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e Covering Chapter 2 of DHS (in two classes).

@ Bayesian Decision Theory is a fundamental statistical approach to the
problem of pattern classification.

@ Quantifies the tradeoffs between various classifications using
probability and the costs that accompany such classifications.

@ Assumptions:

o Decision problem is posed in probabilistic terms.
o All relevant probability values are known.
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@ Recall our example from the first
lecture on classifying two fish as salmon
or sea bass.

@ And recall our agreement that any
given fish is either a salmon or a sea
bass; DHS call this the state of nature
of the fish.

o Let's define a (probabilistic) variable w
that describes the state of nature.

w=w; for sea bass (1)

w=wy for salmon (2)

Sea Bass
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@ The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
said state of nature.
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@ The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
said state of nature.

@ In the fish example, it is the probability that we will see either a
salmon or a sea bass next on the conveyor belt.

@ Note: The prior may vary depending on the situation.

o If we get equal numbers of salmon and sea bass in a catch, then the
priors are equal, or uniform.

e Depending on the season, we may get more salmon than sea bass, for
example.
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The a priori or prior probability reflects our knowledge of how likely
we expect a certain state of nature before we can actually observe
said state of nature.
In the fish example, it is the probability that we will see either a
salmon or a sea bass next on the conveyor belt.
Note: The prior may vary depending on the situation.
o If we get equal numbers of salmon and sea bass in a catch, then the
priors are equal, or uniform.
e Depending on the season, we may get more salmon than sea bass, for
example.
We write P(w = w1) or just P(w;) for the prior the next is a sea bass.
The priors must exclusivity and exhaustivity. For c states of nature, or
classes:

1= Z P(w;) (3)
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o IDEA CHECK: What is a reasonable Decision Rule if
e The only available information is the prior.

e The cost of any incorrect classification is equal.
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o IDEA CHECK: What is a reasonable Decision Rule if
e The only available information is the prior.
e The cost of any incorrect classification is equal.
@ Decide wy if P(w1) > P(w2); otherwise decide wy.
@ What can we say about this decision rule?
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o IDEA CHECK: What is a reasonable Decision Rule if
e The only available information is the prior.
e The cost of any incorrect classification is equal.
@ Decide wy if P(w1) > P(w2); otherwise decide wy.
@ What can we say about this decision rule?

o Seems reasonable, but it will always choose the same fish.

o If the priors are uniform, this rule will behave poorly.
this later on.)

o Under the given assumptions, no other rule can do better! (We will see
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A feature is an observable variable.

A feature space is a set from which we can sample or observe values.

Features:

Length

o Width

o Lightness

o Location of Dorsal Fin

For simplicity, let's assume that our features are all continuous values.

Denote a scalar feature as & and a vector feature as x. For a

d-dimensional feature space, x € R¢.
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A feature is an observable variable.

A feature space is a set from which we can sample or observe values.
@ Features:

Length

o Width

o Lightness

o Location of Dorsal Fin

o For simplicity, let's assume that our features are all continuous values.

@ Denote a scalar feature as x and a vector feature as x. For a
d-dimensional feature space, x € R¢.

@ A note on the use of the term marginals as features (from first
lecture): technically, a marginal is a distribution of one or more
variables (e.g., p(z)). So, during modeling, when we say a “feature”
is like a marginal, we are actually saying “the distribution of a type of
feature” is like a marginal. This is only for concep;ual reasoning.

PN G
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@ The class-conditional probability density function is the probability
density function for x, our feature, given that the state of nature is w:

values of sea bass and salmon.

plxlw)

0.4

@ Here is the hypothetical class-conditional density p(x|w) for lightness

p(x|w)

(4)

Wy

X
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o If we know the prior distribution and the class-conditional density,
how does this affect our decision rule?

@ Posterior probability is the probability of a certain state of nature
given our observables: P(w|x).

