
Agenda

We’ve done
Growth of functions
Asymptotic Notations (O, o,Ω, ω,Θ)
Recurrence relations and a few methods of solving them

Divide and Conquer

Now
Designing Algorithms with the Greedy Method

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 1 / 65

Interval Scheduling – Problem Definition

Scheduling requests on a single resource (a class room, a
processor, etc.)
Input:

a set R = {R1, . . . , Rn} of n requests to be scheduled
Ri represented by the time interval [si, fi)

Output: a set of as many non-overlapping intervals as possible

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 3 / 65

Attempts at Greedy Choices

Note: after first interval is chosen, remove all conflicting intervals and
then recurse

1 Select interval that starts earliest
2 Select shortest interval
3 Select interval that conflicts with fewest other intervals
4 Select interval that ends earliest

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 4 / 65

Greedy Algorithm - Recursive Implementation

Greedy-Interval-Scheduling(R)
1: if R is empty then
2: Return ∅
3: else
4: Let R ∈ R be the request with earliest finishing time
5: Let R′ ← (R minus all requests overlapping with R)
6: Return {R}∪ Greedy-Interval-Scheduling(R′)
7: end if

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 5 / 65

Greedy Algorithm - A Better Implementation

Greedy-Interval-Scheduling(R)
1: if R is empty then
2: Return ∅
3: end if
4: Sort intervals in increasing order of finishing times

// i.e. f1 ≤ f2 ≤ · · · ≤ fn
5: C← {R1} // select the first request
6: j← 1 // record the last chosen request
7: for i← 2 to n do
8: if fj ≤ si then
9: C← C ∪ {Ri} // add Ri to the output set

10: j← i // record the last chosen request
11: end if
12: end for
13: Return C

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 6 / 65

Proving Correctness

Induct on |R| that our algorithm returns an optimal solution.
Base case. When |R| = 1, easy!
Induction hypothesis. Suppose our algo is good when |R| ≤ n− 1.
Induction step. Consider |R| = n.

Claim 1: by the induction hypothesis, C′ = C − {R1} is optimal for
the sub-problem R′

Hence,
cost(C) = 1 + cost(C′) = 1 + OPT(R′) (1)

Claim 2: there exists an optimal solution O containing the greedy
choice (the first interval R1)
Claim 3: O′ = O−{R1} is an optimal solution for the sub-problem R′

Thus,

OPT(R) = cost(O) = 1 + cost(O′) = 1 + OPT(R′) (2)

Conclusion: (1) and (2) imply cost(C) = OPT(R)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 7 / 65

Analysis

Running time: O(n log n), where n is the number of intervals
Space: O(n) (Quick-sort swap elements in place, the output set of
intervals is just an array.)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 8 / 65

Optimization Problems

Optimization problems: find an optimal solution among a large set
of feasible solutions

0-1 KNAPSACK: A robber found n items in a store, the ith item is
worth vi dollars and weighs wi pounds (vi, wi ∈ Z+), he can only
carry W pounds. Which items should he take?
TRAVELING SALESMAN (TSP): find the shortest route for a
salesman to visit each of the n given cities once, and return to the
starting city.

Typically, a feasible solution is a combinatorial structure (graph,
set, etc.) composed of smaller “building blocks”.
The combination of “building blocks” need to satisfy some
conditions for the structure to be feasible

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 10 / 65

Greedy Algorithms

It is hard to define what a “greedy” algorithm is
Roughly: at each iteration, select a “locally optimal” building block

Example
01-KNAPSACK At each iteration, select the most valuable item that he
could still carry

Example
01-KNAPSACK At each iteration, select the item with the most value per
pound that he could still carry

Easy to construct examples where both greedy strategies lead to
non-optimal solutions

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 11 / 65

In General Terms

A correct algorithm always returns an optimal solution.
(“Correct algorithm” is somewhat of a misnomer. In general, an
algorithm is correct if it always returns solutions as we intended it
to return. The intention need not be optimality.)
To prove that a greedy algorithm is incorrect, present one counter
example.
Note: an incorrect greedy algorithm may still give optimal
solutions, depending on the inputs.
To prove that a greedy algorithm is correct, there are two basic
strategies (among others):

