of functions from® into A whose restrictions on
B; are identical. Thus, there ard|' B;| elementary events faF;, each correspond to a distinct element
of AB:i,

To this end, letL : A® — R be a functional (likey,w, a in the G(n,p) case), which could be
thought of as a random variable 6h The sequenc&; = E[L | F;] is a martingale. It is easy to see
that Xy = E[L] and X,,, = L.

Definition 4.3. The functionall is said to satisfy th&.ipschitz conditiorrelative to the gradation if,
Vk € [m],
g andh differ only on By, — By, implies|L(g) — L(h)| < ¢,

wherec;, is a function ofk.
The following lemma helps generalize Hoeffding-Azuma'’s inequality.
Lemma 4.4. Let L satisfy Lipschitz condition, then the corresponding martingale satisfies
| Xk — Xg—1] < ¢k, VE € [m].
Proof. TBD. O]

Corollary 4.5 (Generalized Hoeffding-Azuma Inequality). In the setting of Lemma 4.4, Iet= E[L].
Then, for alla > 0,

—a?
Pr[L > p+a] <exp <W> , (24)
and )
Pr[L < p—a] <exp (:,? > ; (25)
230k
Proof. This follows directly from Lemmas 4.4 and 4.2. O



5 Lovasz Local Lemma

Let A4,..., A, be events on an arbitrary probability space. A directed g@ph (V, FE) with V' =

[n] is called adependency digrapfor Ay, ..., A, if each A; is independent from the set of events
{A; | (,7) ¢ E}. (In other words,A4; is at mostdependent on its neighbors.) The following lemma,
often referred to as L@sz Local Lemma, was originally shown in Bsdand Loasz (1975, [8]). The
lemma is very useful when showing a certain event has positive probability, albeit exponentially small.
It is most useful when the dependency digraph has small maximum degree.

Lemmab5.1 (Lovasz Local Lemma).LetG = (V, E) be adependency digraph for the evests. . . | A,,.
Suppose there are real numbers, . .., o, such thad < o; < 1, Vi, and

PriA] <a; ] (1-aqy).
j:(i,4)EE
Then,

(@) Forall S C [n],|S|=s<n,andany: ¢ S,

Ai | /\AJ

jes

Pr < q;. (26)

(b) Moreover, the probability that none of thg happens is positive. In particular

n

A4

=1

Pr S @7)

=1

Proof. Firstly, we show thata) implies(b). This follows as

Pr|/\ 4| = Pr[A)]-Pr[d;| A)]...Pr[4, | N2} A
i=1

= (1 Prl4])(1 - Prlds | A)... (1 Prld, | AV 4]
= 1—-a1)(l—ag)...(1 —ay).

To show(a), we induct ons = |S|. There is nothing to do fos = 0. Fors > 1, assume that (26)
holds for all|S| < s — 1. Consider som& with |[S| = s > 1. LetD; = {j € S| (i,j) € E}, and

aipa] - e (pa) (40

D; =S — D;. We have
Pr [Ai A (/\jeDi AJ’) | Ajen, AJ} .

Pr (Ao, 4 | Ayen, 4]

Pr

=

We first bound the numerator:

Pr!Ai/\(/\ Aj) | /\Aj] <Pr

jeDi ]EDZ

Az‘ | /\ A]] = PI‘[AZ] S (67 H (1 —aj).

JED; J:(i5)eE



Next, the denominator (which would Heif AjeDiAj = ()) can be bounded with induction hypothesis.
SupposeD; = {j1,...Jx}, then

Pr /\ Aj | /\ A
jeDi  jeb;

= 1—-Pr Aj1’ /\AJ 1—-Pr Aj2’ /\ Aj
JED; L jeD;u{j1}

1-Pr Ajk | /\ AJ’

J€D;UD;—{jx}
> [[-«a)
JED;

IT a-«.

J:(i.5)€E

A\

O]

As we have mentioned earlier, the Local Lemma is most useful when the maximum degree of a
dependency graph is small. We now give a particular version of the Lemma which helps us make use of
this observation:

Corollary 5.2 (Local Lemma; Symmetric Case). Suppose each evedt is independent of all others
except for at mosA (i.e. the dependency graph has maximum degree at &xpstnd thatPr(A4;) < p
foralli=1... n.
If
ep(A+1) <1, (28)

thenPr(A | 4;) > 0.

Proof. The case\ = 0 is trivial. Otherwise, takey; = 1/(A + 1) (which is< 1) in the Local Lemma,
we have

11 1 \2
1< p< T<allo—) <o || — ;).
P[AZ]_p_Alee_al(l A+1) _azu‘ (11—« )
J:(i5)EE

A
Here, we have used the fact that far> 1, (1 — ﬁ) > 1/e, which follows from (14) witht =
1/(A+1) <0.5. O

For applications of Lo&isz Local Lemma and its algorithmic aspects, see Beck [4] and others [7, 11,
13, 14]
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