@ Use Bayes Formula:

P(w,x) = P(w[x)p(x) = p(x|w)P(w) (5)
_ p(xw)P(w)
P(w’X) - p(X) (6)

_ p(xlw)P(w)
> p(x|ws) P(ws) (7)

=} = = E = A
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@ Notice the likelihood and the prior govern the posterior. The p(x)
evidence term is a scale-factor to normalize the density.

P(w)]|x)
1

e For the case of P(w;) =2/3 and P(w2) = 1/3 the posterior is

15
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@ For a given observation x, we would be inclined to let the posterior
govern our decision:

w* = arg max P(w;|x)
7
@ What is our probability of error?

(8)
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@ For a given observation x, we would be inclined to let the posterior
govern our decision:

w* = arg max P(w;|x)
7
@ What is our probability of error?

@ For the two class situation, we have

P(error|x) = {ig:: :3

(8)

if we decide w»

if we decide wy

(PN G4
14 January 2009 10 / 58




@ We can minimize the probability of error by following the posterior:
Decide w; if P(w1|x) > P(w2|x)

(10)
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@ We can minimize the probability of error by following the posterior:

Decide w; if P(w1|x) > P(w2|x)

@ And, this minimizes the average probability of error too

P(error) = /00

P(error|x)p(x)dx
—00
(Because the integral will be minimized when we can ensure each
P(error|x) is as small as possible.)

(10)

(11)
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@ Decide w; if P(w1]|x) > P(wz|x); otherwise decide wy
@ Probability of error becomes

P(error|x) = min [P(w1|x), P(w2|x)]

14 January 2009
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@ Decide w; if P(w1]|x) > P(wz|x); otherwise decide wy
@ Probability of error becomes

P(error|x) = min [P(w1|x), P(w2|x)]
decide w>

(12)
e Equivalently, Decide w; if p(x|w1)P(w1) > p(x|w2)P(w2); otherwise

@ |l.e., the evidence term is not used in decision making.

=] 5
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@ Decide w; if P(w1]|x) > P(wz|x); otherwise decide wy
@ Probability of error becomes

P(error|x) = min [P(w1|x), P(w2|x)] (12)

e Equivalently, Decide w; if p(x|w1)P(w1) > p(x|w2)P(w2); otherwise
decide w>

@ |l.e., the evidence term is not used in decision making.

o If we have p(x|w1) = p(x|w2), then the decision will rely exclusively
on the priors.

o Conversely, if we have uniform priors, then the decision will rely
exclusively on the likelihoods.

o F = = DA
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Decide wy if P(w1|x) > P(w2|x); otherwise decide w»

@ Probability of error becomes

P(error|x) = min [P(w1|x), P(w2|x)] (12)

Equivalently, Decide wy if p(x|wi)P(w1) > p(x|w2)P(w2); otherwise
decide w>

@ |l.e., the evidence term is not used in decision making.

o If we have p(x|w1) = p(x|w2), then the decision will rely exclusively
on the priors.

Conversely, if we have uniform priors, then the decision will rely
exclusively on the likelihoods.

Take Home Message: Decision making relies on both the priors
and the likelihoods and Bayes Decision Rule combines them to
achieve the minimum probability of error.

Q>

& = =
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@ A loss function states exactly how costly each action is.

@ As earlier, we have ¢ classes {w1,...,w.}.

e We also have a possible actions {aq, ..., aq}.

@ The loss function A(cv;|w;) is the loss incurred for taking action

when the class is w;.

