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SOME COMPLETENESS RESULTS ON DECISION TREES
AND GROUP TESTING*

DING-ZHU DU’f AND KER-I KO

Abstract. The computational complexity of the group testing problem is investigated under the minimax
measure and the decision tree model. We consider the generalizations of the group testing problem in which
partial information about the decision tree of the problem is given. Using this approach, we demonstrate the
NP-hardness of several decision problems related to various models of the group testing problem. For example,
we show that, for several models of group testing, the problem of recognizing a set of queries that uniquely
determines each object is co-NP-complete.

Key words, group testing, decision trees, NP-completeness, #P-completeness

AMS(MOS) subject classifications. 68Q25, 68P 10

1. Introduction. Many combinatorial search problems involve the minimization of
the heights of decision trees. Such problems can often be described as two-person query
games, where one player A selects an object x from a finite domain D and assumes the
role of an oracle while the other player B tries to identify the object x by making queries
to A about the object. Consider, as an example, the problem of group testing [3], [7], 14],
[23]-[26], [29]. The domain of the problem is the set On,a of all subsets of { 1, n}
that have size d. The player B tries to identify a set S ,_9n,d by making queries about
S. Each query is a subset T

___
{ 1, n } and its answer, provided by A, is either "YES"

if the intersection S fq T is nonempty, or "NO" otherwise. As another example, we may
consider the problem of sorting by decision tree as a two-person query game 16], in
which a domain consists of all permutations over { 1, n} and, to identify a per-
mutation a, queries of the form "a(i) < a(j)?" may be asked. An algorithm for such a
search problem is essentially a general procedure to produce, for each domain, a deci-
sion tree of which each path uniquely determines an object in the domain. An
optimal algorithm is one which produces, for each domain, a decision tree of the mini-
mum height. For example, for the problem of group testing, a decision tree may be de-
scribed as follows: Each node of the tree is a subset T

_
{1, n}, and has two

children, identified by answers YES and NO to the query T. Each path of the tree
consists of a sequence of queries (T,..., Tm) with their answers (al,’", am) such
that there is exactly one S On,a having the property that S CI Ti is nonempty if and
only if ai YES for 1, m.

Except for a very few simple search problems, the problem of finding an optimal
algorithm for a shortest decision tree problem appears to be intractable. For example, in
spite of extensive studies, the optimal algorithms for sorting and group testing problems
remain as open questions (cf. [20]). For the group testing problems, people have conjec-
tured that they are indeed intractable 12]; however, no formal proofs for these conjectures
have been found.
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In the study of computational complexity of combinatorial optimization problems,
a search problem is usually formulated as a decision problem so that the lower bound
results are easier to be developed (often through the reductions from known NP- or
PSPACE-complete problems). For the shortest decision tree problem, the associated de-
cision problem may be formulated as follows:

Given a domain D and an integer k, determine whether there is a decision tree
of height _-< k of which each path uniquely determines an object in D.

It is not hard to see that the above problem is often solvable in polynomial space. (For
given D and k, we may guess nondeterministically a decision tree of height k and verify
that for each of its path, there is only one object consistent with the queries and answers
of this path. Note that at any step of the computation, this algorithm needs only O(k)
space to store one path of the decision tree, although the complete tree contains about
2k many nodes.) On the other hand, the domain of the problem often has a very simple
form so that it is difficult to obtain a reduction from other (PSPACE-)complete problems
to it since such a reduction would usually require rich structures in the problem in
question (cf. [5], [8]). Indeed, it follows from the research in abstract complexity theory
that if the input to a problem may be defined by two integers (here, n and d), then the
problem cannot be PSPACE-complete unless P PSPACE [6]. So, in order to obtain
any completeness results on the shortest decision tree problems, we must reformulate
the problems to add more complex structures to the problem instances. A general approach
to this is to treat the problem as a special case of a more general problem whose problem
instances take more general forms. For instance, Even and Tarjan [5] have extended the
game Hex to general graphs and showed that the generalized Hex game, or the Shannon
switching game on vertices, is PSPACE-complete, while the complexity of the more
common version of Hex remained open. In this paper, we follow this approach to the
group testing problem and demonstrate several completeness results on the generalized
group testing problem.

We first introduce some terminologies about two-person query games. A query history
is a set of queries together with their answers. The solution space associated with a query
history H is the set of all objects in the domain which are consistent with the query
history H. In other words, let ANSx(y) denote the answer given by player A to the query
y when x is the object to be identified. Then, the solution space associated with a
query history H {(Yl, al), (Ym, am)}, where yi’s are queries and ai’s are corre-
sponding answers, is the set {x e domainlANSx(y) a for 1, m). The initial
solution space is simply the given domain. A shortest decision tree problem may thus be
rephrased as the problem ofusing the minimum number ofqueries to reduce the solution
space from the given domain to a singleton space.

We note that while the initial solution spaces often have simple structures, the
solution spaces associated with arbitrary query histories may have complex structures.
For example, it was pointed out in 18] that many researchers have conjectured that, for
the sorting problem, the problem ofdetermining the size ofthe solution space associated
with a query history is #P-complete. The first two problems considered in this paper are
concerned with the structure of the general solution spaces associated with given query
histories. The first asks whether a given query history is consistent (or, whether the player
A has been cheating), and the second asks what the size of the solution space associated
with a given query history is.

CONSISTENCY PROBLEM. Given a domain D and a query history H, determine
whether the query history H is consistent; i.e. whether the solution space associated with
H is nonempty.
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COUNTING PROBLEM. Given a domain D and a query history H, determine the size
of the solution space associated with H.