Induction
Exchange argument

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 13 / 65

Proving Correctness Using Induction – Strategy 1

Examples: INTERVAL SCHEDULING, HUFFMAN CODING
Often applicable to recursive greedy algorithms of the form

1 select a locally optimal building block b (greedy choice)
2 recursively construct a solution S′ to suitably defined a sub-problem,
3 combine b with S′ to obtain the final solution S = b ∪ S′

Proof strategy
1 By induction, show that cost(S′) = OPT(sub-problem), leading to

cost(S) = cost(b) + cost(S′) = cost(b) + OPT(sub-problem).

2 Show that there is an optimal solution O containing b.
3 Show that O′ = O− b is optimal for the sub-problem, implying

cost(O) = cost(b) + cost(O′) = cost(b) + OPT(sub problem).

4 Conclude that
cost(S) = OPT(problem).

Important Note
Do not interpret ∪,+,− literally! Their meanings are problem specific.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 14 / 65

Proving Correctness Using Induction – Strategy 2

Induct that every “greedy step” produces a (growing) part of a
globally optimal solution.
Example: SINGLE-SOURCE SHORTEST PATHS.

Other strategies
There are other types of inductions too. Problem dependent.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 15 / 65

Proving Correctness Using the Exchange Argument

1 Let S be the solution returned by the greedy algorithm
2 Let O be any optimal solution
3 Prove that O can be turned into S by gradual modifications without

sacrificing the optimality of any solution along the way
3.1 Gradual modification: remove some building block b from O, add

another building block b′ to obtain O′ = O− b + b′

3.2 Show that O′ is feasible and cost(O′) = cost(O)
3.3 Show that, after a certain number of steps O becomes S

Often done by showing O′ is “closer” to S in some specific sense

Examples:
SCHEDULING TO MINIMIZE LATENESS,
MINIMUM SPANNING TREES,
OPTIMAL CACHING

An abstraction
Strategy abstracted for a large class of problems using matroids

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 16 / 65

Scheduling All Interval – Problem Definition

Scheduling all requests on as few resources as possible
Input:

a set R = {R1, . . . , Rn} of n requests to be scheduled
Ri represented by the time interval [si, fi)

Output: a partition of R into as few sets as possible, such that
intervals in each set do not overlap.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 19 / 65

Attempts at Greedy Choices

Think of each set of non-overlapping intervals as a color
Colors are represented by integers (color 1, color 2, etc.)
Partitioning becomes coloring
Two conflicting intervals need different colors

Possible strategies
1 Consider intervals one at a time, assign to a new interval the least

non-conflicting integer.
2 Sort intervals by starting times, then use strategy 1.

A lower bound
Let d be the maximum number of mutually overlapping intervals, then
we need at least d colors.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 20 / 65

Greedy Algorithm

We will use only d colors: [d] = {1, . . . , d}
Greedy-Interval-Partitioning(R)

1: Sort requests by their starting times, breaking ties arbitrarily
2: // now s1 ≤ s2 ≤ · · · ≤ sn

3: for j = 1 to n do
4: for each Ri preceding Rj and overlaps Rj do
5: Exclude color of Ri from consideration for Rj

6: end for
7: if there is any color in [d] available then
8: Use that color for Rj

9: else
10: Leave Rj un-colored
11: end if
12: end for

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 21 / 65

Proof of Correctness

Let J be the set of intervals overlapping Rj

Then, J ∪ {Rj} is a mutually-overlapping set of intervals
Thus |J| ≤ d − 1.
Thus, there is always an available color for Rj

Since we used only d colors, our algorithm is optimal.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 22 / 65