14 January 2009
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@ A loss function states exactly how costly each action is.
@ As earlier, we have ¢ classes {w1,...,w.}.
e We also have a possible actions {aq, ..., aq}.
@ The loss function A(cv;|w;) is the loss incurred for taking action ¢
when the class is w;.
@ The Zero-One Loss Function is a particularly common one:
0 i=y .
Maoilwj) = - i,j=1,2,...,c (
I
It assigns no loss to a correct decision and uniform unit loss to an
incorrect decision. (Similar to Dirac delta function...)
=) = - = =
DD Bayesian Decision Theory Lecture 2 14 January 2009
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@ We can consider the loss that would be incurred from taking each
possible action in our set

@ The expected loss is by definition

R(aix) =

j=1
@ The zero-one conditional risk is

Z Alailw;) P(wj[x)

R(aix) = P(wj|x)
JFi
=1-

P(wilx)

@ Hence, for an observation x, we can minimize the expected loss by

selecting the action that minimizes the conditional risk

=] 5
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@ We can consider the loss that would be incurred from taking each
possible action in our set

@ The expected loss is by definition

R(aix) =

j=1
@ The zero-one conditional risk is

Z Alailw;) P(wj[x)

R(aix) = P(wj|x)
JFi
=1-

P(wilx)

@ Hence, for an observation x, we can minimize the expected loss by

selecting the action that minimizes the conditional risk

(Teaser) You guessed it: this is what Bayes Decision Rule does!
[m] = = =
DD Bayesian Decision Theory Lecture 2
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o Let a(x) denote a decision rule, a mapping from the input feature
space to an action, R? — {ag,...,a.}.
e This is what we want to learn.

(PN G4
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o This is what we want to learn.

o Let a(x) denote a decision rule, a mapping from the input feature
space to an action, R? — {ag,...,a.}.
rule.

@ The overall risk is the expected loss associated with a given decision

R= f R (a(x)[x) p (x) dx

(17)

Clearly, we want the rule «(-) that minimizes R(a(x)|x) for all x.

DA
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@ Bayes Decision Rule gives us a method for minimizing the overall risk.

@ Select the action that minimizes the conditional risk:

ax = argmin R («a;|x)
a;

j=1
@ The Bayes Risk is the best we can do.

= arg ng)ln Z Aov|w;) P(w;|x)

14 January 2009
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@ Consider two classes and two actions, «; when the true class is w;

and ap for ws.
@ Writing out the conditional risks gives:

R(ai1|x) = M1 P(wi1]x) + A2 P(w2|x) (20)
R(az|x) = A1 P(w1|x) + A2 P(w2|x) . (21)
@ Fundamental rule is decide wy if
R(a1]x) < R(az|x) . (22)
@ In terms of posteriors, decide wy if
(A21 = A1) Plwilx) > (Ar2 — Az2) P(w2lx) - (23)

The more likely state of nature is scaled by the differences in loss

wa

(which are generally positive).
[m] = = =
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@ Or, expanding via Bayes Rule, decide wy if

(A21 = Au1)p(x|wr) P(w1) > (A2 — Ax2)p(x|w2) P(w2)
@ Or, assuming A\p1 > A11, decide wy if

p(xjwi) A2 — A2 P(w2)

p(x|wa) — A21 — A1n Pwi)
o LHS is called the likelihood ratio.

@ Thus, we can say the Bayes Decision Rule says to decide wy if the
likelihood ratio exceeds a threshold that is independent of the
observation x.

=] 5
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(25)
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o Discriminant Functions are a useful way of representing pattern
classifiers.

@ Let's say g;(x) is a discriminant function for the ith class.

@ This classifier will assign a class w; to the feature vector x if

9i(x) > gj(x)  VjFi,

or, equivalently

i* = argmaxg;(z) , decide wjx .
7
=] 5 = E =
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@ We can view the discriminant classifier as a network (for ¢ classes and
a d-dimensional input vector).

discriminant
functions

action

(e.g., classification)

14 January 2009
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@ General case with risks

9i(x) = —R(ailx)

= Z Magw;)P(wj|x)
j=1

@ Can we prove that this is correct?

14 January 2009
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@ General case with risks

9i(x) = —R(ailx)

(27)
= Z Magw;)P(wj|x)
j=1

(28)
@ Can we prove that this is correct?
o
discriminant.

