Randomized Algorithms

Randomized Rounding

@ Brief Introduction to Linear Programming and Its Usage in
Combinatorial Optimization

Randomized Rounding for Cut Problems

Randomized Rounding for Covering Problems

Randomized Rounding for Satisfiability Problems

Randomized Rounding and Semi-definite Programming
Approximate Sampling and Counting
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CNF Formulas

e Conjunctive Normal Form (CNF) formulas:

QOZ(Il\/fz)/\(l‘lV1‘3\/f4\/$6)/\(f2\/i'3\/x4)/\ (ZE5)
———

Clause 1 Clause 2 Clause 3 Clause 4

o Literals: Z9, x4, etc.
@ Truth assignment: a: {z1,...,2,} — {TRUE, FALSE}

@ For integers k > 2, a k-CNF formula is a CNF formula in which each
clause is of size at most k,

@ an EL-CNF formula is a CNF formula in which each clause is of size
exactly k.
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Satisfiability Problems

@ MAX-SAT: given a CNF formula ¢, find a truth assignment satisfying
as many clauses as possible

@ MAX-kSAT: given a k-CNF formula ¢, find a truth assignment
satisfying as many clauses as possible

@ MAX-EESAT: given an EE-CNF formula ¢, find a truth assignment
satisfying as many clauses as possible

o Weighted-Xsat: X € {0, k Ek} — clause j has weight wj, find a truth
assignment satisfying clauses with largest total weight

These are very fundamental problems in optimization, with many
applications (in security, software verification, etc.)
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The Arithmetic-Geometric Means Inequality

Theorem (Arithmetic-geometric means inequality)

For any non-negative numbers a1, . . ., a,, we have

Gt ot (a1 - - an)/™.

(1)

n
There is also the stronger weighted version. Let wy, ..., w, be positive

real numbers where wy + - - - + wy, = 1, then

wiay + -+ wpay > aitapn. (2)

Equality holds iff all a; are equal.
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The Cauchy-Schwarz Inequality

Theorem (Cauchy-Schwarz inequality)

Let ay,...,ay and by, ..., b, be non-negative real numbers. Then,
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Jensen Inequality

Theorem (Jensen inequality)

Let f(x) be a convex function on an interval (a,b). Let x1,...,x, be
points in (a,b), and w1, ..., w, be non-negative weights such that
wy + -+ wy, = 1. Then,

f (Z wz‘wi) < Zwif(xi). (4)

If f is strictly convex and if all weights are positive, then equality holds iff
all x; are equal. When f is concave, the inequality is reversed.

Convex test: non-negative second derivative.
Concave test: non-positive second derivative.
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The “Naive” Randomized Algorithm for MAX-E3-SAT

The Algorithm
Assign each variable to TRUE/FALSE with probability 1/2 J

@ Let X¢ be the random variable indicating if clause C' is satisfied
@ Then, Prob[X¢c =1]=7/8

@ Let S, be the number of satisfied clauses. Then,

S, =E [%:XC] S E[Xc] = Tm/8 > ng

c

(m is the number of clauses)

@ So this is a randomized approximation algorithm with ratio 8/7
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Derandomization Using Conditional Expectation

@ Derandomization is to turn a randomized algorithm into a
deterministic algorithm

@ By conditional expectation
1 1
E[S,] = §E[S¢ | x1 = TRUE] + §E[Sso | 1 = FALSE]

e Both E[S, | 1 = TRUE] and E[S, | 1 = FALSE] can be computed
in polynomial time
@ Suppose E[S, | z1 = TRUE| > E[S,, | 1 = FALSE], then

E[S, | z1 = TRUE] > E[S,] > Tm/8

@ Set 1 =TRUE, let ¢’ be ¢ with ¢ clauses containing x1 removed, and
all instances of x1, 1 removed.

@ Recursively find value for x-
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The “Naive” Randomized Algorithm for MAX-SAT

The Algorithm
Assign each variable to TRUE/FALSE with probability 1/2 J

@ Let X, be the random variable indicating if clause Cj is satisfied
e If C; has [; literals, then Prob[X; =1] =1 —1/2b
o Let S, be the total weight of satisfied clauses. Then,

ij (1—(1/2)4 ijz ~oPT(¢).