Scheduling to Minimize Lateness – Problem Definition

Input: n jobs; job Ji has duration ti and deadline di

Output: a schedule on a single machine to minimize the
maximum lateness.
Lateness is the amount of time a job is late compared to its
deadline, and is 0 if the job is on-time.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15 d1 = 6 d4 = 9d3 = 9

lateness = 0lateness = 2

dj 6

tj 3

1

8

2

2

9

1

3

9

4

4

14

3

5

15

2

6

max lateness = 6

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 24 / 65

Attempts at Greedy Choices

1 Shortest processing time first
2 Shortest slack time first (slack time is di − ti)
3 Earliest deadline first

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 25 / 65

Greedy Algorithm – Earliest Deadline First

Scheduling-Minimize-Lateness(t, d)
1: Sort jobs so that d1 ≤ d2 ≤ · · · ≤ dn

2: f = 0
3: for i = 1 to n do
4: Assign job Ji to the time interval si = f , fi = f + ti
5: f ← f + ti
6: end for

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

d5 = 14d2 = 8 d6 = 15d1 = 6 d4 = 9d3 = 9

max lateness = 1

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 26 / 65

Proof of Correctness

A schedule has an inversion if di > dj yet Ji is scheduled before dj

The machine has idle time if it’s free for a while between some two
jobs

Claim 1
There is an optimal schedule with no idle time

Claim 2
All schedules with no idle time and no inversions have the same
maximum lateness

Claim 3
There is an optimal schedule with no idle time and no inversions

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 27 / 65

Proof of Claim 1

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

0 1 2 3 4 5 6

d = 4 d = 6
7 8 9 10 11

d = 12

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 28 / 65

Proof of Claim 2

Schedules with no inversions and no idle times might differ in
ordering of jobs with the same deadline
Among jobs with the same deadline, say di, the last one has the
maximum lateness, which does not depend on the ordering of
these jobs

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 29 / 65

Proof of Claim 3

Let O be any optimal schedule with no idle time
If O has an inversion, there is an inversion where jobs i and j are
next to each other in the schedule
Swap i and j does not change optimality, yet reduces the number
of inversions by 1

Max number of inversions is a polynomial in n (how many?), thus
the method terminates in polynomial time

ij

i j

before swap

after swap

f'j

fi

inversion

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 30 / 65

Single Source Shortest Paths – Problem Definition

G = (V, E), a path is a sequence of vertices P = (v0, v1, . . . , vk),
where (vi, vi+1) ∈ E, and no vertex is repeated
A walk is the same kind of sequence with repeated vertices
allowed
If w : E → R, then w(P) = w(v0v1) + · · ·+ w(vk−1vk).

Single Source Shortest Paths Problem
Given a directed graph G = (V, E), a source vertex s ∈ V, and a weight
function w : E → R+.
Find a shortest path from s to each vertex v ∈ V

Question
What if the graph is undirected?

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 33 / 65

Representing Shortest Paths

How do we represent shortest paths from s to each vertex v ∈ V?

Lemma
If P = (s, . . . , u, v) is a shortest path from s to v, then the part of P from s
to u is a shortest path from s to u.

Shortest Path Tree
For each v ∈ V, maintain a pointer π[v] to the previous vertex along a
shortest path from s to v. For the rest,

π[s] = NIL

π[v] = NIL if v is not reachable from s

Notes:
There could be multiple shortest paths to the same vertex
The representation gives one set of shortest paths

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 34 / 65

Shortest Path Tree

s

3

t

2

6

7

4
5

24

18

2

9

14

15
5

30

20

44

16

11

6

19

6

15

9

∞

∞

14

∞

0

S = { s, 2, 3, 4, 5, 6, 7, t }
PQ = { }

∞X

∞

∞X

X

44
X

35X

59 XX51

X 34

X50

X45

∞X 33X
32

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 35 / 65

Dijkstra’s Algorithm

d[v]: current estimate of the weight of a shortest path to v

π[v]: pointer to the previous vertex on the shortest path to v

DIJKSTRA(G, s, w)
1: Set d[v]←∞ and π[v]← NIL, for all v
2: d[s]← 0; S← {s} // S is the set of explored nodes
3: while S 6= V do
4: Choose v /∈ S with at least one edge from S for which

d′(v) = min
(u,v)∈E,u∈S

{d[u] + w(u, v)}

is as small as possible. Let u ∈ S be the vertex realizing the
minimum d′(v)

