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First and Second Moment Methods

1 First Moment Method

The first moment method refers to the application of the first moment (i.e. expectation) of a random variable
in probabilistic reasoning. We have seen the argument from expectation, which is a type of first-moment
method. This section discusses another first-moment method manifestation.

Markov inequality states that, if X is a non-negative random variable, then Prob[X ≥ a] ≤ E[X]/a for
all a > 0. In particular, Prob[X ≥ 1] ≤ E[X]. If X is a natural number then we can conclude that

Prob[X 6= 0] = Prob[X > 0] = Prob[X ≥ 1] ≤ E[X].

Thus, if E[X] → 0 then X = 0 almost always. This simple idea can be used to prove many interesting
results. In many applications of this idea X is a count of something, and thus it is certainly a natural
number.

Problem 1. From the inequality Prob[X 6= 0] ≤ E[X] for natural number variable X , prove the union
bound.

Proposition 1.1. For any n-uniform hypergraphH withm edges, ifm < 2n−1 then the graph is 2-colorable.

Proof. Color vertices of H with red/blue randomly with probability 1/2. Let X be the number of mono-
chromatic edges, then

Prob[H is not properly colored] = Prob[X > 0] ≤ E[X] =
m

2n−1
< 1.

Hence, with positive probability that coloring is valid and thus there always exists a valid 2-coloring if
m < 2n−1.

The chromatic number χ(G) of a graph G is the minimum number of colors needed to color vertices of
G so that adjacent vertices have different colors. An independent set of G is a subset of vertices no two of
which are connected by an edge. Let α(G) denote the maximum independent set size of G. The following
theorem is one of the first applications of the probabilistic method to graph theory [1]. Basically, Erdős
showed that the chromatic number can not be inferred from “local” properties such as the smallest cycle
size of the graph.

Theorem 1.2. For any integer k > 0, there exists a triangle-free graph G whose chromatic number χ(G) is
at least k.

Proof. The proof strategy is as follows. I’m a little wordy here so that you understand the intuition behind
the proof.
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• Pick a random graph G from a graph distribution G(n, p), which denote the distribution of graphs on
n vertices and each edge is present with probability p. This is also called the Erdős-Rényi model.

• Show that G has “small” maximum independent set with high probability. Small maximum indepen-
dent set implies large chromatic number because each color class is an independent set. If each color
class cannot be large then the number of colors has to be large. In particular, if G has n vertices then
clearly n ≤ χ(G) · α(G) and thus

χ(G) ≥ n

α(G)
.

• Show that G with high probability has few triangles. Remove one vertex from each triangle and we
end up with G′ which is triangle-free and still has “small” maximum independent set.

Specifically, pick G from G(n, p). The values of n and p shall be specified later.
First, we show that α(G) ≤ n

2k with high probability using the first moment method. Let X be the
number of independent sets of size n

2k of G. Then,

Prob
[
α(G) ≥ n

2k

]
= Prob[X 6= 0] ≤ E[X] =

(
n

n/2k

)
(1− p)(

n/2k
2 ) < 2n · e−

pn(n−2k)

8k2 .

The right hand side will be small as n gets large and p is not too small relative to n.
Next, let Y denote the number of triangles of G. Hence, if we remove one vertex from each triangle of

G we end up with a graphG′ with n′ ≥ n−Y vertices. Note that α(G′) ≤ α(G) because every independent
set of G′ is an independent set of G. Hence, if we are sure that α(G) ≤ n

2k we have

χ(G′) ≥ n′

α(G′)
≥ n′

α(G)
≥ n− Y
n/(2k)

.

In particular, if n− Y ≥ n/2 then χ(G′) ≥ k and G′ has no triangle as desired. In summary, we want both
of the following two properties to hold with positive probability: α(G) ≥ n

2k and Y ≤ n/2.

Note that E[Y ] =
(
n
3

)
p3 < (np)3

6 . Hence, suppose we set p = n−2/3 then E[Y ] < n/6. Markov
inequality implies

Prob[Y > n/2] ≤ n/6
n/2

= 1/3.

And, when n > 4k we have

Prob
[
α(G) ≥ n

2k

]
< 2n · e−

pn(n−2k)

8k2 < en · e−
pn2

16k2 = en · e−n4/3/(16k2) = en−n
4/3/(16k2).

Hence, when n1/3 ≥ 32k2 we have

Prob
[
α(G) ≥ n

2k

]
< e−n < 2/3.

Overall,
Prob

[
α(G) ≥ n

2k
or Y > n/2

]
< 1.
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Problem 2. The clique number ω(G) of a graph G is the maximum clique size in G. Show that for all
sufficiently large n there is a graphG with n vertices for which χ(G) ≥ n/2 and ω(G) ≤ n3/4. (Hint: think
about the complement of a triangle-free graph.)

