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@ In the last lecture, we looked at

@ Lack of inherent superiority of any one particular classifier;
@ Some systematic ways for selecting a particular method over another
for a given scenario;

@ And, we talked briefly about the bagging method for integrating
component classifiers.

@ Now, we turn to boosting and the AdaBoost method for integrating
component classifiers into one strong classifier.
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@ Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.
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@ Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

@ The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:
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@ Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

@ The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:
© Gathering as many examples as possible of both spam and non-spam
emails.
@ Train a classifier using these examples and their labels.
© Take the learned classifier, or prediction rule, and use it to filter your
mail.
© The goal is to train a classifier that makes the most accurate
predictions possible on new test examples.
And, we've covered related topics on how to measure this like bias and
variance.
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@ Imagine the situation where you want to build an email filter that can
distinguish spam from non-spam.

@ The general way we would approach this problem in ML/PR follows
the same scheme we have for the other topics:

© Gathering as many examples as possible of both spam and non-spam
emails.

@ Train a classifier using these examples and their labels.

© Take the learned classifier, or prediction rule, and use it to filter your
mail.

© The goal is to train a classifier that makes the most accurate
predictions possible on new test examples.
And, we've covered related topics on how to measure this like bias and
variance.

e But, building a highly accurate classifier is a difficult task. (You still
get spam, right?!)
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Introduction

@ We could probably come up with many quick rules of thumb. These
could be only moderately accurate. Can you think of an example for
this situation?
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Introduction

@ We could probably come up with many quick rules of thumb. These
could be only moderately accurate. Can you think of an example for
this situation?

@ An example could be "“if the subject line contains ‘buy now' then
classify as spam.”
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Introduction

@ We could probably come up with many quick rules of thumb. These
could be only moderately accurate. Can you think of an example for
this situation?

@ An example could be "“if the subject line contains ‘buy now' then
classify as spam.”

@ This certainly doesn't cover all spams, but it will be significantly
better than random guessing.
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o Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.
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o Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

@ It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.
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o Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

@ It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

@ To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.
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Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).



Boosting refers to a general and provably effective method of
producing a very accurate classifier by combining rough and
moderately inaccurate rules of thumb.

It is based on the observation that finding many rough rules of
thumb can be a lot easier than finding a single, highly accurate
classifier.

To begin, we define an algorithm for finding the rules of thumb,
which we call a weak learner.

The boosting algorithm repeatedly calls this weak learner, each time
feeding it a different distribution over the training data (in Adaboost).

Each call generates a weak classifier and we must combine all of
these into a single classifier that, hopefully, is much more accurate
than any one of the rules.
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A Toy Example (From Schapire’s Slides)
Toy Example

weak classifiers = vertical or horizontal half-planes
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A Toy Example (From Schapire’s Slides)
Round 1
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Round 2
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Round 3
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Final Classifier
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STOP!
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Introduction Wrap-Up

@ How should the distribution be chosen each round?
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@ How should the weak rules be combined into a single rule?
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Introduction Wrap-Up

@ How should the distribution be chosen each round?

@ How should the weak rules be combined into a single rule?
© How should the weak learner be defined?
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Introduction Wrap-Up

@ How should the distribution be chosen each round?
@ How should the weak rules be combined into a single rule?
© How should the weak learner be defined?

@ How many weak classifiers should we learn?
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@ We are given a training set

D:{(Xiayi): Xq ERdayi € {_1a+1}ai: 17--'am}
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@ We are given a training set

D:{(Xiayi): Xq ERdayi € {_1a+1}ai: 17--'am}

- (M
@ For example, x; could represent some encoding of an email message
(say in the vector-space text model), and y; is whether or not this
message is spam.
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@ We are given a training set

D= {(Xiayi): X; € Rdayi € {_1a+1}ai =1,... am}' (1)

@ For example, x; could represent some encoding of an email message
(say in the vector-space text model), and y; is whether or not this
message is spam.

@ Note that we are working in a two-class setting, and this will be the
case for the majority of our discussion. Some extensions to multi-class
scenarios will be presented.
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@ We are given a training set

D= {(Xiayi): Xi € Rd’yi € {_1a+1}ai =1,... am}' (1)

@ For example, x; could represent some encoding of an email message
(say in the vector-space text model), and y; is whether or not this
message is spam.

@ Note that we are working in a two-class setting, and this will be the
case for the majority of our discussion. Some extensions to multi-class
scenarios will be presented.