Our third problem is concerned with the nonadaptive query games. In a nonadaptive
query game, the player B must present a set of queries before he/she gets any answer
from the player A 15]. Again, the goal here is to find a smallest set of queries which
uniquely determines each object in the domain. The following problem asks a simpler
recognition question of such a determinant set of queries.

DETERMINACY PROBLEM. Given a domain D and a set Q of queries, determine
whether each set of answers to the queries in Q uniquely determines an object in the
domain.

We will study the above questions in the context of the group testing problem. We
consider several variations of the original group testing problem, derived from different
domains and different oracles. In the following, for each set S, let IsI denote the size of
S; for each n and d, let 6’ denote the set of all subsets of ( 1, n} and ff’n,d the set
of all sets S in 5’ with ISI d. For each pair of objects x and y, ANSi(y) is the answer
given by player A to query y when x is the object to be identified.

MODEL Ak (k >_- 1). Given a domain On and an answering function ANSs (as the
oracle) of the type

determine the set S.

if lSfq Tl <k,

iflSfqTl>=k,

ifSfq T= ,
if Sf3 T4: and Sf3 T4: ,
ifSf) T= ,

MODEL/lc (k >_- 1). Given a domain ff’n,d and an answering function ANSs of the
same type as in Model Ak, determine the set S.

MODEL B. Given a domain ff’n and an answering function ANSs (as the oracle) of
the type

0

ANSs(T)
2

where { 1, n} S, determine the set S.
MODEL B’. Given a domain n,d and an answering function ANSs of the same

type as in Model B, determine the set S.
MODEL C. Given a domain On and an answering function ANSs of the type

ANSs(T) IS fq T l,

determine the set S.
MODEL C’. Given a domain tn,d and an answering function ANSs of the same

type as in Model C, determine the set S.
We remark that Models A and A’ are the original group testing problems [3], [7],

[14], [23]-[26], [29]; Models Ak and A,, with k > 1, have been considered in [2], [9],
[11], [13], [21], [27]; Models B and B’ have been considered in [10]; and Models C and
C’ are a classical combinatorial search problem [1], [4], [19].

The main results of this paper may be summarized as follows.
THEOREM 1. (a) The consistencyproblemfor ModelA is polynomial time solvable.
(b) The consistency problems for all other models (i.e., for Models A, k > 1, for

Models A’k, k >= 1, andfor Models B, B’, C and C’) are NP-complete.
THEOREM 2. The counting problems for all models (i.e., for Models Ag and A’k,

k >= 1, andfor Models B, B’, C and C’) are #P-complete.

What's the counting problem?

The counting problem is to determine the size of the solution space associated with query history H.
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THEOREM 3. (a) The determinacy problemsfor all models are in co-NP.
(b) The determinacy problem for Model A is polynomial time solvable.
(c) The determinacy problem for Models Ak, A’, k >= 4, and for Models B, B’,

C and C’ are co-NP-complete.
The question of whether the determinacy problems for Models Ak, k 2, 3, and

for Models A,, k =< 3, are co-NP-complete remains open.

2. Consistency problems. We first restate the consistency problems for the models
of group testing problem defined in 1. In the following, Consistency-X denotes the
consistency problem for Model X, where X {A, A’, B, B’, C, C’lk >= }.

CONSISTENCY-X. Given an integer n (or, two integers n and d) and a set H
{(T, aj)lj 1,..., m}, with Tj. 0%, a {0, 1,..., n} forj 1, ..., m, determine
whether the set C {S o(n (or, O%,a)IANSs(T) aj, j 1, m} is nonempty.

It is interesting to observe the similarity between the group testing problem and the
satisfiability problem (SAT) [8], where each query of the group testing problem may be
regarded as a clause of variables for SAT. Therefore, our main tools for proving Theorems
1, 2 and 3 are variations of the satisfiability problem. For the proof of Theorem 1, we
will use the following NP-complete problems.

VERTEX-COVER. Given a graph G (V, E) and an integer k =< Iv I, determine
whether there is a set V’

_
V of size k such that each edge e E is incident on some

t V’.
ONE-IN-THREE-SAT. Given a set U of variables and a set of clauses, with each

C containing exactly three variables from U, determine whether there is a truth
assignment on U such that each clause C in contains exactly one TRUE variable.

NOT-ALL-EQUaL-SAT. Given Uand as in One-in-three-SAT, determine whether
there is a truth assignment on U such that each clause C in contains at least one
TRUE variable and at least one FALSE variable.

Remark. The original versions ofOne-in-three-SAT and Not-all-equal-SAT, as stated
in [8], allow a clause C in to contain both negated and nonnegated literals. The
NP-completeness ofour versions stated above can easily be proved from Schaefer’s proof
of the NP-completeness of the Generalized-SAT problem [22].

Now we apply these NP-complete problems to prove Theorem 1.
MODEI AI. Let an instance (n, H {(T, aj)lj 1, m}) of Consistency-Al be

given, where for each j 1, m, T 9% and a {0, }. Define

I= {jll <-_j<=m, a=O},
and J {j[1 =< j =< m, a 1}. Also let X UI T and Y {1, ..., n} X. Then, it is
easy to check that

H is consistent iff for each je J, T f3 Y4: .
This characterization of consistent query histories provides a simple polynomial-time
algorithm for Consistency-Al.

MODEL Ak, k > 1. We show that if k > 1, then One-in-three-SAT is polynomial-
time reducible to Consistency-A.

