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Lecture 4: Inequalities and Asymptotic Estimates

We draw materials from [2, 5, 8–10, 17, 18]. Unless specified otherwise, we useµ, σ2 to denote the
mean and variance of the the variable under consideration. This note shall be updated throughout the
seminar as I find more useful inequalities.

1 Basic inequalities

Theorem 1.1 (Markov’s Inequality). If X is a random variable taking only non-negative values, then
for anya > 0

Pr[X ≥ a] ≤ E[X]
a

. (1)

Proof. We show this for the discrete case only, the continuous case is similar. By definition, we have

E[X] =
∑

x

xp(x) =
∑
x<a

xp(x) +
∑
x≥a

xp(x) ≥
∑
x≥a

ap(x) = aPr[X ≥ a].

Intuitively, whena ≤ E[X] the inequality is trivial. Fora > E[X], it means the largera is relative
to the mean, the harder it is to haveX ≥ a. Thus, the inequality meets common sense. A slightly more
intuitive form of (1) is

Pr[X ≥ aµ] ≤ 1
a
. (2)

Theorem 1.2 (Chebyshev’s Inequality).If X is a random variable with meanµ and varianceσ2, then
for anya > 0,

Pr
[
|X − µ| ≥ a

]
≤ σ2

a2
. (3)

Proof. This inequality makes a lot of sense. The probability thatX is far from its mean gets smaller
whenX is further, and smaller when its variance is smaller. The proof is almost an immediate corollary
of Markov’s. LetZ = (X − µ)2, thenE[Z] = σ2 by definition of variance. Since|X − µ| ≥ a iff
Z ≥ a2, applying Markov’s inequality completes the proof.

Again, there is a more intuitive way of writing (3):

Pr
[
|X − µ| ≥ aσ

]
≤ 1

a2
. (4)

Theorem 1.3.

Pr[X = 0] ≤ σ2

σ2 + µ2
. (5)
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Proof. We show this for the discrete case. The continuous case is shown similarly.

µ2 =

∑
x 6=0

xPr[X = x]

2

≤

∑
x 6=0

x2Pr[X = x]

 ∑
x 6=0

Pr[X = x]

 = σ2 (1−Pr[X = 0]) .

Theorem 1.4 (One-sided Chebyshev Inequality).Let X be a random variable withE[X] = µ and
Var [X] = σ2, then for anya > 0,

Pr[X ≥ µ + a] ≤ σ2

σ2 + a2
(6)

Pr[X ≤ µ− a] ≤ σ2

σ2 + a2
. (7)

Proof. Let t ≥ −µ be a variable. Then,Y = (X + t)2 has and

E[Y ] = E[X2] + 2tµ + t2 = σ2 + (t + µ)2.

Thus, by Markov’s inequality we get

Pr[X ≥ µ + a] ≤ Pr[Y ≥ (µ + a + t)2] ≤ σ2 + (t + µ)2

(a + t + µ)2
.

The right most expression is minimized whent = σ2/a− µ, in which case it becomesσ2/(σ2 + a2) as
desired. The other inequality is proven similarly.

A twice-differentiable functionf is convexif f ′′(x) ≥ 0 for all x, andconcavewhenf ′′(x) ≥ 0 for
all x.

Theorem 1.5 (Jenssen’s inequality).Letf(x) be a convex function, then

E[f(X)] ≥ f(E[X]). (8)

The same result holds for multiple random variables.

Proof. Taylor’s theorem gives

f(x) = f(µ) + f ′(µ)(x− µ) + f ′′(ξ)(x− µ)2/2,

whereξ is some number betweenx andµ. Whenf(x) is convex,f ′′(ξ) ≥ 0, which implies

f(x) ≥ f(µ) + f ′(µ)(x− µ).

Consequently,
E[f(X)] ≥ f(µ) + f ′(µ)E[X − µ] = f(µ).
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2 Elementary Inequalities and Asymptotic Estimates

Fact 2.1. Forp ∈ [0, 1], (1− p) ≤ e−p. The inequality is good for smallp.

Fact 2.2. For anyx ∈ [−1, 1], (1 + x) ≤ ex. The inequality is good for smallx.

The following theorem was shown by Robbins [16].

Theorem 2.3 (Stirling’s approximation). For each positive integern, there is anαn, where 1
12n+1 <

αn < 1
12n , such that

n! =
√

2πn
(n

e

)n
eαn . (9)

We often find it useful to remember the asymptotic form of Stirling’s approximation:

n! =
√

2πn
(n

e

)n
(1 + o(1)). (10)

The following theorem follows from trivial applications of the Taylor’s expansions forln(1 + t) and
ln(1− t).

