
The Probabilistic Method

Techniques

Union bound

Argument from expectation

Alterations

The second moment method

The (Lovasz) Local Lemma

And much more
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The Union Bound Technique: Main Idea

A: event our structure exists, want Prob[A] > 0 or Prob[Ā] < 1

Suppose Ā implies one of B1, · · · , Bn must hold

Then, by the union bound

Prob
[
Ā
]
≤ Prob

[⋃
i

Bi

]
≤
∑

i

Prob[Bi]

Thus, as long as ∑
i

Prob[Bi] < 1

our structure exists!

We have seen this used in Ramsey number, magical graph, d-disjunct
matrix examples.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 3 / 47



The Union Bound Technique: Main Idea

A: event our structure exists, want Prob[A] > 0 or Prob[Ā] < 1
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Ā
]
≤ Prob

[⋃
i

Bi

]
≤
∑

i

Prob[Bi]

Thus, as long as ∑
i

Prob[Bi] < 1

our structure exists!

We have seen this used in Ramsey number, magical graph, d-disjunct
matrix examples.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 3 / 47



The Union Bound Technique: Main Idea

A: event our structure exists, want Prob[A] > 0 or Prob[Ā] < 1
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Ā
]
≤ Prob

[⋃
i

Bi

]
≤
∑

i

Prob[Bi]

Thus, as long as ∑
i

Prob[Bi] < 1

our structure exists!

We have seen this used in Ramsey number, magical graph, d-disjunct
matrix examples.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 3 / 47



The Union Bound Technique: Main Idea

A: event our structure exists, want Prob[A] > 0 or Prob[Ā] < 1
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Ā
]
≤ Prob

[⋃
i

Bi

]
≤
∑

i

Prob[Bi]

Thus, as long as ∑
i

Prob[Bi] < 1

our structure exists!

We have seen this used in Ramsey number, magical graph, d-disjunct
matrix examples.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 3 / 47



The Union Bound Technique: Main Idea

A: event our structure exists, want Prob[A] > 0 or Prob[Ā] < 1
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Example 1: Nice Tournaments

A tournament is an orientation G of Kn

Think of u → v as player u beats player v

Fix integer k, G is nice if for every k-subset S of players there is
another v who beats all of S

Intuitively, nice tournaments may exist for large n
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Existence of Nice Tournaments (Erdős, 1963)

For every {u, v}, let u → v with probability 1/2
A: event that a random G is nice

Ā implies
⋃
|S|=k

BS where BS = “S is not beaten by any v /∈ S”

Prob[BS ] =
(

1− 1
2k

)n−k

Hence, nice tournaments exist as long as
(
n
k

) (
1− 1

2k

)n−k
< 1

What’s the order of n for which this holds?

use

(
n

k

)
≤
(ne

k

)k
and

(
1− 1

2k

)n−k

< e
−n−k

2k

Nice tournaments exist as long as
(

ne
k

)k
e
−n−k

2k < 1.

So, n = Ω
(
k2 · 2k

)
is good!
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For every {u, v}, let u → v with probability 1/2
A: event that a random G is nice
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Example 2: 2-coloring of uniform hypergraphs

Given a k-uniform hypergraph G = (V,E), i.e.

E is a collection of k-subsets of V

G is 2-colorable iff each vertex in V can be assigned with red or blue
such that there’s no monochromatic edge

Intuitively, if |E| is small then G is 2-colorable!

Question is: “how small?”

An answer may be obtained along the line: “for n small enough, a
random 2-coloring is good with positive probability”

Theorem (Erdős, 1963)

Every k-uniform hypergraph with < 2k−1 edges is 2-colorable!
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Every k-uniform hypergraph with < 2k−1 edges is 2-colorable!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 6 / 47



Example 2: 2-coloring of uniform hypergraphs

Given a k-uniform hypergraph G = (V,E), i.e.

E is a collection of k-subsets of V

G is 2-colorable iff each vertex in V can be assigned with red or blue
such that there’s no monochromatic edge

Intuitively, if |E| is small then G is 2-colorable!

Question is: “how small?”