Let an instance (U, c) of One-in-three-SAT be given, where U {Xl, Xp},
( {CI, Cq, Cj U and C[ 3, forj 1, q. Define an instance

(n,n= {(T., aj)lj 1, ,m})
of Consistency-A as follows:

n’=p; m:=q;

for each j 1, m, let T := XiC: Cj} and a := 1.



766 DING-ZHU DU AND KER-I KO

For each assignment on U, let St := {i[t(xi) TRUE}. Then, the mapping from
to St is a natural one-to-one correspondence between the set of truth assignments on
U and the set 5n. Furthermore, a truth assignment on U assigns exactly one TRUE
variable to each clause in cg if and only if [St N T[ for all j 1, m. In other
words, the instance (U, ) has a solution (for the problem One-in-three-SAT) if and
only ifthe instance (n, H) has a solution (for the problem Consistency-Ak). This completes
the proof.

MODEI A’l. We show that the problem Vertex-Cover is polynomial-time reducible
to Consistency-A’.

Let (G, k) be a given instance of Vertex-Cover, where G (V, E) is a graph with
vertex set V (Vl, vp} and the edge set E {el, eq}, and k is an integer less
than or equal to p. Define an instance (n, d, H {(T, a.i)[j 1, m})ofConsistency-
A’l as follows.

n:=p; m:=q; d:=k;

for each j 1, m, let Tj := {i[vi e} and a := 1.

For each V’ c_ V, define a set Sv, e 5 by Sv, { ]vi V’ }. Then, this is a one-to-
one correspondence between subsets of V of size k and sets in 5n,a. Furthermore, V’ is
a vertex cover ofE if and only if Sv, rl Tj 4: for all j 1, m. This shows that the
mapping from (G, k) to (n, d, H) is a reduction from Vertex-Cover to Consistency-A’l.

MODEL A, k > 1. We show that if k > 1, then Consistency-A’ is polynomial-time
reducible to Consistency-A,.

For a given instance (n, d, H {(Tj, a)lj l, m}) of Consistency-A’l, define
an instance (n’, d’, H’ {(T}, a)lj 1, m}) of Consistency-A, as follows:

n’:=n+k- 1; m’:=m+k 1; d’:=d+k 1;

for each j 1, m,

if aj 0 then let T := Tj and a 0,

if a then let Tj- := Tj U {n + 1, ..., n + k- and a k;

for each j m + 1, m + k- 1, let r}’= {n +j m} and a} := 1.

Assume that (n, d, H) is consistent for Model A’I and 5’ 59,, satisfies the condition
that for all j 1, m, S f) Tj 4: if and only if aj. 1. Define

S’=SU{n+I, ,n+k- 1}.
Then, S 60,,,a,. Also, for all j 1, m,

if a 0, then [s’rl T}[= [S rl Tjl 0 a}, and

ifaj 1, then IS’NTI=ISnTI+(k- 1)>=k= a;
and, for allj=m+ 1,...,m+k- 1,

IS’N rj-I a}.
So, (n’, d’, H’) is consistent for Model A,.

Conversely, if (n’, d’, H’) is consistent for Model A),, then there is a set

S’c_ {1, ,n+k- 1}
such that ANSs,(T}) a} for j 1, rn + k- 1, where the answering function
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ANSs, is of the type of Model A. Let S S’ f3 { 1, m}. We claim that S f) T
if and only if aj 0 for allj 1, m.

First, if aj 0, then T) T and aj 0. So, S’ fq Tj- and hence S N Tj. .
Next, if aj. 1, then ANSs,(Tj.) aj k implies IS’ 71 Tj-I >= k. Since

Is’n {n+ ,... ,n+k- 1}l=<k 1, IsnTl=lS’nT)n{,... ,n}l>= .
This completes the proof for Model A,, k > 1.

MODEL B. We show that Not-all-equal-SAT is polynomial-time reducible to Con-
sistency-B. The reduction is similar to the reduction from One-in-three-SAT to Consis-
tency-A2.

Let an instance (U, ) of Not-all-equal-SAT be given, where U {Xl, xp},
( {C1, Cq}, Cj U and ICl 3, for j 1, q. Define an instance

(n,g= {(T,aj-)lj 1,... ,m})
of Consistency-B as follows:

n:=p; m:=q;

for each j 1, m, let Tj := {ilxie Q} and a := 1.

Similarly to the reduction from One-in-three-SAT to Consistency-A2, there is a
natural one-to-one correspondence between the set of truth assignments on U and the
set On. Furthermore, a truth assignment on U assigns at least one TRUE variable and
at least one FALSE variable to each clause in if and only if _-< ISt fq Tjl --< 2 for all
j 1, m, where St is the set in On corresponding to t. This shows that the mapping
defined above is a reduction from Not-all-equal-SAT to Consistency-B.

MODEL B’. We show that Vertex-Cover is polynomial-time reducible to Consis-
tency-B’.

Let (G, k) be a given instance of Vertex-Cover, where G (V, E) is a graph with
the vertex set V {Vl, "", vp} and the edge set E {el, eq}, and k is an integer
less than or equal to p. Define an instance (n, d, H {(T, aj)lj 1, m}) of Con-
sistency-B’ as follows:

n:=p+q; m:=q; d: k;

for each j 1, m, assume that e { v,, v2 }, and

let Tj := {jl,j2,p+j} and aj. := 1.

Let V’
_
V be a vertex cover for G of size k. Then the set

Sv,= {ill <=i<=p, vie V’}
has the property _-< ISv, fq Tjl --< 2 for all j l, m. Also, ISv, d. So, (n, d, H)
is consistent.

