
CSE 455/555 Spring 2011 Homework 1: Bayesian Decision Theory
Jason J. Corso
Computer Science and Engineering
SUNY at Buffalo
jcorso@buffalo.edu
Date Assigned 24 Jan 2011
Date Due 14 Feb 2011
Homework must be submitted in class. No late work will be accepted.

Remember, you are permitted to discuss this assignment with other students in the class (and not in the
class), but you must write up your own work from scratch.
I am sure the answers to some or all of these questions can be found on the internet. Copying from any
another source is indeed cheating.
This class has a zero tolerance policy toward cheaters and cheating. Don’t do it.

Problem 1: Bayesian Decision Rule (30%)

Suppose the task is to classify the input signal x into one of K classes ω ∈ {1, 2, . . . ,K} such that the
action α(x) = i means classifying x into class i. The Bayesian decision rule is to maximize the posterior
probability

αBayes(x) = ω∗ = arg max
ω

p(ω|x) .

Suppose we replace it by a randomized decision rule, which classifies x to class i following the posterior
probability p(ω = i|x), i.e.,

αrand(x) = ω ∼ p(ω|x) .

Solution:
Maximizing the posterior probability is equivalent to minimizing the overall risk.
Using the zero-one loss function, the overall risk for the Bayes Decision Rule is:

RBayes =
∮

R(αBayes(x)|x)p(x)dx

=
∮ {

1− max
[
P (ωj |x) | j = 1, ..., k

]}
p(x)dx

For simplicity, the class with max posterior probability is abbreviated as ωmax, and
we get:

RBayes =
∮

(1− P (ωmax|x))p(x)dx.

1. What is the overall risk Rrand for this decision rule? Derive it in terms of the posterior probability
using the zero-one loss function.
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Solution:
For any given x, the probability of each class j = 1, ..., k being the correct
class is P (ωj |k). With the randomized algorithm, it will select the correct
class with probability P (ωj |k), which means that it will select the wrong class
with probability 1 − P (ωj |k). Thus, the zero-one conditional risk will become∑

j P (ωj |x)
[
1− P (ωj |x)

]
on average. Thus,

Rrand =
∮ {∑

j

P (ωj |x)
[
1− P (ωj |x)

]}
p(x)dx

=
∮ {∑

j

[
P (ωj |x)− P (ωj |x)2

]}
p(x)dx

=
∮ [

1−
∑

j

P (ωj |x)2
]
p(x)dx

2. Show that this risk Rrand is always no smaller than the Bayes risk RBayes. Thus, we cannot benefit
from the randomized decision.

Solution:
Proving Rrand ≥ RBayes is equivalent to proving

∑
j P (ωj |x)2 ≤ P (ωmax|x):∑

j

P (ωj |x)2 ≤
∑

j

P (ωj |x)P (ωmax|x) = P (ωmax|x),

thus proved. Rrand is always no smaller than RBayes.

3. Under what conditions on the posterior are the two decision rules the same?

Solution:
When the posterior probabilities of all classes are uniform distributions with equiv-
alent value.

Problem 2: Bayesian Classification Boundaries for the Normal Distribution (30%)

Suppose we have a two-class recognition problem with salmon (ω = 1) and sea bass (ω = 2).

1. First, assume we have one feature, the pdfs are the Gaussians N (0, σ2) and N (1, σ2) for the two
classes, respectively.

Show that the threshold τ minimizing the average risk is equal to

τ =
1
2
− σ2 ln

λ12P (ω2)
λ21P (ω1)

(1)

where we have assumed λ11 = λ22 = 0.

Solution:
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Define the R(τ) is the average risk for the threshold τ :

R(τ) =
∫ τ

0
λ12P (ω2)p(x|ω = 2) dx +

∫ +∞

τ
λ21P (ω1)p(x|ω = 1) dx

Get derivative about τ for R(τ), then obtain the minimization when the derivative
equals to 0, so make it equals to 0:

λ12P (ω2) ·
1√

2πσ2
e−

τ2

2σ2 − λ21P (ω1) ·
1√
2πσ

e−
(τ−1)2

2σ2 = 0

Therefore,

τ =
1
2
− σ2ln

λ12P (ω2)
λ21P (ω1)

2. Next, suppose we have two features x = (x1, x2) and the two class-conditional densities, p(x|ω = 1)
and p(x|ω = 2), are 2D Gaussian distributions centered at points (4, 11) and (10, 3) respectively
with the same covariance matrix Σ = 3I (with I is the identity matrix). Suppose the priors are
P (ω = 1) = 0.6 and P (ω = 2) = 0.4.