An answer may be obtained along the line: “for n small enough, a
random 2-coloring is good with positive probability”

Theorem (Erdős, 1963)
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The Argument from Expectation: Main Idea

X a random variable with E[X] = µ, then

There must exist a sample point ω with X(ω) ≥ µ
There must exist a sample point ω with X(ω) ≤ µ

X a random variable with E[X] ≤ µ, then

There must exist a sample point ω with X(ω) ≤ µ

X a random variable with E[X] ≥ µ, then

There must exist a sample point ω with X(ω) ≥ µ

Have we seen this?
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Example 1: Large Cuts in Graphs

Intuition & Question

Intuition: every graph must have a “sufficiently large” cut (A,B).
Question: How large?

Line of thought

On average, a random cut has size µ, hence there must exist a cut of size
≥ µ.

Put a vertex in either A or B with probability 1/2
Expected number of edges X with one end point in each is

E[X] = E

[∑
e

Xe

]
=
∑

e

Prob[Xe] = |E|/2

Theorem

For every graph G = (V,E), there must be a cut with ≥ |E|/2 edges

Note: this algorithm can be derandomized!
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Example 2: ±1 Linear Combinations of Unit Vectors

Theorem

Let v1, · · · ,vn be n unit vectors in Rn.
There exist α1, · · · , αn ∈ {−1, 1} such that

|α1v1 + · · ·+ αnvn| ≤
√

n

and, there exist α1, · · · , αn ∈ {−1, 1} such that

|α1v1 + · · ·+ αnvn| ≥
√

n

Simply because on average these combinations have length
√

n.
Specifically, choose αi ∈ {−1, 1} independently with prob. 1/2

E
[
|α1v1 + · · ·+ αnvn|2

]
=
∑
i,j

vi · vjE[αiαj ] =
∑

i

v2
i = n.
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Example 3: Unbalancing Lights

Theorem

For 1 ≤ i, j ≤ n, we are given aij ∈ {−1, 1}. Then, there exist
αi, βj ∈ {−1, 1} such that

∑
i

∑
j

aijαiβj ≥

(√
2
π

+ o(1)

)
n3/2

Choose βj ∈ {−1, 1} independently with prob. 1/2.

Ri =
∑

j aijβj , then

E[|Ri|] = 2
n
(

n−1
b(n−1)/2c

)
2n

≈

(√
2
π

+ o(1)

)
n1/2

Choose αi with the same sign as Ri, for all i
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Alteration Technique: Main Idea

A randomly chosen object may not satisfy the property we want

So, after choosing it we modify the object a little

In non-elementary situations, the modification itself may be
probabilistic

Or, there might be more than one modification step
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Example 1: Independent Set

α(G) denotes the maximum size of an independent set in G

Say G has n vertices and m edges

Intuition: α(G) is proportional to n and inversely proportional to m

Line of thought: on average a randomly chosen independent set has
size µ (proportional to n and inversely proportional to m)

Problem: random subset of vertices may not be an independent set!!!
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A Randomized Algorithm based on Alteration Technique

Choose a random subset X of vertices where Prob[v ∈ X] = p (to be
determined)

Remove one end point from each edge in X

Let Y be the set of edges in X

Left with at least |X| − |Y | vertices which are independent

E[|X| − |Y |] = np−mp2 = −m
(
p− n

2m

)2
+

n2

4m

Theorem

For any graph with n vertices and m edges, there must be an independent
set of size at least n2/(4m).
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Example 2: Dominating Set

Given G = (V,E), S ⊂ V is a dominating set iff every vertex either is
in S or has a neighbor in S

Intuition: graphs with high vertex degrees should have small
dominating set

Line of thought: a randomly chosen dominating set has mean size µ
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A Randomized Algorithm based on Alteration Technique

Include a vertex in X with probability p

Let Y = set of vertices in V −X with no neighbor in X

Output X ∪ Y

Prob[u /∈ X and no neighbor in X] = (1− p)deg(u)+1 ≤ (1− p)δ+1

where deg(u) is the degree of u and δ is the minimum degree.

E[|X|+ |Y |] ≤ n
(
p + (1− p)δ+1

)
≤ n

(
p + e−p(δ+1)

)
To minimize the RHS, choose p = ln(δ+1)

δ+1

Theorem

There exists a dominating set of size at most n1+ln(δ+1)
δ+1
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Example 3: 2-coloring of k-uniform Hypergraphs

G = (V,E) a k-uniform hypergraph.

Intuition: if |E| is relatively small, G is 2-colorable

We’ve shown: |E| ≤ 2k−1 is sufficient, but the bound is too small

Why is the bound too small?