@ We need to define a distribution D over the dataset D such that

S, D(i) = 1.
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Weak Learners and Weak Classifiers

o First, we concretely define a weak classifier:

he: R — {—1,+1}
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Weak Learners and Weak Classifiers

o First, we concretely define a weak classifier:
he: R — {—1,+1} (2)

o A weak classifier must work better than chance. In the two-class
setting this means it has less than 50% error and this is easy; if it
would have higher than 50% error, just flip the sign. So, we want only
a classifier that does not have exactly 50% error (since these
classifiers would add no information).
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Weak Learners and Weak Classifiers

o First, we concretely define a weak classifier:
he: R — {—1,+1} (2)

o A weak classifier must work better than chance. In the two-class
setting this means it has less than 50% error and this is easy; if it
would have higher than 50% error, just flip the sign. So, we want only
a classifier that does not have exactly 50% error (since these
classifiers would add no information).

@ The error rate of a weak classifier hy(x) is calculated empirically over
the training data:

I\J||—‘
—
w
~

e(hi) = Zé(ht ;) # yi) <
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Weak Learners and Weak Classifiers

@ Consider the case that our input data x; are
rectangular image patches.

e And consider this case closely as it is part of
project I.
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Weak Learners and Weak Classifiers

@ Consider the case that our input data x; are
rectangular image patches.
e And consider this case closely as it is part of
project I.

@ Define a collection of Haar-like

rectangle features. ﬂ 5

@ The feature value extracted is N 5
the difference of the pixel sum
in the white sub-regions and the [ E
black sub-regions. . R

@ With a base patch size of 24x24,
there are over 180,000 possible
such rectangle features. L= =
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SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.
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SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

@ And, they are quite efficiently computed when using the integral
image representation.

J. Corso (SUNY at Buffalo) AdaBoost Lecture 8 March 30 2010 12 / 62



SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

@ And, they are quite efficiently computed when using the integral
image representation.

@ Define the integral image as the image whose pixel value at a
particular pixel x, ¥ is the sum of the pixel values to the left and
above x,y in the original image:

ii(z,y) = Y i(z,y) (4)

o' <wzy' <y

where 77 is the integral image and i is the original image.
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SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ Although these features are somewhat primitive in comparison to
things like steerable filters, SIFT keys, etc., they do provide a rich set
on which boosting can learn.

@ And, they are quite efficiently computed when using the integral
image representation.

@ Define the integral image as the image whose pixel value at a
particular pixel x, ¥ is the sum of the pixel values to the left and
above x,y in the original image:

ii(z,y) = Y i(z,y) (4)
o' <z,y'<y
where 77 is the integral image and i is the original image.
@ Use the following pair of recurrences to compute the integral image in
just one pass.
ii(z,y) = ii(z — 1,y) + s(z,y) (6)
where we define s(z, —1) = 0 and ii(—1,y) = 0.
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SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ The sum of a particular rectangle can be computed in just 4
references using the integral image.

@ The value at point 1 is the sum

of the pixels in rectangle A. A B
o Point 2 is A+B. R E—
@ Point 3 is A+C. : 4

e Point 4 is A+B+C+D.

J. Corso (SUNY at Buffalo) AdaBoost Lecture 8 March 30 2010 13 / 62



SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ The sum of a particular rectangle can be computed in just 4
references using the integral image.

@ The value at point 1 is the sum

of the pixels in rectangle A. A B
o Point 2 is A+B. R E—
@ Point 3 is A+C. : 4

e Point 4 is A+B+C+D.

@ So, the sum within D alone is
4+1-2-3.
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SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ The sum of a particular rectangle can be computed in just 4
references using the integral image.

@ The value at point 1 is the sum

of the pixels in rectangle A. A B
o Point 2 is A+B. R E—
@ Point 3 is A+C. : 4

@ Point 4 is A+B+C+D.
@ So, the sum within D alone is
4+1-2-3.
@ We have a bunch of features. We certainly can’t use them all. So, we

let the boosting procedure select the best. But before we can do this,
we need to pair these features with a simple weak learner.
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SECWANEISIIS Ml \Veak Learners and Weak Classifiers

@ Each run, the weak learner is designed to select the single rectangle
feature which best separates the positive and negative examples.

@ The weak learner searches for the optimal threshold classification
function, such that the minimum number of examples are
misclassified.

