Lecture 3: Sampling

@ Variance and Covariance
@ Moment and Deviation
@ Concentration and Tail Inequalities

@ Sampling and Estimation
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Example 1: Probabilistic Packet Marking (PPM)

The Setting
@ A stream of packets are sent S= Ry — R — - —> R, 1 — D
@ Each R; can overwrite the SOURCE IP field F' of a packet
@ D wants to know the set of routers on the route
The Assumption
e For each packet D receives and each i, Prob[F' = R;] = 1/n (*)
The Questions
@ How do the routers ensure (*)? Answer: Reservoir Sampling

@ How many packets must D receive to know all routers?
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Coupon Collector Problem

The setting
@ n types of coupons
@ Every cereal box has a coupon
@ For each box B and each coupon type t,

1
Prob [B contains coupon type t] = —
n

Coupon Collector Problem
How many boxes of cereal must the collector purchase before he has all

types of coupons?
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The Analysis

@ X = number of boxes he buys to have all coupon types.
e For i € [n], let X; be the additional number of cereal boxes he buys
to get a new coupon type, after he had collected 7 — 1 different types

n
X=X +Xp+--+ X, E[X]=) E[X|]
=1

o After i — 1 types collected,

,— 1
Prob[A new box contains a new type] = p; = 1 — !
@ Hence, X; is geometric with parameter p;, implying
1 n
EX)]|=—=——
Di n—i14+1
= 1
E[X] = ——— =nH,=nl e
[X] n;n—i—kl nH, =nlnn+ O(n)
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PTCF: Geometric Distribution

@ A coin turns head with probability p, tail with 1 —p
@ X = number of flips until a head shows up

@ X has geometric distribution with parameter p

ProbX =n] = (1-p)" !p
EX] = ;
Var[X] = 1p—2p
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Additional Questions

@ We can't be sure that buying nH,, cereal boxes suffices

e Want Prob[X > C], i.e. what's the probability that he has to buy C
boxes to collect all coupon types?

o Intuitively, X is far from its mean with small probability

@ Want something like
Prob[X > (] < some function of C, preferably < 1

i.e. a (large) deviation inequality or tail inequality

Central Theme

The more we know about X, the better the deviation inequality we can
derive: Markov, Chebyshev, Chernoff, etc.
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PTCF: Markov's Inequality

Theorem

If X is a r.v. taking only non-negative values, n = E[X], then VYa > 0
Prob[X > a] < g

Equivalently,
Prob[X > au| <

SHN

If we know Var [X], we can do better!
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PTCF: Joint Distribution

o Let Xy, --,X, ben discrete r.v., their joint PMF is
p(x1, - ,xp) = Prob[X; =z A A Xy, = ).
@ They are independent random variables iff

p(x1,- -+, xn) =px, (1) - px, (xn), Vi
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PTCF: (Co)Variance, Moments, Their Properties

Variance: 0% = Var [X] := E[(X — E[X])?] = E[X?] — (E[X])?
Standard deviation: o := y/Var [X]
kth moment: E[X*]
Covariance: Cov[X,Y] = E[(X — E[X])(Y — E[Y])]
For any two r.v. X and Y,
Var [X + Y] = Var [X] + Var[Y] 4+ 2 Cov [X, Y]
If X and Y are independent, then
E[X Y] = E[X] E[Y]
Cov[X,Y] = 0
Var[X +Y] = Var[X]+ Var[Y]

o In fact, if X4,...,X,, are mutually independent, then
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PTCF: Chebyshev's Inequality

Theorem (Two-sided Chebyshev's Inequality)
If X is a r.v. with mean ;. and variance o2, then Va > 0,
2

1
Prob[|X — u| > a] < % or, equivalently Prob[|X — p| > ac] < e

Theorem (One-sided Chebyshev's Inequality)
Let X be a r.v. with E[X] = p and Var [X] = o2, then Va > 0,

2

o
Prob[X > —_—
rob[X > pu+a] < R
o2
Prob[X < u — € —
rob[X <pu—a] < N
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Back to the Additional Questions

@ Markov's leads to,
Prob[X > 2nH,] <

N

@ To apply Chebyshev's, we need Var [X]:

Var [X]
(nHy,)?

Prob[X > 2nH,] < Prob[|X —nH,| > nH,] <

e Key observation: the X; are independent (why?)
2,2

1—p; n? T™n
VarlX] =D VarlXi| =D =57 <D i = 6

. P

@ Chebyshev's leads to

72 1
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Power of Union Bound

@ Chebyshev gives:

72n%/6 9
> < = .
Prob[X > nH, + cn| < (en)? O(1/c¢*)

@ For any fixed coupon i

I\
Probli not collected after ¢ steps| = (1 — > <e7tm,
n

@ Union bound gives:

Prob[some missing coupon after t = nH, 4 cn] < ne”"=¢ = ©(1/e).
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Example 2: PPM with One Bit

The Problem

Alice wants to send to Bob a message b1bs - - - by, of m bits. She can send
only one bit at a time, but always forgets which bits have been sent. Bob
knows m, nothing else about the message.