Conversely, let S
_

{ 1, n}, IsI a, be a solution to the instance (n, d, H).
Define V’ := {viii e S, <= <= p} U {v.i, lp + j e S}. Then, Ir’l _-< d k because ]SI
d. Also, V’ is a vertex cover for G: for each j 1, q, ifp + j S then jl or j2 is in S
and hence )Jl or )J2 is in V’; ifp + j e S, then vj e V’. This completes the proof.

MODEL C. The reduction from One-in-three-SAT to Consistency-A2 is actually also
a reduction from One-in-three-SAT to Consistency-C, because the output instances from
the reduction always have aj < 2.

MODEL C’. We show that Consistency-C is polynomial-time reducible to Consis-
tency-C’.
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Let an instance (n, H {(T, a)lj 1, m}) of Consistency-C be given. Define
an instance (n’, d’, H’ {(T), a’j.)lj 1, m}) of Consistency-C’ as follows:

n"= 2n; d ’’= n; m"= n + m;

for j 1, m, let T Tj. and aj aj, and

forj=m+ 1, ,m+n, let Ti’={j-m,n+j-m} andaj 1.

If S e 9n is consistent with H, define S’ S U {k + nil -< k =< n, k g S }. Then,
S’ e 9n,.d,, and

1S71TI iS’ f’l T)I for j 1, m,

IS’ fq Ti] forj=m+l,...,m+n.

This shows that S’ is consistent with H’.
Conversely, if S’ 59n,,d is consistent with H’, then S S’ fq { 1, n} satis-

fies the condition that for all j 1, m, IS f) TI IS’ fq T[, because for all j
1, m, T)_= {1, n} and so IS’fq TjI IS’ Tfq {1, n}l IS TI. This
completes the proof.

3. Counting problems. We restate the counting problems for Model X, where
X {A,,A’, B, B’, C, C’lk >- 1}.

COUNTING-X. Given an integer n (or, two integers n and d) and a set H
{(T, a)lj 1,..., m}, with T e Sf,, aj e {0, 1,..., n} forj 1,..-, m, deter-
mine the size of the set C {S e Sfn (or, ,n,a)IANSs(T) a, j 1, m}.

It is easy to see that for any model X, the problem Counting-X is in #P because the
problem Consistency-X is in NP. (For the definitions ofthe class #P and #P-completeness,
see [8] and [28].) In this section, we show that the counting problems for all models are
#P-complete. We remark that this type of #P-completeness results has been conjectured
for the sorting problem 18] and has been proved for a simplified Mastermind game 17].
The following #P-complete problems will be used in the proof of Theorem 2.

MONOTONE-#2SAT. Given a set U of variables and a set c of clauses, with each
Ce cff containing exactly two variables from U, determine the number oftruth assignments
on U such that each clause C in cg contains at least one TRUE variable.

ONE-IN-THRFE-#SAT. Given (U, qq) as in One-in-three-SAT, determine the number
of solutions to (U,

NOT-ALL-EQUAL-#SAT. Given (U, ctf) as in Not-all-equal-SAT, determine the
number of solutions to (U, ).

Monotone-#2SAT has been shown in [28] to be #P-complete. We first establish the
#P-completeness of One-in-three-#SAT and Not-all-equal-#SAT. We note that a counting
problem is not a decision problem and hence the polynomial-time many-one reductions
are not necessarily applicable to them. Instead, the polynomial-time Turing reductions
are usually used to prove the #P-completeness results, although the notion of many-one
reductions preserving the number ofsolutions (or, parsimonious reductions) does provide
a stronger definition of #P-completeness (cf. [8]). In this section, we refer to #P-com-
pleteness as the one with respect to the polynomial-time Turing reductions.

LEMMA 1. One-in-three-#SAT is #P-complete.
Proof The fact that One-in-three-#SAT is in #P is clear. We show that Monotone-

#2SAT is polynomial-time Turing reducible to One-in-three-#SAT.
Let an instance (U, ctf) of Monotone-#2SAT be given, where U {Xl, xp},

( {C1, Cq} and for each j 1, q, Cj
_
U and [Cjl 2. Define an instance
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(V, ) of One-in-three-#SAT as follows:
g:= U U{uj, vj, wjlj 1,’.. ,q}U{yl,y2,y3,z};

for each j 1, q, assume that C {x,, xh} and let

Cj, := {Xjl, blj, Yl }, Cj,2 := {xj2,1)j, yl }, Cj,3 := { blj, l)j, Wj}’
let D := {Yl, Y2, Z}, D2 := {Y2, Y3, z}, D3 :=

={Cj,klj 1, ,q;k 1,2,3}ID{D1,D2,D3}.
Assume that is a truth assignment on U such that for each j 1, q, there is

a variable x in C with t(x) TRUE. Define a truth assignment t’ on V as follows:

for each 1, p, t’(xi) t(xi);
t’(yl) t’(y2)= t’(y3):= FALSE; t’(z):= TRUE;
for each j 1, q, assuming that C {Xjl xj2},

Case 1. if t(x)= TRUE, t(x:)= FALSE
then t’(u) t’(w) := FALSE and t’(v) := TRUE;

Case 2. if t(x) FALSE, t(x:) TRUE
then t’(v) t’(w) := FALSE and t’(u) := TRUE;

Case 3. if t(Xjl t(xj2 TRUE
then t’(uj) t’(v) := FALSE and t’(w) := TRUE.

It is easy to check that t’ assigns the value TRUE to exactly one variable in each
clause in . Therefore, each solution of (U, off) is mapped to a solution t’ of (V, ),
and the mapping is one-to-one.