@ The weak classifier hi(x) hence consists of the feature fi(x), a
threshold 6, and a parity p; indicating the direction of the inequality
sign:

+1if pifi(x) < peby
. (7)
—1 otherwise.

ht(X) =
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The AdaBoost Classifier

@ Let's assume we have selected T weak classifiers and a scalar
constant oy associated with each:

h:{htt:].,,T}
a={a:t=1,...,T}
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The AdaBoost Classifier

@ Let's assume we have selected T weak classifiers and a scalar
constant oy associated with each:

h:{htt:].,,T}
a={a:t=1,...,T}

(8)
@ Denote the inner product over all weak classifiers as F':

F(x) = Zatht(x) = (o, h(x))
t=1

(10)
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The AdaBoost Classifier

@ Let's assume we have selected T weak classifiers and a scalar
constant oy associated with each:

h:{htt:].,,T}
a={a:t=1,...,T}

(8)
@ Denote the inner product over all weak classifiers as F':

F(x) = Zatht(x) = (o, h(x))
t=1

(10)

T
H(x) = sign [F(x)] = sign [Z atht(x)] (11)
t=1
=} =

@ Define the strong classifier as the sign of this inner product:

DA
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SECIWAEISIIS Ml The AdaBoost Classifier

@ Our objective is to choose h and a to minimize the empirical
classification error of the strong classifier.

(h,a)* = argmin Err(H; D) (12)

= argmin — Zé (xi) # vi) (13)
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SECIWAEISIIS Ml The AdaBoost Classifier

@ Our objective is to choose h and a to minimize the empirical
classification error of the strong classifier.

(h,a)* = argmin Err(H' D) (12)

= argmin — Zé (xi) # vi) (13)

@ Adaboost doesn't directly minimize this error but rather minimizes an
upper bound on it.
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The AdaBoost Classifier

!

Weak Learner

Input
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The AdaBoost Algorithm

Given D = (x;,¥i), - - -, (Xm, Ym ) as before.

Initialize the distribution D; to be uniform: Dq(i) = L.
Repeat fort =1,...,T":

1 Learn weak classifier h; using distribution D;.

e For the example given, this requires you to learn the threshold and the
parity at each iteration given the current distribution D; for the weak
classifier h over each feature:

e Note, there are other ways of doing this step...
). Corso (SUNY at Buffalo) | PP T2 A
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The AdaBoost Algorithm

Given D = (x4,%i),- - -, (Xm, Ym) as before.
Initialize the distribution Dy to be uniform: D1 (i) = L.
Repeat fort =1,...,T":

1 Learn weak classifier h; using distribution D;.

e For the example given, this requires you to learn the threshold and the
parity at each iteration given the current distribution D; for the weak
classifier h over each feature:

@ Compute the weighted error for each weak classifier.

ei(h) = 3 Du(D)d(h(x:) # yi).  Vh (14)

e Note, there are other ways of doing this step...
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The AdaBoost Algorithm

Given D = (x4,%i),- - -, (Xm, Ym) as before.
Initialize the distribution Dy to be uniform: D1 (i) = L.
Repeat fort =1,...,T":

1 Learn weak classifier h; using distribution D;.

e For the example given, this requires you to learn the threshold and the
parity at each iteration given the current distribution D; for the weak
classifier h over each feature:

@ Compute the weighted error for each weak classifier.
ei(h) =Y Di(i)3(h(x:) # y:), Vh (14)
i=1

@ Select the weak classifier with minimum error.

hy = argminy, e,(h) (15)

e Note, there are other ways of doing this step...

- = wa
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EESIWACEISISM The AdaBoost Algorithm

2 Set weight oy based on the error:
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EESIWACEISISM The AdaBoost Algorithm

2 Set weight oy based on the error:

3 Update the distribution based on the performance so far:

Dyt (i) = thDt(i) exp [—aryihi(z;)] (17)

where Z; is a normalization factor to keep D;y1 a distribution. Note
the careful evaluation of the term inside of the exp based on the
possible {—1, 41} values of the label.
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EESIWACEISISM The AdaBoost Algorithm

2 Set weight oy based on the error:

3 Update the distribution based on the performance so far:
. 1 .
Dyi1(i) = ZDt(z) exp [—ayih(x;)] (17)

where Z; is a normalization factor to keep D;y1 a distribution. Note
the careful evaluation of the term inside of the exp based on the
possible {—1, 41} values of the label.

One chooses T based on some established error criterion or some
fixed number.
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o Facts about the weights and normalizing functions.

e AdaBoost Convergence (why and how fast).

o Why do we calculate the weight of each weak classifier to be
1. 1—¢(h
0y = 5 In Et( t)

?
Et(ht)
error?

@ Why do we choose the weak classifier that has the minimum weighted
o Testing Error Analysis.
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1
et(ht)<—éat=—|

n 1-— Gt(ht)

Et(ht)

>0

March 30 2010
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@ The selected weight for each new weak classifier is always positive.

(18)




@ The selected weight for each new weak classifier is always positive.
1 1 1—¢(h
Et(ht) < E = o = E In Gt( t)

>0
Et(ht)
@ The smaller the classification error, the bigger the weight and the
classifier.

more this particular weak classifier will impact the final strong

(18)

e(hA) < E(hB) = g > QB

(19)
o =
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@ The weights of the data points are multiplied by exp [—y;ah(x;)].
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@ The weights of the data points are multiplied by exp [—y;ah(x;)].