(a) Suppose we use a Bayes decision rule, write the two discriminant functions g1(x) and g2(x).
Solution:

According to bayes decision rule:

g1(x) = p(x|ω = 1) · P (ω = 1) =
1

2π · 3
e−

(x1−3)2+(x2−9)2

2∗3 · 0.6

g2(x) = p(x|ω = 2) · P (ω = 2) =
1

2π · 3
e−

(x1−9)2+(x2−3)2

2∗3 · 0.4

(b) Derive the equation for the decision boundary g1(x) = g2(x).
Solution:

Derive the equation for the decision boundary g1(x) = g2(x), we get:

x2 − x1 =
1
2
ln

2
3

(c) How would the decision boundary change if we changed the priors? the covariances?

(d) Using computer software, sample 100 points from each of the two densities. Draw them and
draw the boundary on the feature space (the 2D plane). Solution:

Problem 4: Bayesian Reasoning (40%)

Formulate and solve this classical problem using the Bayes rule. There are three criminals A, B, and C
waiting in three separate jail cells. One of them will be executed in the next morning when the sun rises. A
is very nervous, as he has 1/3 chance to be the one. He tries to get some information from the janitor: “I
know you cannot tell me whether I will be executed in the next morning, but can you tell me which of my
inmates B and C will not be executed? Because one of them will not be executed anyway, by pointing out
who will not be executed, you are not telling me any information.” This sounds quite logical. So the Janitor
tells A that C won’t be executed. At a second thought, A gets much more worried. Before he asked the
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janitor, he thought he had 1/3 chance, but with C excluded, he seems to have 1/2 chance. A says to himself:
“What did I do wrong? Why did I ask the janitor?”

1. Formulate the problem using the Bayes rule, i.e. what are the random variables and the input data?
What are the meaning of the prior and posterior probabilities in this problem?

Solution:
Since who’s going to be executed tomorrow has already been decided before A
asked the janitor - otherwise the janitor won’t be able to tell A which one of A’s
inmates will live - we have:
The random variable is all the possible answers from the janitor; the input data
(observation) is the janitor’s answer; the prior probability is the chance of A be-
ing executed before observing the janitor’s answer; the posterior probability is the
chance of A being executed after observing the janitor’s answer.

2. What are the probability values for the prior?

Solution:
Let EX , where X = {A, B, C}, denote the event that X is going to be executed. The
prior probability of A being executed tomorrow is P (EA) = P (EB) = P (EC) =
1
3 (suppose they kill at random).

3. What are the probability values for the likelihood?

Solution:
Let LY , where Y = {B, C}, denote the event that: knowing that X will be exe-
cuted tomorrow, the likelihood of the janitor telling A that Y will live. The like-
lihoods are: P (LB|EA) = P (LC |EA) = 1

2 ; P (LB|EB) = 0, P (LC |EB) = 1;
P (LB|EC) = 1, P (LC |EC) = 0.

4. Calculate the posterior probability (you need to derive the probability values with intermediate steps,
not simply showing the final values).

Solution:
The posterior probability of A being executed is

P (EA|LC) =
P (LC |EA) · P (EA)

P (LC)

=
P (LC |EA) · P (EA)

P (LC |EA) · P (EA) + P (LC |EB) · P (EB) + P (LC |EC) · P (EC)

=
1/2 · 1/3

1/2 · 1/3 + 1 · 1/3 + 0 · 1/3

=
1
3
.

5. What is the probability of A being executed after he knows that C is excluded?

Solution:
As shown in the posterior probability, it’s still 1

3 .

6. Did the janitor tell us any information about A’s fate?
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Solution:
NO

7. Explain how the Bayes rule helps you. Solution:
Helps decompose complicated problems into tractable parts, especially to deter-
mine the probability of an event A after observing the happening of event B.
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