Yes! The minimum conditional risk corresponds to the maximum

(PN G4
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@ In the case of zero-one loss function, the Bayes Discriminant can be
further simplified:

9i(x) = P(w;i|x) .

(29)

(PN G4
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@ Is the choice of discriminant functions unique?
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@ Is the choice of discriminant functions unique?
e No!

o Multiply by some positive constant.

@ Shift them by some additive constant.
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Is the choice of discriminant functions unique?
No!
Multiply by some positive constant.

Shift them by some additive constant.
For monotonically increasing function f(-), we can replace each g;(x)
by f(gi(x)) without affecting our classification accuracy.
e These can help for ease of understanding or computability.
e The following all yield the same exact classification results for
minimume-error-rate classification.

() = Plolx) = PKlwi) P(wi)
90 = PLabd) = & o) Ply) (30)
gi(x) = p(x|w;) P(w;) (31)
9i(x) = Inp(x|w;) + In P(w;) (32)

o <& = =, T 9ae
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@ The effect of any decision rule is to divide the feature space into
decision regions.

@ Denote a decision region R; for w;.

@ One not necessarily connected region is created for each category and
assignments is according to:

If gi(x) > gj(x) Vj # 4, then xisin R; . (33)

@ Decision boundaries separate the regions; they are ties among the
discriminant functions.

[m] = =

= DA
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@ In the two-category case, one considers single discriminant

9(x) = g1(x) — g2(x)
@ What is a suitable decision rule?

(PN G4
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@ In the two-category case, one considers single discriminant

9(x) = g1(%) — 92(x)

@ The following simple rule is then used:

Decide w; if g(x) > 0; otherwise decide ws.

(34)

(35)

(PN G4
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@ In the two-category case, one considers single discriminant

9(x) = g1(%) — 92(x)

@ The following simple rule is then used:

(34)

Decide wy if g(x) > 0; otherwise decide ws.
@ Various manipulations of the discriminant:

(35)
9(%) = Pllx) — Plwz]x)
o) = In 2

(36)
P(wl)
o) " P(n) (37)
[m] =
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@ This next section is a slight digression to introduce the Normal
Density (most of you will have had this already).

@ The Normal density is very well studied.
o It easy to work with analytically.

@ In many pattern recognition scenarios, an appropriate model seems to
be where your data is assumed to be continuous-valued, randomly
corrupted versions of a single typical value.

o Central Limit Theorem (Second Fundamental Theorem of
Probability).

e The distribution of the sum of n random variables approaches the
normal distribution when n is large.
o E.g., http://www.stattucino.com/berrie/dsl/Galton.html

[m] = =
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@ Recall the definition of expected value of any scalar function f(z) in
the continuous p(z) and discrete P(z) cases

elra) = | 7 @)

(38)
ELf(@)] = f(x)P(x)

computed.

(39)
where we have a set D over which the discrete expectation is

(PN G4
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@ Continuous univariate normal, or Gaussian, density

1 (az - u)z
exp |—= .
V2mo? 2 o
@ The mean is the expected value of x is

p=Ex] = /OO xp(z)dx

o0

@ The variance is the expected squared deviation

P el )= [

| (- w)?p(e)de
o =

14 January 2009
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p(x)

@ Samples from the normal density tend to cluster around the mean and
be spread-out based on the variance.

p-20 p-o

I p+o p+20
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@ Samples from the normal density tend to cluster around the mean and
be spread-out based on the variance.
p(x)

2.5%
p-20 p-o 1%

} X

p+o p+20
@ The normal density is completely specified by the mean and the
variance. These two are its sufficient statistics.

@ We thus abbreviate the equation for the normal density as

p(l’) ~ N(N?OQ) . = = = (4§)x0
DD Bayesian Decision Theory Lecture 2
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@ Entropy is the uncertainty in the random samples from a distribution

H(p(x)) = — / p() In p(z)d

@ The normal density has the maximum entropy for all distributions
have a given mean and variance.