. N Jexpl-ar] <1 if hy(xg) = yi
exp [_yzatht(xz)] = {exp [Oét] -1 i ht(xi) £y, (20)

@ The weights of correctly classified points are reduced and the weights

of incorrectly classified points are increased. Hence, the incorrectly
classified points will receive more attention in the next run.
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AdaBoost Analysis

@ The weight distribution can be computed recursively:

Dys(i) = thDtu) exp [—auyihe(2:)] (21)

1
= D; (2 —Y; he(xz; _1hi—1(x;
Z .77 1(1)6XP[ Yi (ouwhe(wi) + cu—1hy—1(x ))}

— MDl(i) exp [—yi(atht(xi) bt alhl(ﬂfi)):|
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@ At each iteration, the weights on the data points are normalized by

Zy = Z Di(x;) exp [—yicihi(x;)]

XiGA

— Z Dy(x;) exp [—au] + Z Dy(x;) exp [ov]

xieﬁ
where A is the set of correctly classified points: {x;: v; = h(x;)}.

=] 5
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@ At each iteration, the weights on the data points are normalized by

Zy = Z Di(x;) exp [—yicihi(x;)]

(22)
= Z Dy(x;) exp [—au] + Z Dy(x;) exp [ou] (23)
x;€A xieﬁ

where A is the set of correctly classified points: {x;: v; = h(x;)}.

@ We can write these normalization factors as functions of ay, then:

Ly = Zt(Oét)

(24)
=] =
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AdaBoost Analysis

@ Recall the data weights can be computed recursively:

1

Dyai) = ———
) =772

%exp [—yiF(xi)] - (25)
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AdaBoost Analysis

@ Recall the data weights can be computed recursively:

Lo L o[ wF(x)] - (25)

Dyi1(7) = 7 Zim

@ And, since we know the data weights must sum to one, we have

Z Dy(x;) = Zt m Z exp —yi ' Xz)] =1 (26)
=1
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AdaBoost Analysis

@ Recall the data weights can be computed recursively:

Lo L o[ wF(x)] - (25)

Dyai) = ———
) =z ——2

@ And, since we know the data weights must sum to one, we have

Z Dy(x;) = Zt m Z exp —yi ' Xz)] =1 (26)
=1

@ Therefore, we can summarize this with a new normalizing function:

Z="7y... 7= % Z exp|[—yiF(x;)] - (27)

J. Corso (SUNY at Buffalo) AdaBoost Lecture 8 March 30 2010 25 / 62



AdaBoost Convergence

classification error.

o Key ldea: AdaBoost minimizes an upper bound on the

(PN G4
March 30 2010 26 / 62



AdaBoost Convergence

o Key ldea: AdaBoost minimizes an upper bound on the
classification error.

o Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

EFF(H) S Z = Z(O{, h,) = Zt(at, h't) PN Zl(Oél, h]_) (28)
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AdaBoost Convergence

o Key ldea: AdaBoost minimizes an upper bound on the
classification error.

o Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

EFF(H) S Z = Z(O{, h,) = Zt(at, h't) PN Zl(Oél, h]_) (28)

o AdaBoost is a greedy algorithm that minimizes this upper bound on
the classification error by choosing the optimal h; and a; to minimize
Z; at each step.

(h,a)* = argmin Z(a, h) (29)
(he, ap)* = argmin Zy(ay, hy) (30)

o F = = DA
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AdaBoost Convergence

o Key ldea: AdaBoost minimizes an upper bound on the
classification error.

o Claim: After t steps, the error of the strong classifier is bounded
above by quantity Z, as we just defined it (the product of the data
weight normalization factors):

EFF(H) S Z = Z(O[, h,) = Zt(at, h't) PN Zl(Oél, h]_) (28)

o AdaBoost is a greedy algorithm that minimizes this upper bound on
the classification error by choosing the optimal h; and a; to minimize
Z; at each step.

