What have we done?

@ Probabilistic thinking!

o Balls and Bins

@ Probabilistic Method

@ Foundations of DTMC

@ Random Walks on Graphs and Expanders
Next

@ Approximate Counting and Sampling

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 1/39

Example 1: Number of Spanning Trees

Problem J

Given G connected, count the number of spanning trees.

A: adjacency matrix of G

D: diagonal matrix of vertex degrees

L =D — A: Laplacian of G

L;j: submatrix of L obtained by removing column i, row j
(—1)"J det(L;;): ij-cofactor of L

0=po < p1 <pg <--- < uy the Laplacian spectrum

Theorem (Matrix-Tree, also Kirchhoff's Theorem)

Number of spanning trees of G is (—1)"+J det(L;;) for all i, j, which is
equal to %Ml e Ly

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 3/39

Example 2: Number of Perfect Matchings

“Dimer Covers”
Given a graph G, count the number of perfect matchings. J

o A Pfaffian orientation of G is an orientation G such that: for any two
perfect matchings My and Ms of G, every cycle of My U Ms has an
odd number of same-direction edges.

_
@ In particular, if G is an orientation in which every even cycle is oddly
—
oriented, then G is a Pfaffian orientation.

@ Skew adjacency matrix As((_j) = (Qup):

1 (u0) € E(G)
aw =4 —1 (v,u) € E(G)
0 otherwise

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 4/39

Kasteleyn's Theorem

Theorem (Kasteleyn)

For any Pfaffian orientation G of G,

number of perfect matchings = det(As(a)

Theorem

Every planar graph has a Pfaffian orientation which can be found in
polynomial time. In particular, Dimer Covers is solvable for planar graphs!

Open Question

Complexity of deciding if a graph G has a Pfaffian orientation. (Known to
be in P if G is bipartite.)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 5/ 39

Example 1: Routing in Intermittently Connected Networks

G: ad hoc network of mobile users

For every (u,v) € E, py, is the probability that u and v are “in
contact”

For simplicity, say py, = 1/2
Want: send a message from s to d
If routed through a length-k s, t-path, delivery probability is (1/2)%

To increase delivery probability, send messages along edges of a
subgraph H C G such that Prob[s and ¢ connected in H] is
maximized

o If H = G, we are just broadcasting = broadcast storm problem

If H is a path, delivery prob. is too low

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course

7/ 39

The Problem is Hard

Routing on a Probabilistic Graph

Given G (and pyy), and a parameter k, find a subgraph H C G with at
most k edges so that Prob[s and ¢ connected in H] is maximized

e Given H, how to compute Prob[s and ¢ connected in H]? (let alone
finding an optimal H)

@ (Ghosh, Ngo, Yoon, Qiao — INFOCOM'07) The optimization problem
is #P-Hard, if solvable then P = NP

@ Subtle: P = NP does not necessarily imply problem solvable

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 8 /39

Probability Estimation =~ Counting

Network Reliability Problem
Given H (and py,), compute P = NP and ¢ connected in H]J. J

@ Suppose H has m edges. Then, Prob[s and t connected in H] is

om (#subgraphs of H which contains an s, t-paths)

Given H, find the number of subgraphs of H in which there is a path from

Network Reliability, Counting Version
stot J

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 9/39

Example 2: #CNF, #DNF, 01-PERM, #BIPARTITE-PM

#CNF

Given a CNF formula ¢, count number of satisfying assignments

#DNF
Given a DNF formula ¢, count number of satisfying assignments

#BIPARTITE-PM

Given a bipartite graph G, count number of perfect matchings

01-PERM
Given a Ol-square matrix A, compute per A, defined by

per A = Z Haiw(i)

TESy i=1

v

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 10 / 39

Rough Classification of Counting Problems

“Easy” Counting Problems
@ # Subsets of a Set
@ # Spanning trees of G
o # Perfect matchings in planar graphs
“Hard” Counting Problems (At least, no solution is known)
@ Network reliability
@ #CNF
@ #DNF
@ 01-PERM, #BIPARTITE-PM
@ F#CYCLES, #HAMILTONIAN CYCLES, #CLIQUES, #k-CLIQUES, etc.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 11 /39

How to Show a Counting Problem is Hard?