(44)

@ What is the entropy of the uniform distribution?

(PN G4
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@ Entropy is the uncertainty in the random samples from a distribution

H(p(x)) = — / p() In p(z)d

@ The normal density has the maximum entropy for all distributions
have a given mean and variance.

(44)

@ What is the entropy of the uniform distribution?

@ The uniform distribution has maximum entropy (on a given interval).

(PN G4
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_ 1
p(x) = (27r)d/2|2|1/2

@ The multivariate Gaussian in d dimensions is written as

1 _
e |50 W)= - )
@ Again, we abbreviate this as p(x) ~ N(u, X).
@ The sufficient statistics in d-dimensions:

p=Ex= /xp(x)dx
® = £l - )T =[x mx - ) Tpx)ax

14 January 2009
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% = El(x - w)(x — )7 = / (x — ) (x — 1) Tp(x)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements o;; are the variances of the respective
coordinate ;.

The off-diagonal elements o;; are the covariances of z; and ;.

What does a 0;; = 0 imply?

oy «F = =, = @©ac
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% = El(x - w)(x — )7 = / (x — ) (x — 1) Tp(x)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements o;; are the variances of the respective
coordinate ;.

The off-diagonal elements o;; are the covariances of z; and ;.
What does a 0;; = 0 imply?
That coordinates x; and x; are statistically independent.

[m] = = =
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% = El(x - w)(x — )7 = / (x — ) (x — 1) Tp(x)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements o;; are the variances of the respective
coordinate ;.

The off-diagonal elements o;; are the covariances of z; and ;.
What does a 0;; = 0 imply?

That coordinates x; and x; are statistically independent.

What does 3 reduce to if all off-diagonals are 07

Q>

[m] = = =
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% = El(x - w)(x — )7 = / (x — ) (x — 1) Tp(x)dx

Symmetric.

Positive semi-definite (but DHS only considers positive definite so
that the determinant is strictly positive).

The diagonal elements o;; are the variances of the respective
coordinate ;.

The off-diagonal elements o;; are the covariances of z; and ;.
What does a 0;; = 0 imply?

That coordinates x; and x; are statistically independent.

What does 3 reduce to if all off-diagonals are 07

The product of the d univariate densities. S

a e -
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@ Linear combinations of jointly
normally distributed random
variables, independent or not,
are normally distributed.

e For p(x) ~ N((u),X) and A, a
d-by-k matrix, define y = ATx.

Then:

p(y) ~ N(ATpu, ATSA) (48)

o With the covariance matrix, we
can calculate the dispersion of
the data in any direction or in

any subspace.

0

*2

NA'wA'SA)

NA' . I)

X1

- = Qe
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@ The shape of the density is determined
by the covariance X.

X2

@ Specifically, the eigenvectors of X give
the principal axes of the hyperellipsoids
and the eigenvalues determine the
lengths of these axes.

@ The loci of points of constant density
are hyperellipsoids with constant
Mahalonobis distance:

R

(x—p)'= 7 (x—p)  (49)

oy «F = =, = @©ac
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@ Recall the minimum error rate discriminant,
9i(x) = Inp(x|w;) + In P(w;).

o If we assume normal densities, i.e., if p(x|w;) ~ N(,;, X;), then the
general discriminant is of the form

1 d 1
gi(x) = _E(X — )2 (x ) — 5 In2m — 5 In|%;| + In P(w;)
(50)

oy «F = =, = @©ac
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e What do the decision boundaries look like if we assume X; = 0217

(PN G4
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@ What do the decision boundaries look like if we assume ¥; = 02I7?

@ They are hyperplanes.

Plaiw)
@ @

'
|
v
i
|
|
I
|
|
|
|
I
J

@ Let's see why...