Problem 3. The length of a smallest cycle in a graph is called the girth of the graph. If the graph has no
cycle then its girth is defined to be infinity. Now, use the exact same method as in the triangle-free case to
show that, for any integers g, k > 0, there is a graph with girth ≥ g and chromatic number ≥ k.

2 Second moment method

The inequality Prob[X > 0] ≤ E[X] implies that, when E[X]→ 0 we haveX = 0 almost always. However,
E[X]→∞ does not necessarily mean that X > 0 almost always. We need more information, in particular
the variance Var [X]. Making use of Var [X] is called the second moment method. (The kth moment is
E[Xk].) The simplest use of Var [X] is probably Chebyshev inequality which states that, for any a > 0,

Prob[|X − E[X]| ≥ a] ≤ Var [X]
a2

.

From this, we can infer

Prob[X = 0] ≤ Prob[|X − E[X]| ≥ E[X]] ≤ Var [X]
E[X]2

.

In fact, Shepp proved a slightly stronger inequality by applying Cauchy-Schwarz inequality which states
that E[XY ]2 ≤ E[X]2E[Y ]2:

E[X]2 = (E [1X 6=0 ·X])2

≤ E
[
12
X 6=0

]
E[X2]

= Prob[X 6= 0]E[X2]
= E[X2]− Prob[X = 0]E[X2].

Consequently, we obtain

Prob[X = 0] ≤ Var [X]
E[X2]

.

(Under the assumption that E[X2] 6= 0.) Let us summarize.

Proposition 2.1. Let X be a random variable for which E[X2] 6= 0 then

Prob[X = 0] ≤ Var [X]
E[X2]

.

If E[X] 6= 0, then

Prob[X = 0] ≤ Var [X]
E[X]2

.

The second inequality is weaker, but it might be more convenient in some cases.
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2.1 Erdős distinct sum problem

A set A = {a1, · · · , ak} of positive integers has distinct subset sums if the sums of all subsets of A are
distinct. Let f(n) be maximum k for which there’s a k-subset of [n] having distinct subset sums. For
example, from A = {2i | 0 ≤ i ≤ lg n} we know

f(n) ≥ blg nc+ 1

Can f(n) be much larger than lg n? That was Erdős’ question which he offered 500 usd to anyone who can
show that

f(n) ≤ lg n+ c?

for some constant c. How about a lower bound? Information theoretically we can derive the following.
Suppose there was a k-subset with distinct sums. Since each sum is at most nk we have 2k ≤ nk, which
implies

k ≤ lg n+ lg k ≤ lg n+ lg(lg n+ lg k) ≤ lg n+ lg(2 lg n) = lg n+ lg lg n+O(1).

We prove a slightly better bound using the second-moment method. Specifically we will use Chebyshev
inequality. The intuition is as follows. Fix n and a k-subset A = {a1, · · · , ak} with distinct subset sums.
Let X be the sum of a random subset of A where each element of A is included in X with probability 1/2.
Let µ = E[X], and σ2 = Var [X]. For any integer i, it is clear that Prob[X = i] is either 0 or 1

2k . By
Chebyshev, for any α > 1 we have

Prob[|X − µ| ≥ ασ] ≤ 1
α2
⇒ Prob[|X − µ| < ασ] ≥ 1− 1

α2

Because there are at most 2ασ + 1 integers within ασ of µ, we conclude that

1− 1
α2
≤ 1

2k
(2ασ + 1).

As σ is a function of n and k, the inequality gives us a relationship between n and k. Specifically,

σ2 =
a2

1 + · · ·+ a2
k

4
≤ n2k

4
⇒ σ ≤ n

√
k/2

which leads to
1− 1

α2
≤ 1

2k
(αn
√
k + 1).

This is equivalent to

n ≥
2k
(
1− 1

α2

)
− 1

α
√
k

.

For the best possible bound on n, we set α > 1 to maximize the right hand side. In particular, α =
√

3
implies

n ≥ 2
3
√

3
· 2k

k
.

From here it straightforward that

k ≤ lg n+
1
2

lg lg n+O(1).

Problem 4. Let v1, . . . ,vn be n two-dimensional vectors each of whose cooridnates is an integer with
absolute value at most 2n/2

100
√
n

. Show that there are two discint subsets I, J ⊆ [n] such that
∑

i∈I vi =∑
j∈J vj .
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2.2 Graph properties and threshold functions

Each graph in the distribution G(n, p) has n vertices, and there is an edge between any pair of vertices with
probability p. This is called the Erdős-Rényi model of random graphs. Often we would like to know if a
random graph has some property. For example, if the (random) graph represents a P2P network we’d like to
know whether it is connected (with such and such probability). If the graph represents some social network,
we’d like to know how large the clustering coefficient is, and so on.

Obviously, for most non-trivial properties the probability the property holds depends on p. For instance,
consider the property of whether the random graph has a clique of size at least 4. As p → 0, it is highly
unlikely that the property holds. As p→ 1, it is extremely likely that the property does hold. It turns out that
there’s a “threshold” in the middle crossing which the property switches from “likely not hold” to “likely
hold.”