(h,a)* = argmin Z(a, h) (29)
(he, ap)* = argmin Zy(ay, hy) (30)
@ As Z goes to zero, the classification error goes to zero. Hence, it

converges. (But, we need to account for the case when no new weak
classifier has an error rate better than 0.5, upon which time we should stop.)
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JAGEII WG EIVSIN AdaBoost Convergence

@ We need to show the claim on the error bound is true:

Err(H) = = > 6(H(x) £ ) < Z = - > exp-yiF(x)] (31)
=1 =1
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JAGEII WG EIVSIN AdaBoost Convergence

@ We need to show the claim on the error bound is true:
1 m
Err(H) = — D (H(xi) £ i) < Z Zexp[ yil'(xi)] (31)
i=1

@ Proof:

F(xi) = sign(F(x:)) | F(xi)| (32)
= H(xi)|F(xi)| (33)
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JAGEII WG EIVSIN AdaBoost Convergence

@ We need to show the claim on the error bound is true:
1 m
Err(H) = — D (H(xi) £ i) < Z Zexp[ yil'(xi)] (31)
i=1

@ Proof:

F(xi) = sign(F(x:)) | F(xi)| (32)
= H(xi)|F(xi)| (33)

@ The two cases are:

If H(x;) # y; then the LHS = 1 < RHS = e HF(x)l,
If H(x;) = y; then the LHS = 0 < RHS = ¢~ 1 (x:)l,
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JAGEII WG EIVSIN AdaBoost Convergence

@ We need to show the claim on the error bound is true:
1 m
Err(H) = — D (H(xi) £ i) < Z Zexp[ yil'(xi)] (31)
i=1

@ Proof:
F(x;) = sign(F(x;))|F(x:)| (32)
= H(x;)|F(xi)| (33)

@ The two cases are:

If H(x;) # y; then the LHS = 1 < RHS = e HF(x)l,
If H(x;) = y; then the LHS = 0 < RHS = ¢~ 1 (x:)l,

@ So, the inequality holds for each term
S(H(x:) # yi) < exp [—yiF(x)] (34)

and hence, the inequality is true.
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AdaBoost Convergence

minimization problem:

@ Now, we want to explore how we are solving the step-wise

(he, ap)* = argmin Z( oy, hy)
@ Recall, we can separate Z into two parts:

(35)
Zi(ous he) = Z Dy(x;) exp [-au] + Z Dy(x;) exp [ov]
x; €A

(36)
xieﬂ
where A is the set of correctly classified points: {x;: v; = hs(x;)}.
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AdaBoost Convergence

@ Now, we want to explore how we are solving the step-wise
minimization problem:

(he, ap)* = argmin Z( oy, hy)
@ Recall, we can separate Z into two parts:

(35)
Zy(an, ) = Z Dy(x;) exp [-au] + Z Dy(x;) exp [ov]
x; €A

(36)
xieﬂ
where A is the set of correctly classified points: {x;: v; = hs(x;)}.
@ Take the derivative w.r.t. «; and set it to zero:
dZt(Oét, ht)
doxt x;€EA

=Y Dix)epl-ad + Y Dyx;)expla] =0 (37)
xiej
=] 5

Dac
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JAGEII WG EIVSIN AdaBoost Convergence

dz h
% = Z —Dy(x;) exp [—ay] + Z Dy(x;)explay] =0
t x; €A x; EA
Z Dy(x;) = Z Dy(x;) exp [2c¢]
x;EA x;EA
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JAGEII WG EIVSIN AdaBoost Convergence

dZt (Ozt y ht)
dO[t

= Z —Dy(x;) exp [—ou] + Z Dyi(x;)exp[ar] =0 (38)

x;EA x;EA

D Di(xi) = Y Dilxi)exp[20] (39)

x; €A Xi Ej

@ And, by definition, we can write the error as

ZDt x;)0(h(x;) # yi) Z Dy(x;), Vh (40)

x;€EA
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JAGEII WG EIVSIN AdaBoost Convergence

dZt (Ozt y ht)
dO[t

= Z —Dy(x;) exp [—ay] + Z Dy(x;)explay] =0

x;EA

Xi cA

D Dilxi) = ) Dilxi) exp [2a]

x;EA

Xi Ej

@ And, by definition, we can write the error as

ZDt XZ

Xz #yz ZDt Xz

@ Rewriting (39) and solving for oy yields

J. Corso (SUNY at Buffalo)

x;€EA
1 1-— Et(ht)
= " |p 0
o 2 n Et(ht)

AdaBoost Lecture 8

March 30 2010
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JAGEII WG EIVSIN AdaBoost Convergence

@ We can plug it back into the normalization term to get the minimum:

Zi(ag, he) = Z Dy(x;) exp [—au] + Z Dy(x;) exp [ou] (42)
x; €A x; €A

€t(ht)

= (1 — et(ht)) ?t(ht) + Et(ht) Lt(ht)

Et(ht)
= 2\/ee(he)(1 — €4(he)) (44)
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JAGEII WG EIVSIN AdaBoost Convergence

@ We can plug it back into the normalization term to get the minimum:

Zi(ag, hy) = Z Dy(x;)exp[—ay] + Z Dy (x;) exp [oy] (42)
x; €A x; €A

= (a7 sy ) )