Furthermore, we note that if t" is a solution of (V, @) then, to assign exactly one
TRUE value to each ofD, D and D3, t" must assign TRUE to z and FALSE to Yl, Y2,

Y3. Furthermore, for each j 1, q, t" cannot assign the value TRUE to both ua. and
v; this implies that one of Xjl and x must be TRUE. Finally, for each j 1, q, if
two solutions t and t2 of (U, c) agree at xj- and x and/I(Y) t2(Yl) FALSE, then
they must agree at u, v and w. The above observations show that the mapping defined
above (from to t’) is a bijection between the solutions of (U, eft) and the solutions of
(V, ). This completes the proof.

LEMMA 2. Not-all-equaL#SAT is #P-complete.
Proof Again, it is clear that Not-all-equal-#SAT is in #P, and we show that Mono-

tone-#2SAT is polynomial-time Turing reducible to Not-all-equal-#SAT.
Let an instance (U, off) of Monotone-#2SAT be given, where U {x, xp},

cg {C1, Ca} and for each j 1, q, Cj
_
U and [G[ 2. Define an instance

(V, ) of Not-all-equal-#SAT as follows:

V := U U { u, vlj 1, q} l,.J { yl y2, y3, z}
for each j 1, q, assume that C {Xjl, x_} and let

Cj, :- {Xjl

Cj,3 :-- {Xjl,Xj2, LIj}, G,4 :--

Cj,5 :-- { uj, l)j, y2 }
let D := Yl, Y2, Y3};

={QIj= 1, ,q;k= , 6} {D}.
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We first note that if t’ is a solution of (V, ) (i.e., t’ is a truth assignment on V such
that t’ assigns at least one TRUE value and at least one FALSE value to each clause in
), then t’(uj) 4: t’(vj) forj 1, q, because t’(y), t’(y2) and t’(y3) cannot be all equal.

Now, assume that is a solution of (U, ). Define a truth assignment t’ on
V- { Yl, Y2, Y3} as follows:

t’(z) := FALSE;
for each i:= 1, p, t’(xi) := t(xi);
for each j 1, q, assuming that Cj- {Xl, x2},

Case 1. if t(x,)= TRUE, t(xj2)- FALSE
then t’(uj) := FALSE and t’(v) := TRUE;

Case 2. if t(Xl) FALSE, t(x2) TRUE
then t’(uj) := TRUE and t’(v) := FALSE;

Case 3. if t(Xjl t(x2) TRUE
then t’(u) := FALSE and t’(v) :-- TRUE.

We then extend t’ into truth assignments on V such that t’(y), t’(y2), t’(y3) are not
all equal. There are six such extensions. It is obvious that each of these extensions is a
solution of (V, ). Next, for each of such extensions t", define t"(w) to be the negation
of t"(w) for all w V. We get six more truth assignments which are solutions of (V, ).
(For the problem Not-all-equal-SAT, the negation of any solution is itself a solution.)
We note that all these assignments are distinct. Furthermore, two distinct solutions
t and t2 of (U, qf) define two disjoint sets of solutions of (V, ). To see this, if a solu-
tion t’{ of (V, ) derived from t is equal to a solution t of (V, ) derived from t2,
then t(z) t2(z). Hence, either t t’{Iv Iv t or 1 Iv vt t’ =tl =2, whereT
and t are the negations of t and tz, respectively. So, we get

12.(# of solutions of(U, c))__< # of solutions of(V, ).

Now, if t" is a solution of (U, c) then, as shown above, t"(uj) 4 t"(v) for all
j 1, q. Assume that t"(z) FALSE. Then, to assign at least one TRUE value
to both C, and C,2, at least one of t"(Xl and t"(x) must be TRUE. Thus, t"[visa
solution of (U, c), and t" must be one of those 12 assignments defined by t"Jv. Sim-
ilarly, if t"(z) TRUE, then t"] v is a solution of (U, ) and t" is one of the 12 assign-
ments defined by t. So, this shows that the number of solutions of (V, @) is exactly 12
times the number of solutions of (U, c). This completes the proof.

With Lemmas and 2, Theorem 2 is easy to prove. First, we show that for each
model X, with X {A,, B, CIk > }, the problem Counting-X is polynomial-time Turing
reducible to Counting-X’.

LEMMA 3. Let X {A,, B, CIk >-_ }. Then, Counting-X is polynomial-time Turing
reducible to Counting-X’.

Proof Let (n, H) be an instance of Counting-X. Then, the number of sets S in
which are consistent with H is the sum of the number of sets S’ in 59n,d which are
consistent with H (with respect to the same type of answering functions) as d ranges over
{0, ,n).

MODELA 1. We show that Monotone-#2SAT is a polynomial-time Turing reducible
to Counting-A.

Let an instance (U, cd) of Monotone-#2SAT be given, where U {x,
{C,’.’, Cu} and for each j 1,..., q, C_ U and [Cj.[ 2. Define an in-
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stance (n, H {(T, aj)[j 1, m}) of Counting-A1 as follows:

n:=p; m:=q;

for each j 1, m, let T. := {ilxi C} and aj. := 1.

Then, there is a natural one-to-one correspondence between truth assignments on
U and subsets St in On, defined by St { ilt(xi) TRUE}. This mapping also preserves
the solutions of the two instances (U, c) and (n, H). Thus, the number of solutions of
these two instances are equal. This completes the proof.

MODEL Ac, k > AND MODEL C. In 2, it is proved that if k > then One-in-
three-SAT is polynomial-time (many-one) reducible to Consistency-Ak (and to Consis-
tency-C). A close inspection ofthe reduction shows that the reduction actually preserves
the number of solutions of the two problems. Thus, it also serves as a reduction from
One-in-three-#SAT to Counting-Ak (and to Counting-C).

