
CSE 555 Spring 2010 Homework 2: Parametric Learning and Dimensionality
Jason J. Corso
Computer Science and Engineering
SUNY at Buffalo
jcorso@buffalo.edu
Date Assigned 1 Feb 2010
Date Due 26 Feb 2010
Homework must be submitted in class. No late work will be accepted.

This homework contains both written and computer questions. You must turn in the written questions (which may
be parts of the computer questions) in class and you must submit the computer code via the CSE submit script.
For the computer parts, on this homework in particular, it is highly recommended that you use Matlab (available
in the department/SENS labs). However, you are free to choose your poison (C/C++ or Java). If you do so, I
recommend you acquaint yourself with the CLAPACK (C Linear Algebra Package) or JAMA (Java Numerics http:
//math.nist.gov/javanumerics/jama/doc).

Problem 1: Multivariate Gaussian MLE (15%)

Derive the equations for the maximum likelihood solution to the mean and covariance matrix of a multivariance
Normal distribution. (This was assigned in class.)

Problem 2: Maximum Entropy Parameter Estimation (20+20%)

In lecture, we covered maximum likelihood parameter estimation, maximum a posteriori parameter estimation, and
Bayesian parameter estimation. A fourth form of parameter estimation is called the method of maximum entropy. In
maximum entropy estimation, we assume the distribution is fixed, but unknown (as before) but that we know number
of related constraints, such as the mean, variance, etc.. The maximum entropy estimate of the distribution is the one
that has maximum randomness subject to the known constraints.

Recall, the entropy of a distribution p(x) is given by

H (x) = −
∫

p(x) ln p(x)dx (1)

1. Assume p(x) is nonzero only on the interval x1 ≤ x ≤ x2 and zero otherwise. Compute the maximum
entropy of its pdf. (Hint: maximize eq. (1) subject to the constraint that p(x) integrates to 1 on the interval
x1 ≤ x ≤ x2.)

2. (Extra Credit 20pts.) Assume we have the following two constraints:

µ =
∫ ∞

−∞
xp(x)dx (2)

σ2 =
∫ ∞

−∞
(x− µ)2p(x)dx (3)

Now, show the maximum entropy estimate of the distribution is the Normal distribution N (µ, σ2).

Problem 3: Dimensionality (20%)

As we discussed in the class nearest neighbor algorithms are very intuitive for data in low-dimensions. They assume
we should be able to find a good number of examples close to a given point x and use the examples to estimate the
class of x (these are its neighbors). However, in high-dimensions, this assumption breaks down; this makes learning
hard and is an instance of the curse of dimensionality. Consider inputs distributed in a d-dimensional unit hypercube
[0, 1]d. Suppose we define a hypercubical neighborhood around a point x to capture a fraction r of the unit volume.



The point and the hypercubical neighborhood are assumed to be fully inside of the unit hypercube without loss of
generality. Denote the length of each side of the hypercubic neighborhood as l.

1. Derive l for d = 1 and d = 2.

2. Show that l = r1/d. What is l with d = 100 for r = 0.1? In other words, to capture 10 percent of the data in
the 100-dimensional space, what is that length of a side of the hypercubic neighborhood?

3. For d = 10100, how big on average do you need to make l in order to capture 1% of the data? How big for
10%?

Problem 4: Component Analysis (45%) Now, let’s get our hands dirty!

As we saw in the case of faces, principal component analysis provides a way of creating an optimal low-dimensional
representation of a dataset. Now, let’s do such a PCA analysis on handwritten digits.

Download the dataset from the website:
http://www.cse.buffalo.edu/˜jcorso/t/555pdf/homework2-data.tar.gz. The datafiles are
also available on the CSE network at /projects/jcorso/CSE555/homework2-data. This is a subset
of the LeCun’s MNIST dataset containing just the digits 0,1, and 2. The full dataset is available at http://
yann.lecun.com/exdb/mnist/ or in a more convenient Matlab format http://www.cs.toronto.edu/
˜roweis/data/mnist_all.mat. The dataset is split into training and testing pictures. Do all PCA analysis on
the training pictures, and reserve the testing pictures until the last part (nearest neighbor classification).

The images are all in the PGM format (Matlab can read these directly). The format is simple:

// Line1 P5
// Line2 WIDTH HEIGHT
// Line3 255
// Line4 ROW-WISE-BYTE-CHUNK-OF-PIXELS

1. Write a function to perform PCA on a group of images. This will require you to vectorize the images (i.e., do
not do IMPCA). Input the number of dimensions k you want to estimate and output the set of eigenvectors and
their corresponding eigenvalues (for the largest k).

2. Use the PCA function from question 1 to compute the Digit-0-Space. Plot the mean image and then the first 20
eigenvectors (as images). Plot the eigenvalues (in decreasing order) as a function of dimension (for the first 100
dimensions). Describe what you find in both plots.

3. Use the PCA function from question 1 to compute the Digit-2-Space. Plot the mean image and then the first 20
eigenvectors (as images). Plot the eigenvalues (in decreasing order) as a function of dimension (for the first 100
dimensions). Describe what you find in both plots.

4. Use the PCA function from question 1 to compute the Digit-Space. Plot the mean image and then the first 20
eigenvectors (as images). Plot the eigenvalues (in decreasing order) as a function of dimension (for the first 100
dimensions). Compare and constrast what you find in this plots to the ones you created in questions 2 and 3.

5. Implement a nearest-neighbor (NN) classifier to input a training dataset, compute the PCA space, and then take
a query image and assign it the class of its nearest neighbor in the PCA space.

6. Use the NN classifier to classify the testing images? Prepare a figure that shows 5 correctly classified images of
each class and 5 incorrectly classified images of each class. Prepare a table giving the quantitative results over
all of the testing data. Explain your findings.

How and what to submit: explains, figures and tables should be part of the “written” assignment. The code (whether
it is Matlab, C or Java) should be tar’d and submitted via the CSE submit script:



1. Login to pollux (the code MUST work on the CSE machines).

2. Use “tar -cvf homework2.tar list-of-files-or-directories”.

3. Then, type “submit cse555 homework2.tar”.

Include a README file to explain what is there, but only submit the code. If it is C/C++ code, you need to include
a makefile that will compile on the CSE machines (it is thus encouraged to link to any libraries available there rather
than submitting them). If it is Java code, you need to include an ant file that will compile on the CSE machines. In all
cases, you need to include a script named “go” that will (once compiled) do everything requested in the assignment
(in the case of C or Java, it is sufficient to generate image files of the plots and save them to reasonably named files).
The script can be bash/tcsh for C/Java and should be a simple Matlab script for Matlab.