5: S← S ∪ {v}; d[v]← d′(v), π[v]← u
6: end while

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 36 / 65

Better Implementation

d[v]: current estimate of the weight of a shortest path to v

π[v]: pointer to the previous vertex on the shortest path to v

INITIALIZE-SINGLE-SOURCE(G, s)
1: for each v ∈ V(G) do
2: d[v]←∞
3: π[v]← NIL

4: end for
5: d[s]← 0

RELAX(u, v, w)
1: if d[v] > d[u] + w(u, v) then
2: d[v]← d[u] + w(u, v)
3: π[v]← u
4: end if

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 37 / 65

Better Implementation – Priority Queues

A priority queue is a data structure that
maintains a set S of objects
for each s ∈ S, key[s] ∈ R

Two types: min-priority queue and max-priority queue
Min-Priority Queue – denoted by Q

INSERT(Q, x): insert x into Q

MINIMUM(Q): returns element with min key
EXTRACT-MIN(Q): removes and returns element with min key
DECREASE-KEY(Q, x, k): change key[x] to k, where k ≤ key[x]

Using Heap, Min-PQ can be implemented so that:
Building a Q from an array takes O(n)
Each of the operations takes O(lg n)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 38 / 65

Better Implementation

DIJKSTRA(G, s, w)
1: INITIALIZE-SINGLE-SOURCE(G, s)
2: S← ∅ // set of vertices considered so far
3: Q← V(G) // ∀v, key[v] = d[v] after initialization
4: while Q is not empty do
5: u← EXTRACT-MIN(Q)
6: S← S ∪ {u}
7: for each v ∈ Adj[u] do
8: RELAX(u, v, w)
9: end for

10: end while

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 39 / 65

Running Time

PQ Op. Dijkstra Array Bin. Heap d-way Heap Fib. Heap
INSERT n n lg n d logd n 1

EXR-MIN n n lg n d logd n lg n
DEC-KEY m 1 lg n logd n 1
IS-EMPTY n 1 1 1 1

Total n2 m lg n m logm/n n m + n lg n

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 40 / 65

Correctness of Dijkstra’s Algorithm

For each u, let Pu be the path from s to u in the shortest path tree
returned by Dijkstra’s algorithm.

Theorem
Consider the set S at any point in the execution of the algorithm. For
each vertex u ∈ S, the path Pu is a shortest s–u path

Proof.
Induction on |S|.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 41 / 65

Analysis of Dijkstra’s Algorithm

Let n = |V(G)|, and m = |E(G)|
INITIALIZE-SINGLE-SOURCE takes O(n)
Building the queue takes O(n)
The while loop is done n times, so EXTRACT-MIN is called n times
for a total of O(n lg n)
For each u extracted, and each v adjacent to u, RELAX(u, v, w) is
called, hence totally |E| calls to RELAX were made
Each call to RELAX implicitly implies a call to DECREASE-KEY,
which takes O(lg n); hence, totally O(m lg n)-time on
DECREASE-KEY

In total, we have O((m + n) lg n), which could be improved using
FIBONACCI-HEAP to implement the priority queue

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 42 / 65

Minimum Spanning Tree – Problem Definition

Input: a connected graph G = (V, E), edge cost c : E → R+

Output: a spanning tree T of G, i.e. a connected sub-graph with
no cycle which spans all vertices.

