
Randomized Algorithms

Randomized Rounding

Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Covering Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding and Semi-definite Programming

Approximate Sampling and Counting

...
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CNF Formulas

Conjunctive Normal Form (CNF) formulas:

ϕ = (x1 ∨ x̄2)︸ ︷︷ ︸
Clause 1

∧ (x1 ∨ x3 ∨ x̄4 ∨ x6)︸ ︷︷ ︸
Clause 2

∧ (x̄2 ∨ x̄3 ∨ x4)︸ ︷︷ ︸
Clause 3

∧ (x̄5)︸︷︷︸
Clause 4

Literals: x̄2, x4, etc.

Truth assignment: a : {x1, . . . , xn} → {true, false}
For integers k ≥ 2, a k-CNF formula is a CNF formula in which each
clause is of size at most k,

an Ek-CNF formula is a CNF formula in which each clause is of size
exactly k.
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Satisfiability Problems

max-sat: given a CNF formula ϕ, find a truth assignment satisfying
as many clauses as possible

max-ksat: given a k-CNF formula ϕ, find a truth assignment
satisfying as many clauses as possible

max-eksat: given an Ek-CNF formula ϕ, find a truth assignment
satisfying as many clauses as possible

Weighted-Xsat: X ∈ {∅, k Ek} – clause j has weight wj , find a truth
assignment satisfying clauses with largest total weight

These are very fundamental problems in optimization, with many
applications (in security, software verification, etc.)
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The Arithmetic-Geometric Means Inequality

Theorem (Arithmetic-geometric means inequality)

For any non-negative numbers a1, . . . , an, we have

a1 + · · ·+ an

n
≥ (a1 · · · an)1/n. (1)

There is also the stronger weighted version. Let w1, . . . , wn be positive
real numbers where w1 + · · ·+ wn = 1, then

w1a1 + · · ·+ wnan ≥ aw1
1 · · · awn

n . (2)

Equality holds iff all ai are equal.
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The Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz inequality)

Let a1, . . . , an and b1, . . . , bn be non-negative real numbers. Then,(
n∑

i=1

aibi

)2

≤

(
n∑

i=1

a2
i

)(
n∑

i=1

b2
i

)
. (3)
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Jensen Inequality

Theorem (Jensen inequality)

Let f(x) be a convex function on an interval (a, b). Let x1, . . . , xn be
points in (a, b), and w1, . . . , wn be non-negative weights such that
w1 + · · ·+ wn = 1. Then,

f

(
n∑

i=1

wixi

)
≤

n∑
i=1

wif(xi). (4)

If f is strictly convex and if all weights are positive, then equality holds iff
all xi are equal. When f is concave, the inequality is reversed.

Convex test: non-negative second derivative.
Concave test: non-positive second derivative.
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The “Naive” Randomized Algorithm for max-e3-sat

The Algorithm

Assign each variable to true/false with probability 1/2

Let XC be the random variable indicating if clause C is satisfied

Then, Prob[XC = 1] = 7/8
Let Sϕ be the number of satisfied clauses. Then,

E[Sϕ] = E

[∑
C

XC

]
=
∑
C

E[XC ] = 7m/8 ≥ opt

8/7

(m is the number of clauses)

So this is a randomized approximation algorithm with ratio 8/7
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Derandomization Using Conditional Expectation

Derandomization is to turn a randomized algorithm into a
deterministic algorithm

By conditional expectation

E[Sϕ] =
1
2
E[Sϕ | x1 = true] +

1
2
E[Sϕ | x1 = false]

Both E[Sϕ | x1 = true] and E[Sϕ | x1 = false] can be computed
in polynomial time

Suppose E[Sϕ | x1 = true] ≥ E[Sϕ | x1 = false], then

E[Sϕ | x1 = true] ≥ E[Sϕ] ≥ 7m/8

Set x1 =true, let ϕ′ be ϕ with c clauses containing x1 removed, and
all instances of x1, x̄1 removed.

Recursively find value for x2
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The “Naive” Randomized Algorithm for max-sat

The Algorithm

Assign each variable to true/false with probability 1/2

Let Xj be the random variable indicating if clause Cj is satisfied

If Cj has lj literals, then Prob[Xj = 1] = 1− 1/2lj

Let Sϕ be the total weight of satisfied clauses. Then,

E[Sφ] =
m∑

j=1

wj(1− (1/2)lj ) ≥ 1
2

m∑
j=1

wj ≥
1
2
opt(φ).

So this is a randomized approximation algorithm with ratio 2, quite a
bit worse than 8/7.