=} = = E = A
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@ The discriminant functions take on a simple form:

2
X —_ .
gi(x) = — | 20‘;’” + In P(w;)
@ Think of this discriminant as a combination of two things

@ The distance of the sample to the mean vector (for each 7).
@ A normalization by the variance and offset by the prior.

14 January 2009
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@ But, we don’t need to actually compute the distances.

o Expanding the quadratic form (x — p)T(x — ) yields

9i(%) = —5 5 [XTx = 2] x4+ ] | + In P(wy)
@ The quadratic term x

(52)
Tx is the same for all i and can thus be ignored.
@ This yields the equivalent linear discriminant functions
I
gi(x) = w; x4+ wip

1
W; — — .
i Jzuz

(53)

(54)
Wio _F“;r“i + In P(w;)
@ w;o Is called the bias.

(55)
o =
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@ The decision surfaces for a linear discriminant classifiers are
hyperplanes defined by the linear equations g;(x) = g;(x).

@ The equation can be written as
w (x—x0)=0

(56)
W= [ — My (57)
1 0'2 P(wz)
xo = 5 (k; + pj) — In Iz
2 ’ ||ﬂi—Hj||2 P(wj)

(pi — 1) (58)
@ These equations define a hyperplane through point g with a normal

vector w.

(PN G4
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Plxlw;)

wy

wy

The decision boundary changes with the prior.

Plxlw;)

7
Plwy)=7

Pw,)=3
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@ The discriminant functions are quadratic (the only term we can drop
is the In27 term):

gi(x) = xTW,;x + w;rX + wig (59)
W, = —%2;1 (60)
wi =37 p (61)
wio = ST S — 3 0[]+ n P(wr) (62)
@ The decision surface between two categories are hyperquadrics.
Or B> <z «=» T 9AC
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Quite A Complicated Decision Surface! - . . ..
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o A fundamental way of analyzing
a classifier.

@ Consider the following
experimental setup:

@ Suppose we are interested in detecting a single pulse.
@ We can read an internal signal z.

@ The signal is distributed about mean ps when an external signal is
present and around mean g1 when no external signal is present.

@ Assume the distributions have the same variances,
p(xlw;) ~ N(pi, 0°).

[m] = = =

Do
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@ The detector uses z* to decide if the external signal is present.

o Discriminability characterizes how difficult it will be to decide if the
external signal is present without knowing x*.

d/ — |/“L2 - /‘Lll

63
~ (63)
@ Even if we do not know pu1, u2, o, or z*, we can find d’ by using a
receiver operating characteristic or ROC curve.
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@ A Hit is the probability that the internal signal is above x* given that
the external signal is present
P(z > z*|x € wp)

(64)
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@ A Hit is the probability that the internal signal is above x* given that
the external signal is present

P(z > z*|x € wp)

@ A Correct Rejection is the probability that the internal signal is
below z* given that the external signal is not present.

(64)

Pz < x*|x € w1)

(65)
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@ A Hit is the probability that the internal signal is above x* given that
the external signal is present

P(z > z*|x € wp)

@ A Correct Rejection is the probability that the internal signal is
below z* given that the external signal is not present.

(64)
P(x < x|z € wy)

(65)
@ A False Alarm is the probability that the internal signal is above z*
despite there being no external signal present.

Pz > z*|x € w1)

(66)
o =
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the external signal is present

@ A Hit is the probability that the internal signal is above x* given that

P(z > z*|x € wp)

Pz < x*|x € w1)

(64)

@ A Correct Rejection is the probability that the internal signal is
below z* given that the external signal is not present.

@ A False Alarm is the probability that the internal signal is above z*
despite there being no external signal present.

(65)
Pz > z*|x € w1) (66)
@ A Miss is the probability that the internal signal is below z* given
that the external signal is present.
Pz < z*|x € wp)
DL Bayesian Decision Theory Lecture 2
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@ We can experimentally

determine the rates, in
particular the Hit-Rate and the
False-Alarm-Rate.