Suppose we want to prove any problem IT is “hard” to solve

Try This First

Prove that if IT can be solved in polynomial time, then some
NP-complete problem can be solved in polynomial time.

@ Typically Done with Optimization Problem.
@ #CNF, #HAM-CYCLES, ... are certainly NP-hard
@ We'll show #DNF and #CYCLES are NP-hard to illustrate.

Try This Next

Define a new complexity class C for II, and show II is complete in that
class. Provide evidence that C is not complete as a whole.

This was what Valiant did in 1978 for 01-PERM and NETWORK
RELIABILITY. The new class C is #P

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 12 /39

#DNF is NP-hard

Theorem

If we can count the number of satisfying assignments of a DNF formula,
then we can decide if a CNF formula is satisfiable.

Given ¢ in CNF:

@:($1Vf2VI3)A($2V$3Vi4)

@ is satisfiable iff @ has < 2" satisfying assignments.

P = (Z1 Nz2a NT3) V (T2 ATz N\ x4)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 13 /39

#CYCLES is NP-hard

Theorem

If we can count the number of cycles of a given graph in polynomial time,
then we can decide if a graph has a Hamiltonian cycle in polynomial time.

@ To decide if G has a Hamiltonian cycle, construct G’ as shown

1 2 m =mnlogn + 1
Edge of G Replaced by a “gadget” in el

o Each length-I cycle in G becomes (2™)! cycles in G
e If G has a Hamiltonian cycle, G’ has at least (2™)" > n" cycles

e If all cycles of G have lengths < n — 1, there can be at most n"~!
cycles in G, implying < (2™)"~1pn1 < n"’ cycles in G’

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 14 / 39

P, NP, FP, #P Intuitively

Sample Problems (each have a #-version)
@ SPANNING TREE: does G have a spanning tree?
@ BIPARTITE-PM: does bipartite G have a perfect matching?
© CNF: does ¢ in CNF have a satisfying assignment?
@ DNF: does ¢ in DNF have a satisfying assignment?

o P: problems whose solutions can be found efficiently: SPANNING
TREE, DNF, BIPARTITE-PM

@ NP: problems whose solutions can be verified efficiently: all four

@ FP: problems whose solutions can be counted efficiently:
#SPANNING TREE

o #P: problems of counting efficiently verifiable solutions: all four.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 15 / 39

#P-Complete, Intuitively

A counting problem #II is #P-complete iff it is in #P and, if #II can be
solved efficiently, then we can solve all #P problems efficiently.

Lemma
#CNF is #P-complete (for the same reason SAT is NP-complete) J

This implies #DNF is #P-complete. (Why?)

Theorem
If any #P-complete problem can be solved in poly-time, then P = NP. J

The converse is not known to hold (open problem!)

Theorem (Valiant)
#BIPARTITE-PM and 01-PERM are #P-complete J

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 16 / 39

Approximate Counting: What and Why

@ Suppose we want to estimate some function f on input x

o =G, f(G) = number of perfect matchings
o x =y in DNF, f(p) = number of satisfying assignments

e For many problems, computing f(x) efficiently is (extremely likely to
be) difficult

@ The next best hope is: given ¢, J, efficiently compute f(x) such that

Prob(|f () — f(2)| > ef(2)] < 6

Definition (FPRAS)

A randomized algorithm producing such f is called a fully polynomial time
randomized approximation scheme (FPRAS) if its running time is
polynomial in |z|,1/e,log(1/0)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 18 / 39

An Alternative Definition of FPRAS

Definition (FPRAS)

A fully polynomial time randomized approximation scheme (FPRAS) for
computing f is a randomized algorithm satisfying the following:

@ on inputs z and ¢
o A outputs f(z), such that

Probl|f(z) — f(z)| > ef(2)] < 1/4

@ A's running time is polynomial in |z| and 1/¢

The median trick shows the equivalence between the two definitions.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 19 / 39

The Essence of the Monte Carlo Method

Basic idea: to estimate p

@ Design an efficient process to generate ¢ i.i.d. variables X1,..., X}
such that E[X;] = p, Var[X;] = o2, for all i
(X; is called an unbiased estimator for p)

@ OQutput the sample mean i = %22:1 X;

@ Chebyshev gives the following theorem

Theorem (Unbiased Estimator Theorem)
Ift > 47 then
Zp
Prob[|i — p| > ep] < 1/4.
In particular, if X; are all indicators, then 0% = (1 —) < p; we only

4
need t > e

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 20 / 39

Potential Bottlenecks of the Monte Carlo Method

@ Each single sample value X; must be generated efficiently
@ The number of samples ¢ needs to be a polynomial in |z| (and 1/€)

@ So, if p is really small then we're in trouble!