=2/ (he)(1 — er(he)) (44)

@ Change a variable, v, = l —ei(he), e € (0, %]
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JAGEII WG EIVSIN AdaBoost Convergence

@ We can plug it back into the normalization term to get the minimum:

Zi(ag, hy) = Z Dy(x;)exp[—ay] + Z Dy (x;) exp [oy] (42)
x; €A x; €A

= (a7 sy ) )

=2/ (he)(1 — er(he)) (44)

@ Change a variable, v, = l —ei(he), e € (0, %]

@ Then, we have the minimum to be

(Oét, ht = 2\/Et 1 — Et(ht)) (45)
=/1—477 (46)
< exp [—277] (47)
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AVELII N WGEVWEEIN AdaBoost Convergence

o Therefore, after ¢ steps, the error rate of the strong classifier is
bounded on top by

T

Err(H) < Z <exp —22%2 (48)
t=1
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JAGEII WG EIVSIN AdaBoost Convergence

o Therefore, after ¢ steps, the error rate of the strong classifier is
bounded on top by

T
Err(H) < Z < exp —22%2 (48)
t=1

@ Hence, each step decreases the upper bound exponentially.
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JAGEII WG EIVSIN AdaBoost Convergence

o Therefore, after ¢ steps, the error rate of the strong classifier is
bounded on top by

T
Err(H) < Z < exp _22%2 (48)
t=1

@ Hence, each step decreases the upper bound exponentially.

@ And, a weak classifier with small error rate will lead to faster descent.
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AdaBoost Convergence

@ The objective of AdaBoost is to minimize an upper bound on the
classification error:

(o, h)* = argmin Z(a, h) (49)
= argmin Zy(ay, he) ... Z1(aa, hi) (50)
— argmin 3 exp [—yi(a, h(x:))] (51)

i=1

@ AdaBoost takes a stepwise minimization scheme, which may not be
optimal (it is greedy). When we calculate the parameter for the '
weak classifier, the others remain set.

@ We should stop AdaBoost if all of the weak classifiers have an error
rate of %

o <& = =, T 9ae
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Test Error Analysis (From Schapire’s Slides)
How Will Test Error Behave? (A First Guess)

20 40 60 80 100
# of rounds (T)

expect:
e training error to continue to drop (or reach zero)

e test error to increase when Hg,, becomes “too complex”
“Occam’s razor”
overfitting

hard to know when to stop training

J. Corso (SUNY at Buffalo) AdaBoost Lecture 8 March 30 2010
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AdaBoost Analysis

Actual Typical Run

20:

Test Error Analysis (From Schapire’s Slides)

15/\ CA.5 test error
5
510 (boosting C4.5 on
5§ test “letter” dataset)
o . Ltran
10 100 1000

# of rounds (T

e test error does not increase, even after 1000 rounds
(total size > 2,000,000 nodes)

e test error continues to drop even after training error is zero!

# rounds
5 | 100 | 1000
train error | 0.0 | 0.0 0.0
test error | 8.4 | 3.3 3.1

e Occam’s razor wrongly predicts “simpler” rule is better

J. Corso (SUNY at Buffalo) AdaBoost Lecture 8
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VEISIIEWNEIVSEI  Test Error Analysis (From Schapire’s Slides)

A Better Story: The Margins Explanation
[with Freund, Bartlett & Lee]

o key idea:
training error only measures whether classifications are
right or wrong
should also consider confidence of classifications
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A Better Story: The Margins Explanation
[with Freund, Bartlett & Lee]

o key idea:
training error only measures whether classifications are
right or wrong
should also consider confidence of classifications

o recall: Hgp, is weighted majority vote of weak classifiers
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VEISIIEWNEIVSEI  Test Error Analysis (From Schapire’s Slides)

A Better Story: The Margins Explanation
[with Freund, Bartlett & Lee]

o key idea:
training error only measures whether classifications are
right or wrong
should also consider confidence of classifications

o recall: Hgp, is weighted majority vote of weak classifiers

e measure confidence by margin = strength of the vote
= (fraction voting correctly) — (fraction voting incorrectly)

high conf. high conf.
incorrect low conf. correct

|

final final
-1 incorrect 0 correct +1
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Test Error Analysis (From Schapire’s Slides)
Empirical Evidence: The Margin Distribution

e margin distribution
= cumulative distribution of margins of training examples

20 & Lo
o 2 :
S S 5
mlO: g 057

5 test i

e 2
o ~\Utrain 3
10 100 1000 -1 -0.5 .
# of rounds (T) margin
# rounds
5 100 | 1000
train error 0.0 0.0 0.0
test error 8.4 3.3 3.1