The algorithm can be derandomized with conditional expectation
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Randomized Algorithm for max-sat with One Biased Coin

The One-Biased-Coin Algorithm

Assign each variable to true/false with probability q (to be determined).

Let nj and pj be the number of negated variables and non-negated
variables in clause Cj , then

E[Sφ] =
m∑

j=1

wj(1− qnj (1− q)pj ).

In the naive algorithm, a clause with lj = 1 is troublesome. We will
try to deal with small clauses.
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The Analysis

If (xi) is a clause but (x̄i) is not: change variable yi = xi

If (x̄i) is a clause but (xi) is not: change variable yi = x̄i

If (xi) appears many times as clauses, replace them with one clause
(xi) whose weight is the sum

If (x̄i) appears many times as clauses, replace them with one clause
(x̄i) whose weight is the sum

After this is done:

each singleton clause (xi) appears at most once
each singleton clause (x̄i) appears at most once
if (x̄i) is a singleton, then so is (xi).
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The Analysis

Let N = {j | Cj = {x̄i}, for some i}. Then,

opt(φ) ≤
m∑

j=1

wj −
∑
j∈N

wj .

If j ∈ N , (1− qnj (1− q)pj ) = (1− q).
If j /∈ N , then either pj ≥ 1 or nj ≥ 2, and thus

(1− qnj (1− q)pj ) ≥ 1−max{1− q, q2}.

Choose q such that 1− q = q2, i.e. q ≈ 0.618, we have for j /∈ N

(1− qnj (1− q)pj ) ≥ 1− (1− q) = q.

Finally,

E[Sφ] =
∑
j /∈N

wj(1− qnj (1− q)pj ) +
∑
j∈N

wj(1− q) ≥ q · opt(φ).
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Conclusions

We have a 1/q ≈ 1/0.618 ≈ 1.62-approximation algorithm

This can be derandomized too.

To make use of the structure of the formula ϕ, perhaps it makes
sense to use n biased coins:

Prob[xi = true] = qi.

But, how to choose the qi?
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Randomized Rounding for max-sat

The Integer Program
Think: (a) yi = 1 iff xi = true; (b) zj = 1 iff Cj is satisfied.

max w1z1 + · · ·+ wmzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

yi, zj ∈ {0, 1}, ∀i ∈ [n], j ∈ [m]

The Relaxation

max w1z1 + · · ·+ wnzn

subject to
∑

i:xi∈Cj

yi +
∑

i:x̄i∈Cj

(1− yi) ≥ zj , ∀j ∈ [m],

0 ≤ yi ≤ 1 ∀i ∈ [n],
0 ≤ zj ≤ 1 ∀j ∈ [m].

Let (y∗, z∗) be an optimal solution to the LP.
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Randomized Rounding with Many Biased Coins

Set xi = true with probability y∗i .

E[Sφ] =
m∑

j=1

wj

1−
∏

i:xi∈Cj

(1− y∗i )
∏

i:x̄i∈Cj

y∗i



≥
m∑

j=1

wj

1−


∑

i:xi∈Cj

(1− y∗i ) +
∑

i:x̄i∈Cj

y∗i

lj


lj


=
m∑

j=1

wj


1−


lj −

 ∑
i:xi∈Cj

y∗i +
∑

i:x̄i∈Cj

(1− y∗i )


lj



lj

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Randomized Rounding with Many Biased Coins

The function f(z) = (1− (1− z/lj)lj is concave when z ∈ [0, 1]. Thus,

E[Sφ] ≥
m∑

j=1

wj

(
1−

[
1−

z∗j
lj

]lj
)

≥
m∑

j=1

wj

(
1−

[
1− 1

lj

]lj
)

z∗j

≥ min
j

(
1−

[
1− 1

lj

]lj
)

m∑
j=1

wjz
∗
j

≥
(

1− 1
e

)
opt(φ).

Theorem

The LP-based randomized rounding algorithm above has approximation
ratio e/(e− 1) ≈ 1.58.
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The “Best-of-Two” Algorithm

The LP-based algorithm works well if all lj are small. For example, if
lj ≤ 2 then (

1−
[
1− 1

lj

]lj
)
≥ 3

4

which gives a 4
3 -approximation.

Similarly, the naive algorithm works well if all lj are large.
Combination: run both and output the better solution.

E[max{S1
φ, S2

φ}] ≥ E[(S1
φ + S2

φ)/2]

≥
m∑

j=1

wj

(
1
2

(
1− 1

2lj

)
+

1
2

(
1−

[
1− 1

lj

]lj
)

z∗j

)

≥ 3
4

m∑
j=1

wjz
∗
j ≥

3
4
opt(φ).

So, we have a 4
3 -approximation algorithm!
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