Theorem 2.4 (Estimates ofln(1 + t)). (a) If t > −1, then

ln(1 + t) ≤ min{t, t− 1
2
t2 +

1
3
t3}. (11)

(b)

ln(1 + t) > t− 1
2
t2. (12)

(c)

ln(1 + t) > t− 1
2
t2 +

1
4
t3. (13)

(d)
ln(1− t) > −t− t2. (14)

(e)

ln(1− t) > −t− 1
2
t2 − 1

2
t3. (15)

Lemma 2.5. Let cosh(x) = (ex + e−x)/2, andsinh(x) = (ex − e−x)/2. Then for all realsα, x with
|α| ≤ 1,

cosh(x) + α sinh(x) ≤ ex2/2+αx. (16)

Proof. This follows from elementary analysis.

Corollary 2.6. The following are often more useful than the general result above

(i) cosh(t) ≤ et2/2.

(ii) For all p ∈ [0, 1], and all t,
pet(1−p) + (1− p)e−tp ≤ et2/8 (17)

Proof. Firstly, (i) follows from Lemma 2.5 by settingα = 0, t = x. On the other hand, (ii) follows by
settingp = (1 + α)/2 andt = 2x.
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3 Chernoff bounds

The following idea from Chernoff (1952, [6]) is infuential on showing many different “tail inequalities”.

Theorem 3.1 (Chernoff bound).LetX be a random variable with moment generating functionM(t) =
E[etX ]. Then,

Pr[X ≥ a] ≤ e−taM(t) for all t > 0
Pr[X ≤ a] ≤ e−taM(t) for all t < 0.

Proof. The best bound can be obtained by minimizing the function on the right hand side. We show the
first relation, the second is similar. Whent > 0, by Markov’s inequality we get

Pr[X ≥ a] = Pr[etX ≥ eta] ≤ E[etX ]e−ta.

Let us first consider a set of mutually independent Bernulli random variablesX1, . . . , Xn, where
Pr[Xi = 1] = pi, andPr[Xi = 0] = 1 − pi, for 0 < pi < 1. Let Sn = X1 + · · · + Xn, thenµ =
E[Sn] = p1 + · · ·+ pn. Note that whenpi = p, Sn has the usual Binomial distribution Binomial(n, p).

Theorem 3.2. Under the above assumptions, for anya > 0,

Pr[Sn ≥ a] ≤ e−ta
(
1 + p(et − 1)

)n
. (18)

Proof. The proof makes use of Chernoff’s idea: for anyt > 0, Markov’s inequality gives

Pr[Sn ≥ a] = Pr[etSn ≥ eta] ≤ e−taE[etSn ] = e−taE[etX1+···+tXn ] = e−taE[etXi ] . . .E[etXn ].
(19)

Note that the independence assumption is crucial. On the other hand,

f(pi) := ln(E[etXi ]) = ln(pie
t + (1− pi)) = ln(1 + pi(et − 1))

is concave inpi, which - by Jensen’s inequality - implies

n∑
i=1

ln(E[etXi ]) ≤ n ln(1 + p(et − 1)).

Exponentiating both sides and recall inequality (19), we get

Pr[Sn ≥ a] ≤ e−ta
(
1 + p(et − 1)

)n
,

as desired.

Theorem 3.3. LetX1, . . . , Xn be mutually independent random variables with|Xi| ≤ ci andE[Xi] =
0, whereci > 0 is a function oni. LetS = X1 + · · ·+ Xn, then

Pr[S ≥ a] ≤ exp
(
− a2

2(c2
1 + · · ·+ c2

n)

)
. (20)
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Proof. For anyt > 0, Chernoff’s bound gives

Pr[S ≥ a] ≤ e−taE[etS ] = e−taE[etX1+···+tXn ] = e−taE[etX1 ] . . .E[etXn ].

Note that forx ∈ [−c, c], we haveetx ≤ f(x), where

f(x) =
ect + e−ct

2
+

ect − e−ct

2c
x = cosh (ct) + x sinh (ct).

To seeetx ≤ f(x), note thaty = f(x) is the chord through the pointsx = −c, x = c of the convex
curvey = etx. Thus,

E[etXi ] ≤ E[f(Xi)] = f(E[Xi]) = f(0) = cosh(cit) ≤ e(cit)
2/2.

Consequently,
Pr[S ≥ a] ≤ e−tae(c21+···+c2n)t2/2.

Pick t = a/(
∑

i c
2
i ) to minimize the right hand side, we get the desired result.