% margins <05 | 77| 00| 0.0
minimum margin | 0.14 | 0.52 | 0.55
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VEISIIEWNEIVSEI  Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using Margins

e Theorem: large margins = better bound on generalization
error (independent of number of rounds)
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VEISIIEWNEIVSEI  Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using Margins

e Theorem: large margins = better bound on generalization
error (independent of number of rounds)
proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)
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VEISIIEWNEIVSEI  Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using Margins

e Theorem: large margins = better bound on generalization
error (independent of number of rounds)
proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

e Theorem: boosting tends to increase margins of training
examples (given weak learning assumption)
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Theoretical Evidence: Analyzing Boosting Using Margins

e Theorem: large margins = better bound on generalization
error (independent of number of rounds)
proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

e Theorem: boosting tends to increase margins of training
examples (given weak learning assumption)
proof idea: similar to training error proof
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VEISIIEWNEIVSEI  Test Error Analysis (From Schapire’s Slides)

Theoretical Evidence: Analyzing Boosting Using Margins

e Theorem: large margins = better bound on generalization
error (independent of number of rounds)
proof idea: if all margins are large, then can approximate
final classifier by a much smaller classifier (just as polls
can predict not-too-close election)

e Theorem: boosting tends to increase margins of training
examples (given weak learning assumption)
proof idea: similar to training error proof

® so:
although final classifier is getting larger,
margins are likely to be increasing,
so final classifier actually getting close to a simpler classifier,
driving down the test error
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Test Error Analysis (From Schapire’s Slides)
More Technically...

e with high probability, V6 > 0 :

generalization error < Pr[margin < 6] + O ( 7

«/d/m)
(Pr[] = empirical probability)
bound depends on
m = # training examples
d = "complexity” of weak classifiers
entire distribution of margins of training examples
o Pr[margin < 6] — 0 exponentially fast (in T) if
(error of hy on Dy) < 1/2—0 (Vt)
so: if weak learning assumption holds, then all examples
will quickly have “large” margins
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@ AdaBoost is a sequential algorithm that minimizes an upper bound of
the empirical classification error by selecting the weak classifiers and
their weights. These are “pursued” one-by-one with each one being
selected to maximally reduce the upper bound of error.

oy «F = =, = @©ac
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Summary of Basic AdaBoost

@ AdaBoost is a sequential algorithm that minimizes an upper bound of
the empirical classification error by selecting the weak classifiers and
their weights. These are “pursued” one-by-one with each one being
selected to maximally reduce the upper bound of error.

o AdaBoost defines a distribution of weights over the data samples.
These weights are updated each time a new weak classifier is added
such that samples misclassified by this new weak classifiers are given
more weight. In this manner, currently misclassified samples are
emphasized more during the selection of the subsequent weak
classifier.
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Summary of Basic AdaBoost

@ AdaBoost is a sequential algorithm that minimizes an upper bound of
the empirical classification error by selecting the weak classifiers and
their weights. These are “pursued” one-by-one with each one being
selected to maximally reduce the upper bound of error.

o AdaBoost defines a distribution of weights over the data samples.
These weights are updated each time a new weak classifier is added
such that samples misclassified by this new weak classifiers are given
more weight. In this manner, currently misclassified samples are
emphasized more during the selection of the subsequent weak
classifier.

@ The empirical error will converge to zero at an exponential rate.
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It is fast to evaluate (linear-additive) and can be fast to train
(depending on weak learner).

T is the only parameter to tune.
It is flexible and can be combined with any weak learner.

It is provably effective if it can consistently find the weak classifiers
(that do better than random).

Since it can work with any weak learner, it can handle the gamut of
data.

oy «F = =, = @©ac
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@ Performance depends on the data and the weak learner.
@ It can fail if

e The weak classifiers are too complex and overfit.

e The weak classifiers are too weak, essentially underfitting.
noise.

@ AdaBoost seems, empirically, to be especially susceptible to uniform

DA
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LYELRISACIE I The Coordinate Descent View of AdaBoost (from Schapire)

Coordinate Descent
[Breiman]

e {g1,...,8n} = space of all weak classifiers

e want to find Aq,..., Ay to minimize

LA, An) =D exp [ =y > Aigj(xi)
i j
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LYELRISACIE I The Coordinate Descent View of AdaBoost (from Schapire)

Coordinate Descent
[Breiman]

{g1,...,8n} = space of all weak classifiers

want to find A1,..., Ay to minimize

LA, An) =D exp [ =y > Aigj(xi)
i j

AdaBoost is actually doing coordinate descent on this
optimization problem:
initially, all A; =0
each round: choose one coordinate A; (corresponding to
ht) and update (increment by ;)
choose update causing biggest decrease in loss

powerful technique for minimizing over huge space of
functions
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AdaBoost for Estimating Conditional Probabilities