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 21 /39

#DNF with Naive Monte Carlo Algorithm

Line of thought
e f = f(p) is the number of satisfying assignments
@ Probability that a random truth assignment satisfies ¢ is u = f/2"
o Let X; indicates if the ith truth assignment satisfies

Prob[X; = 1] = E[X;] = i

After taking ¢ samples, output

H—\)—l

f=2"p=2"

i

Then, by the unbiased estimator theorem, when t > u we have

Probl| f — f| > ¢f] = Probl[|fi — | > en] < 1/4

o If f < 2" say f =n?, then p=n?/2" and t = Q(2"/n?)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 22 /39

What is the Main Problem with the Naive Method?

@ To find a few needles in a haystack, we need many samples

@ More concretely, the sample space is too large, while the “good set”
is too small.

o Karp-Luby (STOC 1973) designed a much smaller sample space from
which we can still sample efficiently

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 23 /39

The Karp-Luby Algorithm for #DNF

@ Suppose ¢ has m terms

o=T\VToV--- VT, = (X1 N2 ANT3) V (Ta Axyg) V- --

Let S; be the set of assignments satisfying T;; which has v; variables
Then, |Sj| = 2"7"%; and we want f = ‘U?Zl Sj’
The haystack

Q = {(a,j) | a€S8;}

m
Q) = D> 2" <m2n
j=1

The needles (represent each satisfying a by the minimum j for which
ac Sj)

N = {(a’j) |j:min(jla(a7jl) S Q)}? = [= ‘N‘

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 24 / 39

The Karp-Luby Algorithm for #DNF

The Algorithm

fori=1totdo
Choose (a, j) uniformly from

J1 (a,j) €N
" |0 otherwise

end for

Output Q] - %2521 X,

The Analysis
o Prob[X; = 1] = E[X;] = g

@ To chose (a,j) uniformly from €, pick j with probability Z|S|f9|]\ then

choose a € S; uniformly
o Checking if (a, j) € N is the same as checking if a satisfies T}/ for
some j' < j.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 25/ 39

Concluding Remarks

The algorithm can be used to estimate

Us;
j=1

for any collection of sets \S; for which similar operations can be done
efficiently.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 26 / 39

Almost Uniform Sampling

Definition (FPAUS)

A fully polynomial time almost uniform sampler is a randomized algorithm
A:

e A'sinput is an instance z of the problem (like a graph G)

@ A internally chooses a random string R

e A outputs A(z, R) € Q, Q is the set of solutions to z

@ the total variation distance between A's output distribution and the
uniform distribution is at most €

|S]
—_ <
Iél_ax Prob[A(z, R) € S] 0] €

@ A's running time is polynomial in |x| and log(1/¢)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 28 / 39

(Approximate) Sampling and Counting

Exact Counting = Exact Sampling

I 4

Approximate Counting <= Approximate Sampling
(FPRAS) (FPAUS)

(* means “true for a class of problems,” which is fairly large)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 29 / 39

Approximate Sampling = Approximate Counting

Counting number of matchings (#MATCHINGS): given a graph G
o M(G) = set of matchings (not necessarily perfect)
° f(G) = [M(G)]
e Compute f(G)

Theorem
If there is a FPAUS for #MATCHINGS then there is a FPRAS for it too J

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 30/ 39

Making Use of “Self-Reducibility”

@ Suppose G = (V,{e1,e9,...,en}
o Let Gy = (V. {e1,...,ex}), 0<Ek<m
o Key idea:

f(G) = f(Gm)
I VNSV CIR
T F(Gmot) F(Gmos) F(Go) f(Go)

11 1
T'm Tm-1 1
We will approximate all the
J(Gr-1)
T = , 1<k<m
f(Gk)

then take the reciprocal of their product as an estimate for f(G)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 31/39

How Well Must We Approximate the r;?