4 Martingale Tail Inequalities

Theorem 4.1 (Kolmogorov-Doob Inequality). Let X0, X1, . . . be a martingale sequence. Then, for
anya > 0,

Pr[ max
0≤i≤n

Xi ≥ a] ≤ E[|Xn|]
a

. (21)

Proof. TBD.

The following result was shown by Hoeffding (1963, [12]) and Azuma (1967, [3]).

Theorem 4.2 (Hoeffding-Azuma Inequality). LetX0, . . . , Xn be a martingale sequence such that for
eachk = 1, . . . , n,

|Xk −Xk−1| ≤ ck, (22)

whereck is a function onk. Then, for allm ≥ 0, a > 0,

Pr[|Xm −X0| ≥ a] ≤ 2 exp
(

−a2

2
∑m

k=1 c2
k

)
(23)

Condition (22) on a martingale sequence is often called theLipschitz condition.

Proof. LetF0 ⊆ F1 ⊆ · · · ⊆ Fn be afiltration corresponding to the martingale sequence, i.e.

E[Xk | Fk−1] = Xk−1, or E[Xk −Xk−1 | Fk−1] = 0.

Note also thatXi is Fj-measurable for allj ≥ i, i.e. Xi is constant on the elementary events ofFj .
Hence, for any functionf onXi, we haveE[f(Xi) | Fj ] = f(Xi) for all j ≥ i.

Fork = 1, . . . , n, let Yk = Xk −Xk−1. Then,Xm −X0 = Y1 + · · ·+ Ym and|Yk| ≤ ck. It is easy
to see that, for anyt > 0,

E[etY1+···+tYm ] = E
[
etY1+···+tYm−1E[etYm | Fm−1]

]
.
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We first try to bound the upper tail, proceeding in the same way as in the proof of Theorem 3.3. For any
t > 0, Chernoff bound gives

Pr[Y1 + · · ·+ Ym ≥ a] ≤ e−taE[etY1+···+tYm ]
= e−taE

[
etY1+···+tYm−1E[etYm | Fm−1]

]
≤ e−taec2mt2/2E

[
etY1+···+tYm−1

]
≤ e−tae(c21+···+c2m)t2/2.

The rest is the same as in Theorem 3.3. We get half of the right hand side of (23). To show the same
upper bound forPr[Xm −X0 ≤ −a], we can just letYk = Xk−1 −Xk.

We next develop two more general versions of tail inequalities for martingales, one comes from
Maurey (1979, [15]), the other from Alon-Kim-Spencer (1997, [1]).

Let A,B be finite sets,AB denote the set of all mappings fromB into A. (It might be instructive to
try to explain the choice of the notationAB on your own.) For example, ifB is a set of edges of a graph
G, andA = {0, 1}, thenAB can be thought of as the set of all spanning subgraphs ofG.

Now, letΩ = AB, and define a measure onΩ by giving valuespab and, for eachg ∈ AB, define

Pr[g(b) = a] = pab,

whereg(b) are mutually independent.
Fix a gradation∅ = B0 ⊂ B1 ⊂ · · · ⊂ Bm = B. (In the simplest case,|Bi − Bi−1| = 1, m = |B|,

and thus the gradation defines a total order onB.) The gradation induces a filtrationF0 ⊆ F1 ⊆ · · · ⊆
Fm on Ω, where the elementary events ofFi are sets of functions fromB into A whose restrictions on
Bi are identical. Thus, there are|A||Bi| elementary events forFi, each correspond to a distinct element
of ABi .

To this end, letL : AB → R be a functional (likeχ, ω, α in the G(n, p) case), which could be
thought of as a random variable onΩ. The sequenceXi = E[L | Fi] is a martingale. It is easy to see
thatX0 = E[L] andXm = L.

Definition 4.3. The functionalL is said to satisfy theLipschitz conditionrelative to the gradation if,
∀k ∈ [m],

g andh differ only onBk −Bk−1 implies|L(g)− L(h)| ≤ ck,

whereck is a function ofk.

The following lemma helps generalize Hoeffding-Azuma’s inequality.

Lemma 4.4. LetL satisfy Lipschitz condition, then the corresponding martingale satisfies

|Xk −Xk−1| ≤ ck, ∀k ∈ [m].

Proof. TBD.