MODEL B. The polynomial-time (many-one) reduction from Not-all-equal-SAT to
Consistency-B, as proved in 2, also preserves the number of solutions. Thus, it also
serves as a reduction from Not-all-equal-#SAT to Counting-B.

MODELS A,, k >= 1, MODEL B’ AND MODEL C’. The #P-completeness of Counting-
X’, for X {A, B, CIk >- }, is established through Lemma 3 and the #P-completeness
of Counting-X.

4. Determinacy problems. We restate the determinacy problems for Model X, where
Xe {A,A’,B,B’, C, C’lk >= 1}.

DETERMINACY-X. Given an integer n (or, two integers n and d) and a set Q
TIj 1, m}, with T e 5, for j 1, m, determine whether, for any two

sets $1, $2 in On (or, in 6tn,a), S1 4 $2 implies ANSsI(Tj-) 4 ANSsz(Tj) for some j
1,...,m.

We will call a set Q of queries determinant for Model X (with respect to size n) if
the above problem Determinacy-X has an affirmative answer for input (n, Q). It is easy
to see that for any model X, the problem Determinacy-X is in co-NP. We show, in this
section, that most of them are actually co-NP-complete. Our main tools are the
NP-complete problems One-in-three-SAT and Not-all-equal-SAT. Their precise defini-
tions were given in 2.

MODEL A1. We give, in the following, a simple characterization of determinant sets
Q of queries for Model A l. This characterization provides a polynomial-time algorithm
for Determinacy-A l.

LEMMA 4. A set Q is determinant for Model A1 with respect to size n ifand only if
for every 1, n, the singleton set { } is in Q.

Proof The backward direction is obvious, because the set { } distinguishes between
two sets Sl and $2 whenever $1 $2.

For the forward direction, we consider two sets S1 { 1, n } and $2 S { }.
Then, the only set T that can distinguish between S1 and $2 is T {i} so that
ANSs,(T) and ANSs2(T) 0.

MODFL B. We show that Not-all-equal-SAT is polynomial-time reducible to the
complement of Determinacy-B, and hence Determinacy-B is co-NP-complete.

Let an instance (U, off) of Not-all-equal-SAT be given, where U {xl, xp},
( {C1, Cq} and for each j 1, q, C

_
U and ]C[ 3. Define an instance
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(n, Q) of Determinacy-B as follows:

n:=p;

for each j 1, q, let T,o := { i] xi C}, and

for each k 1, ,p, let T,k := T,o U {k};
let Q= {T,klj= 1, ,q;k=0, ,p}.

(Note that for each j, there are exactly (p 2) TZk’S; however, the total number of T,k’S
in Q varies, depending on the set .)

Assume that is a truth assignment on U such that for every j l, q, t does
not assign equal values to all three variables in Cj.. Define S {ilt(xi) TRUE} and
$2 { 1,... n} $1. Then, for each j 1,... q, Sl f Tzo 4: , and $2 (’ Tj,o. This implies that for all j 1, q and for all k 0, n, ANSs,(Tz)
ANS&(T,k) 1. So, Q is not determinant for Model B.

Conversely, assume that Q is not determinant and there are two sets &, $2
_

{ 1, ..., n} such that S 4:$2 and ANSsI(T,k) ANS&(Tzk) for all j 1,.-- q, and
k 0, p. Then, we claim that ANSs,(Tz0) must be equal to for all j 1, q.

Suppose, otherwise, that for some j, ANS&(Tzo) 0 or 2. If ANSs,(T,0) 0, then
Tz0 N SI ,o N $2 . This implies that for any k 1, p,

xeS = T,k71S 4 ,, ANSs,(T,)
* ANS&(T,k) = T,f3 $2 4

or, S $2. Similarly, if ANSs,(T,0)= 2, then Tzo
_

$1 and T,o_ $2. So, for any
k=l,...,p,

Xk S1 rj,k S1 ANSs,(Tj.,k) 2

=> ANS&(T.,) 2 => T,k
_
$2 =>xe $2;

or, $1 $2. Both cases lead to contradictions. So the claim is proven.
Now, define a truth assignment on U by t(xi) TRUE if and only if Sl. The

claim that ANSs,(Tzo) 1, for all j 1, q, implies that assigns at least one TRUE
value and at least one FALSE value to each C in q. This completes the proof.

MODEL B’. We show that Determinacy-B is polynomial-time reducible to Deter-
minacy-B’.

Let an instance (p, Q) of Determinacy-B be given such that Q { T.Ij 1, q}
and each T is in 5ep. Define an instance of Determinacy-B’ as follows:

n: =2p; m:=2q; d: =p;

for eachj= 1, ,q, let Wj.:= {i+p]ieT.};

let Q’ := {T, Wj.Ij 1, ..., q}.

If Q is not determinant for Model B, then there are S, $2 60p such that S1 $2
and for each j l, q, ANSs,(T) ANS&(T). Define $3 := SI U {i + pli SI } and
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$4 := S U {i + pli $2}. Then, 5’3 4:$4 and IS3I Is41 p. Furthermore, for each
j= 1,...,q.

ANSs(T) ANSs,(T) ANSs(T) ANSs,(Tj.), and

ANSs(W) 2 ANSsI(T) 2 ANSs2(T) ANSs,(W).
So, Q’ is not determinant for Model B’.