Estimating Conditional Probabilities
[Friedman, Hastie & Tibshirani]

e often want to estimate probability that y = +1 given x

e AdaBoost minimizes (empirical version of):
Bey [e70] = B [Ply = +11x e "0 1 P[y = ~1]x '

where x, y random from true distribution
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AdaBoost for Estimating Conditional Probabilities

Estimating Conditional Probabilities
[Friedman, Hastie & Tibshirani]
e often want to estimate probability that y = +1 given x

e AdaBoost minimizes (empirical version of):
Bey [e70] = B [Ply = +11x e "0 1 P[y = ~1]x '

where x, y random from true distribution

e over all f, minimized when

_1 Ply = +1[x]
=5 m<PU——Hﬂ
or 1

Ply = +1 = 7=

e so, to convert f output by AdaBoost to probability estimate,
use same formula
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Multiclass AdaBoost From Schapire’s Slides

Multiclass Problems
[with Freund]

esayyeY=A{1,... k}
e direct approach (AdaBoost.M1):

hy : X =Y

Dt+1(l) = Zt et if yi 75 ht(X,')

Hgnal(x) = arg max E i
yey
t:he(x)=y

D¢ (i) { e~ if y; = hy(x;)
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Multiclass AdaBoost From Schapire’s Slides

Multiclass Problems
[with Freund]

esayyeY=A{1,... k}
e direct approach (AdaBoost.M1):

hy : X =Y

Deya(i) = 2. { e e ifyi=hi(x)

Zs et if Vi 75 ht(X,')

Hgnal(x) = arg max E i
yey
t:he(x)=y

e can prove same bound on error if Vt : e < 1/2
in practice, not usually a problem for “strong” weak
learners (e.g., C4.5)
significant problem for
decision stumps)

‘weak” weak learners (e.g.,

e instead, reduce to binary
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Multiclass AdaBoost From Schapire’s Slides

Reducing Multiclass to Binary

e say possible labels are {a, b,c,d,e}

[with Singer]

e each training example replaced by five {—1, +1}-labeled

examples:

X,

x X
)

(
(
c =< |
(
(

x X

[}

o o

— — — — —

¢}

-1
-1
+1
-1
-1

e predict with label receiving most (weighted) votes

J. Corso (SUNY at Buffalo)
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AdaBoost for Face Detection

@ Viola and Jones 2000-2002.

Y.

K

e N
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Applications

ROC curve for tace detector with step size =1.0

]

correct detection rate
(=]
)

076

a7

0.5 i i i i i i i i i

O o Cl Folal (=} S 4o q4 1 H=m 10 L alal
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Applications
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Applications

@ F. Moutarde, B. Stanciulescu, and A. Breheret. Real-time visual

detection of vehicles and pedestrians with new efficient AdaBoost
features. 2008.

@ They define a different plxel level “connected control point” feature.
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Fig. 4: Some examples of adaBoost-selected Control-Points features for
car detection (top) and pedestrian detection (bottom line). Some features
operate at full resolution of detection window (eg rightmost bottom), while
others work on half-resolution (eg leftmost bottom), or even at quarter-
resolution (third on bottom line).
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Applications
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Applications

ROC_pedestriansDaimler_T1-T2

0.8 -

0,75

0,7 +

Detection rate

0,65

0,6

0,55 &
b

0,5 3 . f 3 3 .
0 0,05 0,1 0,15 0,2 0,25 0,3 0,35 0.4 045 0,5
False positive rate

Fig. 9: Averaged ROC curves for adaBoost pedestrian classifiers obtained
with various feature families
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Sources

These slides have made extensive use of the following sources.

@ Y.Freund and R.E. Schapire. A Decision-Theoretic Generalization of On-line
Learning and an Application to Boosting. Journal of Computer and System
Science, 55(1):119139, 1997.

@ R.E. Schapire. The boosting approach to machine learning: an overview. In
MSRI Workshop on Nonlinear Estimation and Classification, 2002.

@ Schapire’s NIPS Tutorial http://nips.cc/Conferences/2007/Program/
schedule.php?Session=Tutorials

@ P.Viola and M.Jones. Rapid object detection using a boosted cascade of
simple features. In Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2001.

@ P.Viola and M.Jones. Fast and Robust Classification Using Asymmetric
AdaBoost and a Detector Cascade. In Proceedings of Neural Information
Processing Systems (NIPS), 2002.

@ SC Zhu's slides for AdaBoost (UCLA).
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