Definition 2.2 (Threshold function for graph properties). A function t(n) is called a threshold function for
some graph property P if t(n) satisfies one of the following.

lim
n→∞

Prob
G∈G(n,p)

[G has property P] =

{
0 if p = o(t(n))
1 if p = ω(t(n))

or

lim
n→∞

Prob
G∈G(n,p)

[G has property P] =

{
1 if p = o(t(n))
0 if p = ω(t(n))

It might be a little confusing to grasp the concept. Let us consider a concrete example. The clique
number ω(G) of a graph G is the size of its maximum clique. We consider the property ω(G) ≥ 4.

Suppose we draw G from G(n, p). Let X be the number of cliques of size 4. Then, ω(G) ≥ 4 if and
only if X > 0. For each S ∈

(
[n]
4

)
, let XS = 1S is a clique of G. Then

X =
∑
S

XS .

Hence,

E[X] =
(
n

4

)
p6 <

n4p6

24
.

Hence, by the first moment method, if p = o(n−2/3) we have

Prob[X > 0] ≤ E[X] <
n4p6

24
= o(1).

In other words, the property ω(G) ≥ 4 likely does not hold when p = o(n−2/3). What about the case when
p = ω(n−2/3)? In this case, E[X] = Θ(n4p6)→∞. However, the first moment inequality Prob[X > 0] ≤
E[X] does not imply that Prob[X > 0] → 1. We need the second moment inequalities of Proposition 2.1:
Prob[X = 0] ≤ σ2/µ2. In particular, if σ2 = o(µ2) then it is likely that X = 0 does not hold and thus
the property ω(G) ≥ 4 likely holds. To this end, we need to estimate the variance of X . The trouble with
computing the variance of X is that the variables XS are not independent.
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We need a method for bounding the variance of a sum of dependent indicator variables. To be general,
suppose X =

∑n
i=1Xi. Then,

Var [X] = E

(∑
i

Xi

)2
−(E

[∑
i

Xi

])2

=
∑
i

E[X2
i ] +

∑
i 6=j

E[XiXj ]−
∑
i

E[Xi]2 −
∑
i 6=j

E[Xi]E[Xj ]

=
n∑
i=1

Var [Xi] +
∑
i 6=j

Cov [Xi, Xj ]

Where the covariance of any two variables X,Y is defined to be

Cov [X,Y ] = E[XY ]− E[X]E[Y ].

If Xi is an indicator for event Ai and Prob[Xi = 1] = pi, then

Var [Xi] = pi(1− pi) ≤ pi = E[Xi].

If Ai and Aj are independent, then

Cov [Xi, Xj ] = E[XiXj ]− E[Xi]E[Xj ] = 0.

If Ai and Aj are not independent (denoted by i ∼ j)

Cov [Xi, Xj ] ≤ E[XiXj ] = Prob[Ai ∩Aj ].

Thus, we can rewrite the variance of X as

Var [X] ≤ E[X] +
∑
i

∑
j 6=i,j∼i

Prob[Ai ∩Aj ].

Noting that Prob[Ai ∩Aj ] = Prob[Ai] Prob[Aj | Ai], we have the following theorem.

Theorem 2.3. Suppose X =
∑n

i=1Xi, where Xi is an indicator for event Ai. Then,

Var [X] ≤ E[X] +
∑
i

Prob[Ai]
∑
j:j∼i

Prob[Aj | Ai]︸ ︷︷ ︸
∆i

Corollary 2.4. If ∆i ≤ ∆ for all i, then

Var [X] ≤ E[X](1 + ∆)

Let’s get back to the ω(G) ≥ 4 property. We need to estimate ∆S =
∑

T∼S Prob[AT | AS ]. The events
AT and AS are dependent iff T ∩ S ≥ 2, because only then T and S share edges.

∆S =
∑
T∼S

Prob[AT | AS ]

=
∑

|T∩S|=2

Prob[AT | AS ] +
∑

|T∩S|=3

Prob[AT | AS ]

=
(
n− 4

2

)(
4
2

)
p5 +

(
n− 4

1

)(
4
3

)
p3

= ∆.
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So,
σ2 ≤ µ(1 + ∆)

Recall we wanted σ2/µ2 = o(1), which holds as long as ∆ = o(µ). Better yet, when p = ω
(
n−2/3

)
,

certainly

∆ =
(
n− 4

2

)(
4
2

)
p5 +

(
n− 4

1

)(
4
3

)
p3 = o

(
n4p6

)
.

Theorem 2.5. t(n) = n−2/3 is a threshold function for the ω(G) ≥ 4 property.

Problem 5. (a) Derive the threshold function for the property ω(G) ≥ 5.

(b) Guess the general form of the threshold function for property ω(G) ≥ k for a given integer k?
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