Conversely, if Q’ is not determinant for Model B’, then there exist $3, $4 6’, such
that $3 4:S4 and for each j 1, ..., q, ANSs3(Tj)--ANSs4(Tj) and ANSs3(Wj)=
ANSs4(W). Since $3 4: $4, either $3 N {1,..., p} 4:$4 N {1,..., p} or $3 n
{p + 1,... 2p} 4:$4 N {p + 1, 2p}. In the former case, we define S := $3 N
{1, p} and $2 := $4 N {1, p}; and, in the latter case, S := {i[i + p $3} and
$2 := {ili + p $4}. Then, S 4:$2 but for each j 1, .-., q, ANSsI(T) ANSs2(T).
So, Q is not determinant for Model B.

MODEL C. We first simplify the problem.
LFMMA 5. Let Q= {TIj 1, ,m} be given such that Te 6t’n for allj 1,

m. Then, Q is not determinant for Model C, with respect to size n, if and only if there
exist S, $2 6 such that S U $2 4: , S1 N S2 and for each j 1, m,
Is, n n

Proof The backward direction is obvious. For the forward direction, we note
that if S’ and S are two sets in OQOn such that S’ 4: S and for each j 1, .-., m,
IS’l n TI ]S n Tj.]. Then, the sets S S’I S and S S S’ satisfy the re-
quired condition. []

We now show that One-in-three-SAT is polynomial-time reducible to the comple-
ment of Determinacy-C.

Let (U, cg) be a given instance of One-in-three-SAT such that U {x, xp},
((ff {Cl, Cq} and for every j 1, q, C

___
U and IGI 3. Without loss of

generality, we assume that every xi in U occurs in some Cj. in . Define an instance
(n, Q) of Determinacy-C as follows:

n:=p+9q+ 1;m:= 10q;
for convenience, for each j 1, q, and k 1, 2, 3, let

u(j,k):=p+9(j- 1)+k,
v(j,k):=p+ 9(j- 1)+ k+ 3,

w(j,k):=p+9(j- 1)+k+6;
also lety:=p+9q+ 1;
for each j 1, q, assume that C {xj., xj2, xj3 } (withj < j2 < j3), and define

T.o := { j, j2, j3, Y},
Tj,1 := { j2, j3, u(j, 1), v(j, 1)},
Tj,2 := { jl, ., u(j, 2), v(j, 2) },
Tj,3 := { j, j2, u(j, 3), v(j, 3)},

for each j 1, q, and each k 1, 2, 3, define

U,k:: {u(j,k),w(j,k)} and V,k: {v(j,k),w(j,k)};
let Q :: {Tzh, Uj,k, VzIj 1, q; h 0, 3; k 1, 2, 3}.
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Assume that is a truth assignment on U such that for each Cj e c6, assigns exactly
one TRUE value to the variables in C. Define two sets S1, $2 9n as follows:

S1 := {ill <-i<=p,t(xi) TRUE} to {u(j,k),v(j,k)lthe kth variable

xj. in C has t(xk)= TRUE} U {y},
$2 :- {ill _-< i<--p,t(xi) FALSE} U {w(j,k)lthe kth variable

x in C has t(x) TRUE}.

Obviously, St t,J $2 4 , St N $2 . We claim that for all R Q, [SI [") R[
[$2 71 RI. For each j 1, q, we check the following:

(i) IS1 Tz0l 15"2 f) Tz0[" Among { jl, j2, J3 }, one is in SI and two are in $2; and
y is in St.

(ii) For k 1, 2, 3, [S f’l T,k[ [52 f-I Tj-,kl" If t(x,) TRUE and t(xj2)
t(x3 FALSE, then u(j, 1), v(j, 1) are in S1. So, S1 C) Tj.,I {u(j, 1), v(j, 1)} and
S_ f’l T,I { jr, j2}; and s1 c r,2 SI c r,3 { jl }, $20 rj,2 { j3} and $2 fq T,3
{ j2}. The other two cases are similar.

(iii) For k 1, 2, 3, [St fq U,k[ [Sz (q U,k[ and [S N V,k[ [Sz V,k[" From the
definitions ofS and S, for any j 1, q and k 1, 2, 3, u(j, k) S , w(j, k)
$2 v(j, k) e S

Conversely, assume that Q is not determinant for Model C. Then, by Lemma
5, there exist S, $2 e On such that S U $2 4 , S fq $2 and for all R Q,
[St f) R[ IS2 f) RI. First note the following fact:

(iv) For allj 1, q and k 1, 2, 3,

u(j,k)eSl , w(j,k)eS2 v(j,k)eSt, and

u(j,k)eS2, w(j,k)eSl , v(j,k)eS2.

Next, we claim the following properties (v) and (vi).
(v) For anyj 1, ..., q, [St CI Tj,ol :/: 1.
Proof of (v). Assume otherwise that ISl T,o[ 1. Then IS2 fh T,ol 1. The

following case analysis shows that this leads to a contradiction.
Case 1. S1 f) T,o {jl }, $2 N Tzo {j}. Then, j2, j3 S, and j, j3 $2. So,

St CI Tj, St f"l {u(j, 1), v(j, 1)} and S fh Tj, {j2} to ($2 {u(j, 1), v(j, 1)}). By
fact (iv) and the fact that S 71 $2 , we can see that ISl fh Tzl] 4:[$2 Tj,[. This is
a contradiction.

Case 2. St T,o {jl }, $2 C’l T,o {y}. Then, j2, j3 S, and jl, j2, j3 $2. So,
St f Tj, {jl} tO (S1Ch {u(j, 2), v(j, 2)}) and $2 Tzz $2 N {u(j, 2), v(j, 2)}. Again,
a contradiction.