@ Suppose 7 is an (€, §)-approximation for r, 1 <k < m
e Want: f = —L— to be an (¢, §)-approximation for f =

i

1 .
/,'1 ...',',’n *

1 1 <
= - — €
Tl...'r'm 'r‘l...rm

Prob [

]>1—5

Tl...',"m

which is the same as

Prob[l—e<w<1+e} >1-6

rl...rm

@ What we have is:

Prob [|fk - Tk| < ng] >1-9

which is equivalent to

Prob [(14—5)_1 < ;—k < (1 —E)‘l] >1-6
k

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 32 /39

How Well Must We Approximate the r;?

e Choose § = §/m, then

Prob [(1 o) l< -9, forall k:] >1-4§

Tk

@ Hence,
m
Prob [(1+ &)™ ka (1-9 m] >1-6
1
@ Now, setting € = ;- we get
(I+e)™™ 1—e¢

>
1-6™ < 1+e€

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 33 /39

In Case You're Wondering

We made use of a subset of the following inequalities:

l—z < e® vz € [0, 1]

l—gz > e o Ve <1

l—z > e @ 2237 Vo <1
I+z < € Vo e [—1,1]
14z > e 3o Ve > —1
14z > et 32°+5e’ Ve > —1

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 34 /39

Estimating r,: Which Needles? In Which Haystack?
f(Gr-1).

To estimate r, = ENEE

@ The haystack: Q = M(Gy)
@ The needles: Q1 = M(Gg_1)
@ Are there enough needles to reduce number of samples? yes!

rE >

N =

@ Thus, if we had an exact uniform sampler we only need t > -

EQTk,
samples to get an (€, 1/4)-approximation for 7y,

Main Question Now

How many samples does an (€, 1/4)-approximator for r; need if it only has
access to a FPAUS, i.e. it can only sample approximately uniformly from
Q7

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 35 /39

Number of Samples from a FPAUS

The Algorithm
@ Let A be an ¢-FPAUS for Q. (¢’ to be determined)
@ Take t samples using A, let X; indicate if the ith sample € Q1
o Output 7y = + 3°'_| X; as an estimate for 7y
The Analysis
e Want Probl[|7y, — 7| > érg] < 1/4, in other words,

Problry —ery <7 <1y +erg] > 3/4

e What do we know?

From definition of A, Prob[X; = 1] is near ry,

Thus, E[7k] is near 1 (within €’)

T is near E[7}] with high probability if ¢ is sufficiently large (why?)
Should be able to get what we want from here

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 36 / 39

Number of Samples from a FPAUS

The analysis, more precisely:
@ By definition of A,

ri, —€ < Prob[X; = 1] = E[X;] < rp + ¢
Thus,
rg— € SE[f] <t e

@ To apply Chebyshev, need
V E V < 71
ar T‘k 2 ar n [’I"k]

@ Thus, by Chebyshev

Prob H?Zk — E[?zk” > aE[Fk]] <

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 37 /39

Number of Samples from a FPAUS

@ Since E[fy] > 1y — € >1/3

> 1—i >3/4

Prob[(l — a)E[fk] < fk < (1 +a)E[7:k]] > 1—m = ta2 =

if we take t > ;—g samples.
e Putting things together
Prob [(1—a)(ry —€) <7 < (14 a)(ry, +€)] > 3/4

@ Now, just need to choose a and ¢ so that

(1—a)(ry —¢€) > (ry—érg)
(1+a)(rg+¢€) < (rp+eérg)

e a=¢/4and ¢ =¢€/8 work!

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 38 /39

To Summarize

To get (¢, d)-approximation for f, need

o (& 6)-approximation for each 7, where € = ¢/4m and § = §/m
To get (€, 6)-approximation for 7, need

o ¢-FPAUS for Q, with ¢ = €/8 = ¢/(64m)

@ this many samples:

m2
120 (108(1/5)) = 50 (log(m/8)) = "0 (1og(m/?)

In total, we invoke the FPAUS 30%”‘30 (log(m/d)) times.
(Number of invocations can be reduced to O(m?) with a cleverer
application of Chebyshev)

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 39 /39

	Counting Combinatorial Structures
	#P
	Approximate Counting
	From Sampling to Counting

