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Introduction

Until now, we’ve assumed our training samples are “labeled” by their
category membership.

Methods that use labeled samples are said to be supervised ;
otherwise, they’re said to be unsupervised.

However:

Why would one even be interested in learning with unlabeled samples?
Is it even possible in principle to learn anything of value from unlabeled
samples?
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Introduction

Why Unsupervised Learning?

1 Collecting and labeling a large set of sample patterns can be
surprisingly costly.

E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.

2 Extend to a larger training set by using semi-supervised learning.

Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.
Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

3 To detect the gradual change of pattern over time.

4 To find features that will then be useful for categorization.

5 To gain insight into the nature or structure of the data during the
early stages of an investigation.
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Data Clustering

Data Clustering
Source: A. K. Jain and R. C. Dubes. Alg. for Clustering Data, Prentiice Hall, 1988.

What is data clustering?

Grouping of objects into meaningful categories
Given a representation of N objects, find k clusters based on a
measure of similarity.

Why data clustering?

Natural Classification: degree of similarity among forms.
Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.
Compression: for organizing data.
Applications: can be used by any scientific field that collects data!

Google Scholar: 1500 clustering papers in 2007 alone!
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Data Clustering

E.g.: Structure Discovering via Clustering
Source: http://clusty.com
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Data Clustering

E.g.: Topic Discovery
Source: Map of Science, Nature, 2006

800,000 scientific papers clustered into 776 topics based on how often
the papers were cited together by authors of other papers
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Data Clustering

Data Clustering - Formal Definition

Given a set of N unlabeled examples D = x1, x2, ..., xN in a
d-dimensional feature space, D is partitioned into a number of
disjoint subsets Dj ’s:

D = ∪kj=1Dj where Di ∪Dj = ∅, i 6= j , (1)

where the points in each subset are similar to each other according to
a given criterion Φ.

A partition is denoted by

π = (D1, D2, ..., Dk) (2)

and the problem of data clustering is thus formulated as

π∗ = argmin
π

f(π) , (3)

where f(·) is formulated according to Φ.
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Data Clustering

k-Means Clustering
Source: D. Aurthor and S. Vassilvitskii. k-Means++: The Advantages of Careful
Seeding

Randomly initialize µ1, µ2, ..., µc
Repeat until no change in µi:

Classify N samples according to nearest µi

Recompute µi
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Data Clustering

k-Means++ Clustering
Source: D. Aurthor and S. Vassilvitskii. k-Means++: The Advantages of Careful
Seeding

Choose starting centers iteratively.

Let D(x) be the distance from x to the nearest existing center, take
x as new center with probability ∝ D(x)2.

Repeat until no change in µi:

Classify N samples according to nearest µi

Recompute µi

(refer to the slides by D. Author and S. Vassolvitskii for details)
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User’s Dilemma

User’s Dilemma
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

1 What is a cluster?

2 How to define pair-wise similarity?

3 Which features and normalization scheme?

4 How many clusters?

5 Which clustering method?

6 Are the discovered clusters and partition valid?

7 Does the data have any clustering tendency?
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User’s Dilemma

Cluster Similarity?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Compact Clusters
Within-cluster distance < between-cluster connectivity

Connected Clusters
Within-cluster connectivity > between-cluster connectivity

Ideal cluster: compact and isolated.
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User’s Dilemma

Representation (features)?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

There’s no universal representation; they’re domain dependent.
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User’s Dilemma

Good Representation
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

A good representation leads to compact and isolated clusters.
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User’s Dilemma

How do we weigh the features?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Two different meaningful groupings produced by different weighting
schemes.
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User’s Dilemma

How do we decide the Number of Clusters?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

The samples are generated by 6 independent classes, yet:

ground truth k = 2

k = 5 k = 6
A. Y. C. Chen (SUNY at Buffalo) Clustering Part of Lecture 7 Mar. 24 2009 16 / 19



User’s Dilemma

Cluster Validity
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Clustering algorithms find clusters, even if there are no natural
clusters in the data.

100 2D uniform data points k-Means with k=3
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User’s Dilemma

Comparing Clustering Methods
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Which clustering algorithm is the best?
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User’s Dilemma

There’s no best Clustering Algorithm!
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

Each algorithm imposes a structure on data.
Good fit between model and data ⇒ success.

GMM; k=3 GMM; k=2

Spectral; k=3 Spectral; k=2
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