Other cases. All other cases are symmetric to either Case or Case 2.
(vi) { 1, p} c_ Sl tO 82
Proofof(vi). Assume otherwise that there is an i, _-< =< p, such that S1 tO $2.

Assume, without loss of generality, that x; occurs as the first variable in C for some
j 1, q; i.e., xi x.

Since jt St U S2 and S ("] $2 , IS1 [") Tj,ol IS2 Tj,ol 1. By claim (v),
S Tj,o $2 fh Tj,o ffS. So, y a St tO Sz. However, this implies that for all h 1,
q, ]Sl CI Th,o] 1S2 Th,0[ =< 1, and hence, by claim (v), Sl 71 Th,o $2 71 Th,o 25. This
implies that { 1, 2, ..., p} (St U $2) .

In addition, fact (iv) shows that for any h 1, q and k 1, 2, 3, ]Sl CI Th,l is
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either 0 or 2. Since IS A Th,kl 2 would imply that IS2 f3 Th,kl 0 and make

IS, f Zh,kl 4:IS2 f’) Th,l,
we must have S f) Th,, . As a consequence, S $2 . This is a contradiction,
and so (vi) is proven.

Now we complete the proof of the reduction. Since { 1, p}
_
S U $2, y must

be in S U $2. Assume, without loss of generality, that y S1. Define a truth assignment
on U by t(xi) TRUE if and only if e S1. Then, for each j 1, q, IS T,ol

IS2 ["] Tj,0[ implies that IS f3 T,0[ 2. Since y S1, IS f { j, j2, j3}[ 1. That is, there
is exactly one k 6 { 1, 2, 3} such that t(xjk TRUE. This completes the proof for
Model C.

MODEL Ak, k >_- 4. Assume that k >= 4 and that Q is a set of queries each of size <-
4. Then, Q is determinant for Model C if and only if Q is determinant for Model Ak,
because the answering functions for both models behave exactly the same on queries
ofsize _-< 4. In the above, for the problem Determinacy-C, we have actually shown a reduc-
tion from One-in-three-SAT to the complement of the following special case of Deter-
minacy-C.

DETERMINACY-C4. Given an integer n and a set Q of queries each of size _-< 4,
determine whether Q is determinant for Model C with respect to size n.

From the above discussion, this problem is also a special case for Model A. So, it
also proves that Determinacy-A is co-NP-complete.

MODEL C’ AND MODELA, k >_- 4. We can show that Determinacy-C4 is polynomial-
time reducible to Determinacy-C’ and Determinacy-A, for k >= 4. The reductions are
similar to the reduction from Determinacy-B to Determinacy-B’. The key point is that
for the answering functions for Model C and Model A, k >= 4, the following property
holds for all T of size =< 4:

ANSs(T) TI ANS#(T),

where S 1, n} S. This property allows us to carry out the reductions as in the
case for Determinacy-B’. We omit the details. (Note that the above property holds for
queries T of any size if we only consider Model C. However, for Model A, k >_- 1, it
only holds for queries T of size _-< k.)

5. Discussion. In the last three sections, we have demonstrated several NP-hardness
results on problems related to group testing. The NP-completeness of the consistency
problems and the #P-completeness of the counting problems show that the solution
spaces associated with arbitrary query histories have complex structures. The co-NP-
completeness of the determinacy problems shows that the recognition version of the
nonadaptive group testing problems is intractable. It is interesting to compare this problem
with the problem of finding a minimal determinant set for Model C, for which a poly-
nomial-time almost-optimal algorithm has been found by Cantor and Mills and Lin-
strSm 19].

While the complexity for the above three problems has been characterized precisely
for most models considered, we have left many more questions open. To name the most
important ones, we consider the following two problems concerned with the minimization
of the heights of decision trees in the generalized form.

MINIMUM TEST PROBLEM. Given a domain D, a query history H and an integer k,
determine whether there is a decision tree of height _-< k such that each path of the
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decision tree uniquely determines an object in the solution space associated with the
query history H.

MINIMUM NONADAPTIVE TEST PROBLEM. Given a domain D, a query history H
and an integer k, determine whether there is a set Q of k queries such that each set of
answers to the queries in Q uniquely determines an object in the solution space associated
with the query history H.

In the above, the minimum test problem is the generalization of the basic shortest
decision tree problem we discussed in 1, and the minimum nonadaptive test problem
is the corresponding problem for the nonadaptive case. It is not hard to see that for
models considered in this paper, the minimum nonadaptive test problems are in Z, and
the minimum test problems are in PSPACE, where Z is the class oflanguages recognized
by nondeterministic oracle Turing machines in polynomial time relative to oracle sets
in NP [8], and PSPACE is the class of languages recognized by deterministic Turing
machines in polynomial space [8]. Furthermore, the proofs of the NP-completeness of
the consistency problems can easily be modified to show the NP-hardness ofthe minimum
nonadaptive test problems and the minimum test problems for the same models. In view
of the difficulty of getting optimal algorithms for these problems even for simple initial
solution spaces and the complex structure of general solution spaces, we conjecture that
the minimum nonadaptive test problems for most models are Z-complete and the min-
imum test problem for most models are PSPACE-complete.

Other interesting questions include the following:
(1) Instead of the query history, we may use different representations for a solution

space, for example, by listing its elements explicitly. What are the effects ofthese different
representations of solution spaces on the computational complexity of the questions
considered here?

(2) Do these NP-hardness results hold for the group testing problems with respect
to the average-case complexity?

(3) Can we prove completeness results for other searching problems which involve
the minimization of the heights of decision trees?
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