Basic idea is to assume our
densities are fixed (reasonable)
but vary our threshold z*, which
will thus change the rates.

The receiver operating
characteristic plots the hit rate
against the false alarm rate.

@ What shape curve do we want?

P(x > x*Ix € w,)

hit

false alarm

P(x <x*Ix € w,) !
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@ Suppose we have built a classifier on multiple features, for example
the lightness and width.

@ What do we do if one of the features is not measurable for a

particular case? For example the lightness can be measured but the
width cannot because of occlusion.
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@ Suppose we have built a classifier on multiple features, for example
the lightness and width.

@ What do we do if one of the features is not measurable for a
particular case? For example the lightness can be measured but the
width cannot because of occlusion.

o Marginalize!

@ Let x be our full feature feature and x, be the subset that are
measurable (or good) and let x; be the subset that are missing (or
bad/noisy).

@ We seek an estimate of the posterior given just the good features
Xg.

wa

[m] = = =
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p(wl, Xg)

Plabey) = 2o (68)
_J p(wi;)zc;;;cb)dm (69)
_ Jo:px)dx, 9}(;‘ x)dx:le (71)

@ We will cover the Expectation-Maximization algorithm later.
@ This is normally quite expensive to evaluate unless the densities are
special (like Gaussians).

=} = = E = A
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@ Two variables x; and x; are independent if

p(@i, z5) = p(xi)p(z;)

FIGURE 2.23. A three-dimensional distribution which obeys p(xi, x3) = p(x))p(x;);
thus here x; and x; are statistically independent but the other feature pairs are not. From:

Richard O. Duda, Peter E. Hart, and David G. Stork, Pattern Classification. Copyright
© 2001 by John Wiley & Sons, Inc.

o =] - =
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We represent these statistical dependencies graphically.

Bayesian Belief Networks, or Bayes Nets, are directed acyclic
graphs.

Each link is directional.
No loops.

The Bayes Net factorizes the distribution into independent parts
(making for more easily learned and computed terms).

o = E E =
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@ Consider a simple example consisting of four variables: the weather,
the presence of a cavity, the presence of a toothache, and the
presence of other mouth-related variables such as dry mouth.

@ The weather is clearly independent of the other three variables.
@ And the toothache and catch are conditionally independent given the
cavity (one as no effect on the other given the information about the

cavity).
Toothache @

oy «F = =, = @©ac
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Each node represents one variable
(assume discrete for simplicity). P@) P®)
A link joining two nodes is directional
and it represents conditional Pdb)

probabilities.

The intuitive meaning of a link is that
the source has a direct influence on the
sink.

Since we typically work with discrete
distributions, we evaluate the
conditional probability at each node
given its parents and store it in a
lookup table called a conditional
probability table.




PE)

Earthquake

002

LR S

P(J)

90
05

P(M)

3

.70
01

@ Key: given knowledge of the values of some nodes in the network, we can

apply Bayesian inference to determine the maximum posterior values of the
unknown variables! -
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@ Consider a Bayes network with n variables x1, ..., x,.
@ Denote the parents of a node z; as P(z;).

@ Then, we can decompose the joint distribution into the product of
conditionals

Pz, ) = [ [ P (2l P(x2)) (73)
i=1
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@ What is the distribution at a single
node, given the rest of the network and e parents of X
the evidence e? P(xja) P(xip)

@ Parents of X, the set P are the nodes
on which X is conditioned.

@ Children of X, the set C are the nodes children of X
conditioned on X.
@ Use the Bayes Rule, for the case on the right:
P(a,b,z,c,d) = P(a,b, z|c,d)P(c,d) (74)
= P(a,b|z)P(z|c,d)P(c,d) (75)

or more generally,

P(C(x), z,P(x)le) = P(C(z)|z,e)P(x|P(x),e) P(P(z), )  (76)
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