5

23

10
21

14

24

16

6

4

18
9

7

11
8

5

6

4

9

7

11
8

G = (V, E) T, Σe∈T ce = 50

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 44 / 65

Attempts at Greedy Choices

(Kruskal) Start with T = ∅. Consider edges in ascending order of
costs. Add edge e into T unless e completes a cycle in T.
(Prim) Start from any vertex s of G. Grow a tree T from s. At each
step, add the cheapest edge e with exactly one end in T

(Reverse Delete) Start with T = E. Consider edges in descending
order of costs. Remove e from T unless doing so disconnects T

Amazingly
All three attempts are good greedy algorithms

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 45 / 65

Proof of Correctness – An Exchange Lemma

Lemma (Exchange Lemma)
Let T be any minimum spanning tree of G. Let e be any edge of G with
e /∈ T. Then,

e forms a cycle with some edges of T,
all edges on this cycle has cost at least c(e)

c(e) ≥ c(e′)

e

e′

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 46 / 65

Correctness of Kruskal’s and Prim’s Algorithms

Kruskal is correct
Let e1, . . . , en−1 be edges of the tree that Kruskal algorithm selects, in
that order. Prove by induction that, for each i ∈ {1, . . . , n− 1} there
exists an MST containing e1, . . . , ei.

Prim is correct
Let e1, . . . , en−1 be edges of the tree that Prim algorithm selects, in that
order. Prove by induction that, for each i ∈ {1, . . . , n− 1} there exists
an MST containing e1, . . . , ei.

Reverse-delete is correct
Let e1, . . . , em−(n−1) be edges that REVERSE-DELETE deleted during its
execution, in that order. Prove by induction that, for each
i ∈ {1, . . . , m− (n− 1)} there exists an MST not containing any of
e1, . . . , ei.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 47 / 65

Implementing Prim’s Algorithm with a Priority Queue

Similar to Dijkstra’s algorithm, grow the tree from S

For each unexplored v, maintain “attachment cost” a[v] = cost of
cheapest edge connecting S to v

MST-PRIM(G, w)
1: a[v]←∞,∀v ∈ V; S← 0, Q← ∅
2: Insert all v into Q
3: while Q is not empty do
4: u← EXTRACT-MIN(Q); S← S ∪ {u}
5: for each v such that e = (u, v) ∈ E do
6: if we < a[v] then
7: DECREASE-KEY(Q, v, we)
8: end if
9: end for

10: end while
Time: O(n2) with an array as Q, O(m lg n) with a binary heap.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 48 / 65

Implementing Kruskal’s Algorithm with Union-Find
Data Structure

MST-Kruskal(G, w)
1: A← ∅ // the set of edges of T
2: Sort E in increasing order of costs // c(e1) ≤ · · · ≤ c(em)
3: for each vertex v ∈ V(G) do
4: MAKE-SET(v)
5: end for
6: for i = 1 to m do
7: // Suppose ei = (u, v)
8: if FIND-SET(u) 6= FIND-SET(v) then
9: A← A ∪ {ei}

10: SET-UNION(u, v)
11: end if
12: end for

It is known that O(m) set operations take O(m lg m).
Totally, Kruskal’s Algorithm takes O(m lg m).

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 49 / 65

Huffman Coding – Problem Definition

7-bit ASCII code for “abbccc” uses 42 bits
Suppose we use ’0’ to code ’c’, ’10’ to code ’b’, and ’11’ to code
’c’: “111010000” - 9 bits
To code effectively:

Variable codes
No code of a character is a prefix of a code for another: prefix code
The characters with higher frequencies should get shorter codes

Prefix codes can be represented by binary trees with characters at
leaves
The binary trees have to be full if we want the code to be optimal
(why?)
The problem: given the frequencies, find an optimal full binary tree

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 52 / 65

More Precise Formulation

Input:
C: the set of characters
Frequency f (c) for each c ∈ C

Output: an optimal coding tree T.
Let dT(c) be the depth of a leaf c of T
The total number of bits required is

B(T) =
∑
c∈C

f (c)dT(c)

We want to find T with the least B(T)

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 53 / 65

Huffman’s Idea

HUFFMAN’S ALGORITHM

1: while there are two or more leaves in C do
2: Pick two leaves x, y with least frequency
3: Create a node z with two children x, y, and frequency

f (z) = f (x) + f (y)
4: C = (C − {x, y}) ∪ {z}
5: end while

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 54 / 65

Correctness of Huffman’s Algorithm

Lemma
Let C be a character set, where each c ∈ C has frequency f (c). Let x
and y be two characters with least frequencies. Then, there exists an
optimal prefix code for C in which the codewords for x and y have the
same length and differ only in the last bit

Lemma
Let T be a full binary tree representing an optimal prefix code for C. Let
x and y be any leaves of T which share the same parent z. Let
C′ = (C − {x, y}) ∪ {z}, with f (z) = f (x) + f (y). Then, T ′ = T − {x, y} is
an optimal tree for C′.