Corollary 4.5 (Generalized Hoeffding-Azuma Inequality). In the setting of Lemma 4.4, letµ = E[L].
Then, for alla > 0,

Pr[L ≥ µ + a] ≤ exp
(

−a2

2
∑m

k=1 c2
k

)
, (24)

and

Pr[L ≤ µ− a] ≤ exp
(

−a2

2
∑m

k=1 c2
k

)
, (25)

Proof. This follows directly from Lemmas 4.4 and 4.2.
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5 Lovász Local Lemma

Let A1, . . . , An be events on an arbitrary probability space. A directed graphG = (V,E) with V =
[n] is called adependency digraphfor A1, . . . , An if each Ai is independent from the set of events
{Aj | (i, j) /∈ E}. (In other words,Ai is at mostdependent on its neighbors.) The following lemma,
often referred to as Lov́asz Local Lemma, was originally shown in Erdős and Lov́asz (1975, [8]). The
lemma is very useful when showing a certain event has positive probability, albeit exponentially small.
It is most useful when the dependency digraph has small maximum degree.

Lemma 5.1 (Lovász Local Lemma).LetG = (V,E) be a dependency digraph for the eventsA1, . . . , An.
Suppose there are real numbersα1, . . . , αn, such that0 ≤ αi < 1, ∀i, and

Pr[Ai] ≤ αi

∏
j:(i,j)∈E

(1− αj).

Then,

(a) For all S ⊂ [n], |S| = s < n, and anyi /∈ S,

Pr

Ai |
∧
j∈S

Āj

 ≤ αi. (26)

(b) Moreover, the probability that none of theAi happens is positive. In particular

Pr

[
n∧

i=1

Āi

]
≥

n∏
i=1

(1− αi). (27)

Proof. Firstly, we show that(a) implies(b). This follows as

Pr

[
n∧

i=1

Āi

]
= Pr[Ā1] ·Pr[Ā2 | Ā1] . . .Pr[Ān | ∧n−1

j=1 Āj ]

= (1−Pr[A1])(1−Pr[A2 | Ā1]) . . . (1−Pr[An | ∧n−1
j=1 Āj ])

= (1− α1)(1− α2) . . . (1− αn).

To show(a), we induct ons = |S|. There is nothing to do fors = 0. For s ≥ 1, assume that (26)
holds for all |S| ≤ s − 1. Consider someS with |S| = s ≥ 1. Let Di = {j ∈ S | (i, j) ∈ E}, and
D̄i = S −Di. We have

Pr

Ai |
∧
j∈S

Āj

 = Pr

Ai |

 ∧
j∈Di

Āj

 ∧

 ∧
j∈D̄i

Āj


=

Pr
[
Ai ∧

(∧
j∈Di

Āj

)
|

∧
j∈D̄i

Āj

]
Pr

[∧
j∈Di

Āj |
∧

j∈D̄i
Āj

] .

We first bound the numerator:

Pr

Ai ∧

 ∧
j∈Di

Āj

 |
∧

j∈D̄i

Āj

 ≤ Pr

Ai |
∧

j∈D̄i

Āj

 = Pr[Ai] ≤ αi

∏
j:(i,j)∈E

(1− αj).
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Next, the denominator (which would be1 if ∧j∈D̄i
Āj = ∅) can be bounded with induction hypothesis.

SupposeDi = {j1, . . . jk}, then

Pr

 ∧
j∈Di

Āj |
∧

j∈D̄i

Āj


=

1−Pr

Aj1 |
∧

j∈D̄i

Āj

 1−Pr

Aj2 |
∧

j∈D̄i∪{j1}

Āj

 . . .

. . .

1−Pr

Ajk
|

∧
j∈D̄i∪Di−{jk}

Āj


≥

∏
j∈Di

(1− αj)

≥
∏

j:(i,j)∈E

(1− αj).

As we have mentioned earlier, the Local Lemma is most useful when the maximum degree of a
dependency graph is small. We now give a particular version of the Lemma which helps us make use of
this observation:

Corollary 5.2 (Local Lemma; Symmetric Case). Suppose each eventAi is independent of all others
except for at most∆ (i.e. the dependency graph has maximum degree at most∆), and thatPr(Ai) ≤ p
for all i = 1 . . . , n.

If
ep(∆ + 1) ≤ 1, (28)

thenPr(∧n
i=1Āi) > 0.

Proof. The case∆ = 0 is trivial. Otherwise, takeαi = 1/(∆ + 1) (which is< 1) in the Local Lemma,
we have

P [Ai] ≤ p ≤ 1
∆ + 1

1
e
≤ αi

(
1− 1

∆ + 1

)∆

≤ αi

∏
j:(i,j)∈E

(1− αj).

Here, we have used the fact that for∆ ≥ 1,
(
1− 1

∆+1

)∆
> 1/e, which follows from (14) witht =

1/(∆ + 1) ≤ 0.5.

For applications of Lov́asz Local Lemma and its algorithmic aspects, see Beck [4] and others [7,11,
13,14]
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