The solution
@ Send bits so that the fraction of bits 1 received is within € of
p = B/2™, where B = bjby - - b, as an integer
@ Specifically, send bit 1 with probability p, and 0 with (1 — p)

The question

How many bits must be sent so B can be decoded with high probability?
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The Analysis

@ One way to do decoding: round the fraction of bits 1 received to the
closest multiple of of 1/2™

o Let X1,..., X, be the bits received (independent Bernoulli trials)
o Let X =" X;, then u = E[X] = np. We want, say

X 1
Prob | |2 —p|l < —— | >1—
which is equivalent to

Prob[|X—,u|§L} >1—c¢
3-2m

This is a kind of concentration inequality.
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PTCF: The Binomial Distribution

@ n independent trials are performed, each with success probability p.

@ X = number of successes after n trials, then
. n ; i .
Prob[X =i] = (,)p’(l —p)", Vi=0,...,n
i
e X is called a binomial random variable with parameters (n,p).

E[X] = np
Var[X] = np(1-p)
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PTCF: Chernoff Bounds

Theorem (Chernoff bounds are just the following idea)
Let X be any r.v., then
Q@ Foranyt>0
E tX
Prob[X > a] < [et ]
e a
In particular,
[e"¥]
Prob[X > a] < min —
t>0 et
@ Foranyt<O0
E tX
Prob[X < a] < [et ]
e a
In particular,
] E[etX]
Prob[X > a] < min —
t<0 el

(EYX is called the moment generating function of X)
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PTCF: A Chernoff Bound for sum of Poisson Trials

Above the mean case.

Let X1,..., X, be independent Poisson trials, Prob[X; = 1] = p;,
X =5, X;, p=E[X]. Then,
e For any § > 0,

66 K
Prob[X > (14 d)u| < (W) ;

@ Forany 0 < 4§ <1,

Prob[X > (14 d)u| < e H8%/3,

o Forany R > 6,
Prob[X > R] < 27 1.
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PTCF: A Chernoff Bound for sum of Poisson Trials

Below the mean case.
Let X1,..., X, be independent Poisson trials, Prob[X; = 1] = p;,
X =5, X;, p=E[X]. Then, forany 0 <6 < 1:

o

- o
Prob[X < (1 —0)u] < ((1—6)15> ;

Prob[X < (1 — §)u] < e #9°/2,
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PTCF: A Chernoff Bound for sum of Poisson Trials

A simple (two-sided) deviation case.
Let X,..., X, be independent Poisson trials, Prob[X; = 1] = p;,
X =5, X;, pn=E[X]. Then, forany 0 <6 < 1:

Prob[| X — u| > oy < 2 #0°/3,

Chernoff Bounds Informally

The probability that the sum of independent Poisson trials is far from the
sum's mean is exponentially small.

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 19 / 24



Back to the 1-bit PPM Problem

n 1
Prob []X ol > 3‘2m} — Prob [\X ol > 3.2mp”]
oz
eXp{lg%mp}
Now,
2 <
—— <
e p——

is equivalent to
n > 18pIn(2/€)4™.
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Example 3: A Statistical Estimation Problem

The Problem

We want to estimate p = E[X] for some random variable X (e.g., X is
the income in dollars of a random person in the world).

The Question

How many samples must be take so that, given ¢, > 0, the estimated
value 1 satisfies

Prob[|fi — p| < eu] > 146

@ §: confidence parameter

@ ¢: error parameter

o In statistics: /(1 +€),i/(1 — €)] is the confidence interval for 1 at
confidence level 1 — §

©Hung Q. Ngo (SUNY at Buffalo) CSE 694 — A Fun Course 21 /24



Intuitively: Use “Law of Large Numbers”

law of large numbers (there are actually 2 versions) basically says that
the sample mean tends to the true mean as the number of samples
tends to infinity

We take n samples X1,..., X,, and output

1
p= (Xt +Xn)

But, how large must n be? (“Easy” if X is Bernoulli!)

Markov is of some use, but only gives upper-tail bound

@ Need a bound on the variance 02 = Var[X] too, to answer the
question
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Applying Chebyshev

Let Y = X1+ -+ X, then i =Y/n and E[Y] = npu
Since the X; are independent, Var [Y] = 3. Var [X;] = no?
Let 7 = o/u, Chebyshev inequality gives

Prob[[iz — p| > ep] = Prob [|Y — E[Y]| > €E[Y]]
Var[Y]  no?  r?

(E[Y])?2 ~ en2u2  ne?’

2 . -
Consequently, n = + is sufficient!
q M 5e

@ We can do better!
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Finally, the Median Trick!

If confident parameter is 1/4, we only need ©(r?/e?) samples; the
estimate is a little “weak”

Suppose we have w weak estimates 1, - .., fhy

Output fi: the median of these weak estimates!

Let I; indicates the event |p; — p| < ep, and I = Z?’Zl I;
By Chernoff's bound,

Prob[[ — p| > eu] < Prob[Y <w/2]
< Prob[Y < (2/3)E[Y]]
= Prob[Y < (1—1/3)E[Y]]
1 1
< < <$

CEIVT/18 = qw/24 =

whenever w > 241n(1/4).
Thus, the total number of samples needed is n = O(r?In(1/5)/€2).
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