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 55 / 65

Optimal Caching – Problem Definition

Setting
A cache with capacity to store k items, k < n, initially full
A sequence of n requests for items: d1, . . . , dn

Cache hit: requested item already in cache when requested
Cache miss: requested item not in cache, must evict some item to
bring requested item into cache

Objective find an eviction schedule (which item(s) to evict and when) to
minimize the number of evictions
Example: k = 2, initial cache ab, requests a, b, c, b, c, a, b

Cache a a c c c a a
content b b b b b b b

Requests a b c b c a b

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 57 / 65

Attempts at Greedy Choices

First In Last Out (FILO)
First In First Out (FIFO)
Evict item least frequently used in the past
Evict item referenced farthest into the past (Least Recently Used
– LRU)
Evict item least frequently used in the future
Evict item needed the farthest into the future (Les Belady’s idea,
1960s): this works!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 58 / 65

Reduced Schedules

Notes:
At each step, we can evict and bring in as many items as we wish
We can assume that the cache is always full

Reduced schedules:
A schedule is reduced if it only brings in an item at the point when
the item is requested (and missed)
Every schedule S can be transformed into a reduced schedule S′

with the same number of misses⇒ there is a reduced optimal
schedule!

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 59 / 65

Transforming Schedules to Reduced Schedules

Evicted Item . . e
.
.
. . d
.
.

Requests . . x . . . d

Say, d was inserted before needed, e was sacrificed
If e is brought back in before d is requested⇒ miss
If e is not brought back in before d is requested, e could have just
remained, and bring d in when requested

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 60 / 65

Correctness of Farthest-in-Future

Let SF be the schedule returned by Farthest-in-Future

We show by induction on j that
For every j ≥ 0, there exists a reduced optimal schedule S which
makes the same evictions as SF through the first j steps.

Base case: j = 0 is obvious.
Let S be a reduced optimal schedule agreeing with SF ’til step j
Consider step j + 1: suppose d is requested, SF evicts e, S evicts f

Define another S′: S′ evicts e, then mimics S as far as possible
The first time S′ can’t follow S, suppose g is requested
Case 1: g 6= e, g 6= f , S evicts e
Case 2: g = f , (2a) S evicts e, (2b) S evicts e′ 6= e
Case 3: g = e – impossible!
Thus, S′ is optimal and agree with SF till step j + 1

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 61 / 65

S and SF

Evicted . . e
.

SF . . d
.
. . f

Requests . . d

Evicted . . f
.

S . . d
.
. . e

Requests . . d

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 62 / 65

S and S′, Case 1: g 6= e, g 6= f

Evicted . . e . . . f . . .
.

S′ . . d
.
. . f . . . g . . .

Requests . . d . . . g . . .

Evicted . . f . . . e . . .
.

S . . d
.
. . e . . . g . . .

Requests . . d . . . g . . .

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 63 / 65

Case 2a: g = f , S evicts e

Evicted . . e
.

S′ . . d
.
. . f . . . f . . .

Requests . . d . . . f . . .

Evicted . . f . . . e . . .
.

S . . d
.
. . e . . . f . . .

Requests . . d . . . f . . .

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 64 / 65

Case 2b: g = f , S evicts e′ 6= e

Evicted . . e . . . e’ . . .
.

S′ . . d
. e . . .
. . f . . . f . . .

Requests . . d . . . f . . .

Evicted . . f . . . e’ . . .
.

S . . d
. f . . .
. . e . . . e . . .

Requests . . d . . . f . . .

c©Hung Q. Ngo (SUNY at Buffalo) CSE 531 Algorithm Analysis and Design 65 / 65