Random coloring disregards the structure of the graph.
Need some modification of the random coloring to improve the bound.
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A Randomized Algorithm

1 Order V randomly. For v ∈ V , flip 2 coins:

Prob[C1(v) =head] = 1/2;
Prob[C2(v) =head] = p

2 Color v red if C1(v) =head, blue otherwise

3 D = {v | v lies in some monochromatic e ∈ E}
4 For each v ∈ D in the random ordering

If v is still in some monochromatic e in the first coloring and no vertex
in e has changed its color, then change v’s color if C2(v) =head
Else do nothing!
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Analysis

Prob[Coloring is bad] ≤
∑
e∈E

Prob[e is monochromatic]

= 2
∑
e∈E

Prob[e is red]

≤ 2
∑
e∈E

Prob[e was red and remains red︸ ︷︷ ︸
Ae

]

+ Prob[e wasn’t red and turns red︸ ︷︷ ︸
Ce

]


Prob[Ae] =

1
2k

(1− p)k.
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The Event Ce

Let v be the last vertex of e to turn blue → red

v ∈ f ∈ E and f was blue (in 1st coloring) when v is considered

e ∩ f = {v}
For any e 6= f with |e ∩ f | = {v}, let Bef be the event that

f was blue in first coloring, e is red in the final coloring

v is the last of e to change color

when v changes color, f is still blue

Prob[Ce] ≤
∑

f :|f∩e|=1

Prob[Bef ]
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The Event Bef

The random ordering of V induces a random ordering σ of e ∪ f

iσ = number of vertices in e coming before v in σ

jσ = number of vertices in f coming before v in σ

Prob [Bef | σ] =
1
2k

p
1

2n−1−iσ
(1− p)jσ

(
1 + p

2

)iσ

Prob [Bef ] =
∑

σ

Prob [Bef | σ]Prob[σ]

=
p

22k−1
Eσ[(1− p)iσ(1 + p)jσ ]

≤ p

22k−1
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Putting it All Together

Let m = |E| and x = m/2k−1

Prob[Coloring is bad] ≤ 2
∑

e

(Prob[Ae] + Prob[Ce])

< 2m
1
2k

(1− p)k + 2m2 p

22k−1

= x(1− p)k + x2p

≤ 1

as long as

m = Ω

(
2k

√
k

ln k

)
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Outline

1 The Union Bound Technique

2 The Argument from Expectation

3 Alteration Technique

4 Second Moment Method

5 The Local Lemma
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Second Moment Method: Main Idea

Use Chebyshev’s Inequality.
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Example 1: Distinct Subset Sums

A set A = {a1, · · · , ak} of positive integers has distinct subset sums
if the sums of all subsets of A are distinct

f(n) = maximum k for which there’s a k-subset of [n] having distinct
subset sums

Example: A = {2i | 0 ≤ i ≤ lg n}

f(n) ≥ blg nc+ 1

Open Problem: (Erdős offered 500usd)

f(n) ≤ log2 n + c?

Simple information bound:

2k ≤ nk ⇒ k < lg n + lg lg n + O(1).
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Open Problem: (Erdős offered 500usd)

f(n) ≤ log2 n + c?

Simple information bound:

2k ≤ nk ⇒ k < lg n + lg lg n + O(1).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 26 / 47



Example 1: Distinct Subset Sums

A set A = {a1, · · · , ak} of positive integers has distinct subset sums
if the sums of all subsets of A are distinct

f(n) = maximum k for which there’s a k-subset of [n] having distinct
subset sums

Example: A = {2i | 0 ≤ i ≤ lg n}

f(n) ≥ blg nc+ 1

Open Problem: (Erdős offered 500usd)
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A Bound for f(n) Using Second Moment Method

Line of thought

Fix n and k-subset A = {a1, · · · , ak} with distinct subset sums

X = sum of random subset of A, µ = E[X], σ2 = Var [X]
For any integer i,

Prob[X = i] ∈
{

0,
1
2k

}

By Chebyshev, for any α > 1

Prob[|X − µ| ≥ ασ] ≤ 1
α2

⇒ Prob[|X − µ| < ασ] ≥ 1− 1
α2

There are at most 2ασ + 1 integers within ασ of µ; hence,

1− 1
α2

≤ 1
2k

(2ασ + 1)

σ is a function of n and k
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More Specific Analysis

σ2 =
a2

1 + · · ·+ a2
k

4
≤ n2k

4
⇒ σ ≤ n

√
k/2

There are at most (αn
√

k + 1) within ασ of µ

1− 1
α2

≤ 1
2k

(αn
√

k + 1)

Equivalently,

n ≥
2k
(
1− 1

α2

)
− 1

α
√

k

Recall α > 1, we get

k ≤ lg n +
1
2

lg lg n + O(1).
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Example 2: G(n, p) Model and ω(G) ≥ 4 Property

G(n, p)

Space of random graphs with n vertices, each edge (u, v) is included with
probability p
Also called the Erdős-Rényi Model.