@ So this is a randomized approximation algorithm with ratio 2, quite a
bit worse than 8/7.
@ The algorithm can be derandomized with conditional expectation
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Randomized Algorithm for MAX-SAT with One Biased Coin

The One-Biased-Coin Algorithm
Assign each variable to TRUE/FALSE with probability ¢ (to be determined).J

@ Let n; and p; be the number of negated variables and non-negated
variables in clause C;, then

E[Sp] = > w;(1—¢"(1—q)™).
j=1

@ In the naive algorithm, a clause with /; = 1 is troublesome. We will
try to deal with small clauses.
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The Analysis

x;) is a clause but (Z;) is not: change variable y; = x;

If (z;)
If (Z;) is a clause but (z;) is not: change variable y; = z;
If (z;)

x;) appears many times as clauses, replace them with one clause
(x;) whose weight is the sum

If (z;) appears many times as clauses, replace them with one clause
(Z;) whose weight is the sum
o After this is done:

e each singleton clause (z;) appears at most once
e each singleton clause (Z;) appears at most once
e if (Z;) is a singleton, then so is (z;).
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The Analysis

o Let N={j | C; ={z;}, for some i}. Then,
m
oPT(¢) < ij — Z wj.
j=1 jEN

o IfjeN, (1-¢"(l-qP)=(1-q).
o If j ¢ N, then either p; > 1 or n; > 2, and thus

(1=¢"(1—q?)>1-max{l—q,¢°}.
Choose ¢ such that 1 — g = ¢2, i.e. ¢~ 0.618, we have for j ¢ N
(1-¢"(1-g?)=21-(1-9q) =g¢.

o Finally,
E[Sy] = Z wi(1—¢" (1 —q)%)+ Z w;(1—q) > q-opPT(e).

JEN JEN
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Conclusions

@ We have a 1/q ~ 1/0.618 =~ 1.62-approximation algorithm
@ This can be derandomized too.

@ To make use of the structure of the formula ¢, perhaps it makes
sense to use n biased coins:

Problz; = TRUE| = g;.

@ But, how to choose the ¢;?
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Randomized Rounding for MAX-SAT

The Integer Program

Think: (a) y; = 1 iff 2; = TRUE; (b) 2z; = 1 iff C} is satisfied.
max w121 + -+ Wmzn
subject to Z yi + Z — i) > 2, Vg € [m],

i:x; €05 :2;€C;
vi,z; €{0,1}, Vi€ [n],j € [m]

The Relaxation

max Wizl + 0+ WipZn
subject to Z yi + Z (1 —wy) >z, Vjem],
i:.Z‘iECj i:i?iECj

0<y; <1 Vie]n],
0<z <1 Vje[m]
Let (y*,z*) be an optimal solution to the LP.
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Randomized Rounding with Many Biased Coins

Set x; = TRUE with probability 7.

m

E[Ss] = > wi|1— [[ -9 I u
j=1 ii:L‘iECj i:fiGCj
— l
- oa-u)+ D ul’
i:x;, €C'; i:T,€C;
Z ij 1— vz, eCy - 1,05
=1 !
_ _y
G- > w+ Y. a-u)
m i:x; €05 :2;€C;
- ij 1= I
=1 !
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Randomized Rounding with Many Biased Coins

The function f(z) = (1 — (1 — z/;)% is concave when z € [0, 1]. Thus,

m Pk
E[Sys] > ;wj (1—[1—5] )
1)

min (1 i m 2
> <1 - (13) OPT(¢).

v

Y

Theorem

The LP-based randomized rounding algorithm above has approximation
ratioe/(e — 1) = 1.58.
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The “Best-of-Two" Algorithm

@ The LP-based algorithm works well if all /; are small. For example, if

l; <2 then

which gives a 3

E[max{Sé, S;}]

4_

(14

approximation.
@ Similarly, the naive algorithm works well if all I; are large.
@ Combination: run both and output the better solution.

>

>

>

E[(Sg+53)/2]

i.lliJrl
Yila 2 ) T

So, we have a %—approximation algorithm!
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