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@ Until now, we've assumed our training samples are “labeled” by their
category membership.

@ Methods that use labeled samples are said to be supervised;
otherwise, they're said to be unsupervised.
@ However:

e Why would one even be interested in learning with unlabeled samples?

e Is it even possible in principle to learn anything of value from unlabeled
samples?
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@ Collecting and labeling a large set of sample patterns can be
surprisingly costly.

expensive and time consuming.

o E.g., videos are virtually free, but accurately labeling the video pixels is
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o E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.

@ Extend to a larger training set by using semi-supervised learning.

e Train a classifier on a small set of samples, then tune it up to make it

run without supervision on a large, unlabeled set.

@ Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.
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@ Collecting and labeling a large set of sample patterns can be
surprisingly costly.

o E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.

@ Extend to a larger training set by using semi-supervised learning.
e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.
@ Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

© To detect the gradual change of pattern over time.

PAENGS

[m] = = =

BN NGETYTYNIWCASI  Clustering Part of Lecture 7 Mar. 242000 319



@ Collecting and labeling a large set of sample patterns can be
surprisingly costly.
o E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.
@ Extend to a larger training set by using semi-supervised learning.

e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.

@ Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

© To detect the gradual change of pattern over time.

@ To find features that will then be useful for categorization.
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Why Unsupervised Learning?

o

© 00

Collecting and labeling a large set of sample patterns can be
surprisingly costly.
o E.g., videos are virtually free, but accurately labeling the video pixels is
expensive and time consuming.
Extend to a larger training set by using semi-supervised learning.

e Train a classifier on a small set of samples, then tune it up to make it
run without supervision on a large, unlabeled set.

@ Or, in the reverse direction, let a large set of unlabeled data group
automatically, then label the groupings found.

To detect the gradual change of pattern over time.
To find features that will then be useful for categorization.

To gain insight into the nature or structure of the data during the
early stages of an investigation.
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@ What is data clustering?

e Grouping of objects into meaningful categories
measure of similarity.

e Given a representation of N objects, find k clusters based on a
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@ What is data clustering?

e Grouping of objects into meaningful categories
o Given a representation of N objects, find k clusters based on a
measure of similarity.
@ Why data clustering?

o Natural Classification: degree of similarity among forms.

e Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.

e Compression: for organizing data.
e Applications: can be used by any scientific field that collects data!
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@ What is data clustering?
e Grouping of objects into meaningful categories
o Given a representation of N objects, find k clusters based on a
measure of similarity.

o Why data clustering?
o Natural Classification: degree of similarity among forms.
e Data exploration: discover underlying structure, generate hypotheses,
detect anomalies.
e Compression: for organizing data.
e Applications: can be used by any scientific field that collects data!

@ Google Scholar: 1500 clustering papers in 2007 alone!
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@ 800,000 scientific papers clustered into 776 topics based on how often
the papers were cited together by authors of other papers
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@ Given a set of N unlabeled examples D = x1,29,...,xN in a
d-dimensional feature space, D is partitioned into a number of
disjoint subsets D;'s:

k

where D; U D; = 0,i#7 ,
a given criterion .

where the points in each subset are similar to each other according to

(1)
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@ Given a set of N unlabeled examples D = x1,29,...,xN in a
d-dimensional feature space, D is partitioned into a number of
disjoint subsets D;'s:

D=Uf_D; where D;UD;=0,i#j , (1)
where the points in each subset are similar to each other according to

a given criterion .

@ A partition is denoted by

= (Dl,DQ,...,Dk) (2)
and the problem of data clustering is thus formulated as

7 = argmin f(m) ,
s

(3)
where f(-) is formulated according to ®.
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;

L]
.\ Data Point

Mar. 24 2009

DA
8/19




e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;
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Assign points to closest centers
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;

Recompute centers
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;
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e Randomly initialize 1, po,
@ Repeat until no change in p;:

weey M
o Classify N samples according to nearest p;
e Recompute p;

X
x

Points already assigned to nearest
centers: Aliorithm ends
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@ Choose starting centers iteratively.

o Let D(z) be the distance from x to the nearest existing center, take
x as new center with probability oc D(x)2.

@ Repeat until no change in p;:

o Classify N samples according to nearest p;
o Recompute p;

o (refer to the slides by D. Author and S. Vassolvitskii for details)
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@ What is a cluster?

@ How to define pair-wise similarity?
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© Which features and normalization scheme?
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@ What is a cluster?

@ How to define pair-wise similarity?

© Which features and normalization scheme?
@ How many clusters?
© Which clustering method?

@ Are the discovered clusters and partition valid?
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@ What is a cluster?

@ How to define pair-wise similarity?

© Which features and normalization scheme?

@ How many clusters?

© Which clustering method?

@ Are the discovered clusters and partition valid?

@ Does the data have any clustering tendency?
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@ Compact Clusters

@ Connected Clusters

o Within-cluster distance < between-cluster connectivity

e Within-cluster connectivity > between-cluster connectivity
@ ldeal cluster: compact and isolated.
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User's Dilemma

Representation (features)?
Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

@ There's no universal representation; they're domain dependent.

aolo[o]/
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Image retrieval Handwritten digits

Segmentation Time series (sea-surface temp)

Gene Expressions

nxn similarity matrix
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@ A good representation leads to compact and isolated clusters.
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How do we weigh the features?

Source: R. Dubes and A. K. Jain, Clustering Techniques: User’s Dilemma, PR 1976

@ Two different meaningful groupings produced by different weighting

schemes.

Mammals Predators
\/s. Vs.
Birds Non-

Predators

Large wight on

Large weight on
appearance features activity features

http://www.ofai.at/~elias.pampalk/kdd03/animals/
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@ The samples are generated by 6 independent classes, yet:

ground truth
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o Clustering algorithms find clusters, even if there are no natural

clusters in the data.
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@ Which clustering algorithm is the best?
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@ Each algorithm imposes a structure on data
@ Good fit between model and data = success
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