Question

Does a “typical” G ∈ G(n, p) satisfy a given property?

Is G connected?

Does G have a 4-clique?

Does G have a Hamiltonian cycle?
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Threshold Function

As p goes from 0 to 1, G ∈ G(n, p) goes from “typically empty” to
“typically full”

Some property may become more likely or less likely

The property having a 4-clique will be come more likely

Threshold Function

f(n) is a threshold function for property P if

When p � f(n) almost all G ∈ G(n, p) do not have P

When p � f(n) almost all G ∈ G(n, p) do have P

It is not clear if any property has threshold function
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The ω(G) ≥ 4 Property

Pick G ∈ G(n, p) at random

S ∈
(
V
4

)
, XS indicates if S is a clique

X =
∑

S XS is the number of 4-clique

ω(G) ≥ 4 iff X > 0

Natural line of thought:

E[X] =
∑
S

E[XS ] =
(

n

4

)
p6 ≈ n4p6

24

When p = o
(
n−2/3

)
, we have E[X] = o(1); thus,

Prob[X > 0] ≤ E[X] = o(1)
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The ω(G) ≥ 4 Property

More precisely

p = o
(
n−2/3

)
=⇒ lim

n→∞
Prob[X > 0] = 0

In English

When p = o
(
n−2/3

)
and n sufficiently large, almost all graphs from

G(n, p) do not have ω(G) ≥ 4

What about when p = ω
(
n−2/3

)
?

We know lim
n→∞

E[X] = ∞

But it’s not necessarily the case that Prob[X > 0] → 1
Equivalently, it’s not necessarily the case that Prob[X = 0] → 0
Need more information about X
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Here Comes Chebyshev

Let µ = E[X], σ2 = Var [X]

Prob[X = 0] = Prob[X − µ = −µ]
≤ Prob [{X − µ ≤ −µ} ∪ {X − µ ≥ µ}]
= Prob [|X − µ| ≥ µ]

≤ σ2

µ2

Thus, if σ2 = o
(
µ2
)

then Prob[X = 0] → 0 as desired!

Lemma

For any random variable X

Prob[X = 0] ≤ Var [X]
(E[X])2
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PTCF: Bounding the Variance

Suppose X =
∑n

i=1 Xi

Var [X] =
n∑

i=1

Var [Xi] +
∑
i6=j

Cov [Xi, Xj ]

If Xi is an indicator for event Ai and Prob[Xi = 1] = pi, then

Var [Xi] = pi(1− pi) ≤ pi = E[Xi]

If Ai and Aj are independent, then

Cov [Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ] = 0

If Ai and Aj are not independent (denoted by i ∼ j)

Cov [Xi, Xj ] ≤ E[XiXj ] = Prob[Ai ∩Aj ]
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PTCF: Bounding the Variance

Theorem

Suppose

X =
n∑

i=1

Xi

where Xi is an indicator for event Ai. Then,

Var [X] ≤ E[X] +
∑

i

Prob[Ai]
∑
j:j∼i

Prob[Aj | Ai]︸ ︷︷ ︸
∆i

Corollary

If ∆i ≤ ∆ for all i, then

Var [X] ≤ E[X](1 + ∆)
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Back to the ω(G) ≥ 4 Property

∆S =
∑
T∼S

Prob[AT | AS ]

=
∑

|T∩S|=2

Prob[AT | AS ] +
∑

|T∩S|=3

Prob[AT | AS ]

=
(

n− 4
2

)(
4
2

)
p5 + (n− 4)p3 = ∆

So,
σ2 ≤ µ(1 + ∆)

Recall: we wanted σ2/µ2 = o(1) – OK as long as ∆ = o(µ)
Yes! When p = ω

(
n−2/3

)
, certainly

∆ =
(

n− 4
2

)(
4
2

)
p5 + (n− 4)p3 = o

(
n4p6

)
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The ω(G) ≥ 4 Property: Conclusion

Theorem

f(n) = n−2/3 is a threshold function for the ω(G) ≥ 4 property

With essentially the same proof, we can show the following.

Let H be a graph with v vertices and e edges. Define the density
ρ(H) = e/v. Call H balanced if every subgraph H ′ has ρ(H ′) ≤ ρ(H)

Theorem

The property “G ∈ G(n, p) contains a copy of H” has threshold function
f(n) = n−v/e.
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What Happens when p ≈ Threshold?

Theorem

Suppose p = cp−2/3, then X is approximately Poisson(c6/24)
In particular, Prob[X = 0] → 1− e−c6/24
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Outline

1 The Union Bound Technique

2 The Argument from Expectation

3 Alteration Technique

4 Second Moment Method

5 The Local Lemma
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Lovasz Local Lemma: Main Idea

Recall the union bound technique:
want to prove Prob[A] > 0
Ā ⇒ (or ⇔) some bad events B1 ∪ · · · ∪Bn

done as long as Prob[B1 ∪ · · · ∪Bn] < 1

Could also have tried to show

Prob[B̄1 ∩ · · · ∩ B̄n] > 0

Would be much simpler if the Bi were mutually independent, because

Prob[B̄1 ∩ · · · ∩ B̄n] =
n∏

i=1

Prob[B̄i] > 0

Main Idea

Lovasz Local Lemma is a sort of generalization of this idea when the
“bad” events are not mutually independent
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PTCF: Mutual Independence

Definition (Recall)

A set B1, . . . , Bn of events are said to be or mutually independent (or
simply independent) if and only if, for any subset S ⊆ [n],

Prob

[⋂
i∈S

Bi

]
=
∏
i∈S

Prob[Bi]

Definition (New)

An event B is mutually independent of events B1, · · · , Bk if, for any
subset S ⊆ [k],

Prob

[
B |

⋂
i∈S

Bi

]
= Prob[B]

Question: can you find B,B1, B2, B3 such that B is mutually independent
of B1 and B2 but not from all three?
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PTCF: Dependency Graph

Definition

Given a set of events B1, · · · , Bn, a directed graph D = ([n], E) is called
a dependency digraph for the events if every event Bi is independent of all
events Bj for which (i, j) /∈ E.

What’s a dependency digraph of a set of mutually independence
events?

Dependency digraph is not unique!
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The Local Lemma

Lemma (General Case)

Let B1, · · · , Bn be events in some probability space. Suppose
D = ([n], E) is a dependency digraph of these events, and suppose there
are real numbers x1, · · · , xn such that

0 ≤ xi < 1
Prob[Bi] ≤ xi

∏
(i,j)∈E

(1− xj) for all i ∈ [n]

Then,

Prob

[
n⋂

i=1

B̄i

]
≥

n∏
i=1

(1− xi)
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The Local Lemma

Lemma (Symmetric Case)

Let B1, · · · , Bn be events in some probability space. Suppose
D = ([n], E) is a dependency digraph of these events with maximum
out-degree at most ∆. If, for all i,

Prob[Bi] ≤ p ≤ 1
e(∆ + 1)

then

Prob

[
n⋂

i=1

B̄i

]
> 0.

The conclusion also holds if

Prob[Bi] ≤ p ≤ 1
4∆
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Example 1: Hypergraph Coloring

G = (V,E) a hypergraph, each edge has ≥ k vertices

Each edge f intersects at most ∆ other edges

Color each vertex randomly with red or blue

Bf : event that f is monochromatic

Prob[Bf ] =
2

2|f |
≤ 1

2k−1

There’s a dependency digraph for the Bf with max out-degree ≤ ∆

Theorem

G is 2-colorable if
1

2k−1
≤ 1

e(∆ + 1)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 694 – A Fun Course 45 / 47



Example 2: k-SAT

Theorem

In a k-CNF formula ϕ, if no variable appears in more than 2k−2/k clauses,
then ϕ is satisfiable.
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Example 3: Edge-Disjoint Paths

N a directed graph with n inputs and n outputs

From input ai to output bi there is a set Pi of m paths

In switching networks, we often want to find (or want to know if there
exists) a set of edge-disjoint (ai → bi)-paths

Theorem

Suppose 8nk ≤ m and each path in Pi share an edge with at most k paths
in any Pj , j 6= i. Then, there exists a set of edge-disjoint (ai → bi)-paths.
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