Clustering
Lecture 5: Mixture Model

Jing Gao
SUNY Buffalo
Outline

• **Basics**
 – Motivation, definition, evaluation

• **Methods**
 – Partitional
 – Hierarchical
 – Density-based
 – Mixture model
 – Spectral methods

• **Advanced topics**
 – Clustering ensemble
 – Clustering in MapReduce
 – Semi-supervised clustering, subspace clustering, co-clustering, etc.
Using Probabilistic Models for Clustering

• **Hard vs. soft clustering**
 – Hard clustering: Every point belongs to exactly one cluster
 – Soft clustering: Every point belongs to several clusters with certain degrees

• **Probabilistic clustering**
 – Each cluster is mathematically represented by a parametric distribution
 – The entire data set is modeled by a mixture of these distributions
Gaussian Distribution

Changing μ shifts the distribution left or right

Changing σ increases or decreases the spread

Probability density function $f(x)$ is a function of x given μ and σ

$$N(x \mid \mu, \sigma^2) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{1}{2} \left(\frac{x - \mu}{\sigma}\right)^2\right)$$
Define likelihood as a function of μ and σ given x_1, x_2, \ldots, x_n

$$\prod_{i=1}^{n} N(x_i \mid \mu, \sigma^2)$$

Which Gaussian distribution is more likely to generate the data?
Gaussian Distribution

- Multivariate Gaussian

\[
\mathcal{N}(x | \mu, \Sigma) = \frac{1}{(2\pi|\Sigma|)^{1/2}} \exp \left\{ -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right\}
\]

mean \hspace{1cm} covariance

- Log likelihood

\[
L(\mu, \Sigma) = \sum_{i=1}^{n} \ln \mathcal{N}(x_i | \mu, \Sigma) = \sum_{i=1}^{n} \left(-\frac{1}{2} (x_i - \mu)^T \Sigma^{-1} (x_i - \mu) - \pi \ln |\Sigma| \right)
\]
Maximum Likelihood Estimate

• MLE
 – Find model parameters μ, Σ that maximize log likelihood

\[L(\mu, \Sigma) \]

• MLE for Gaussian

\[\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i \]

\[\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T \]
Gaussian Mixture

- Linear combination of Gaussians

\[p(x) = \sum_{k=1}^{K} \pi_k \mathcal{N}(x | \mu_k, \Sigma_k) \quad \text{where} \quad \sum_{k=1}^{K} \pi_k = 1, \quad 0 \leq \pi_k \leq 1 \]

parameters to be estimated
Gaussian Mixture

- To generate a data point:
 - first pick one of the components with probability π_k
 - then draw a sample \mathcal{X}_i from that component distribution
- Each data point is generated by one of K components, a latent variable $\tilde{z}_i = (\tilde{z}_{i1}, \ldots, \tilde{z}_{iK})$ is associated with each \mathcal{X}_i
 \[\sum_{k=1}^{K} \tilde{z}_{ik} = 1 \text{ and } p(\tilde{z}_{ik} = 1) = \pi_k \]
Gaussian Mixture

• Maximize log likelihood

\[\ln p(x|\pi, \mu, \Sigma) = \sum_{i=1}^{n} \ln \left\{ \sum_{k=1}^{K} \pi_k \mathcal{N}(x_i|\mu_k, \Sigma_k) \right\} \]

• Without knowing values of latent variables, we have to maximize the incomplete log likelihood
Expectation-Maximization (EM) Algorithm

- **E-step:** for given parameter values we can compute the expected values of the latent variables (responsibilities of data points)

\[
r_{ik} \equiv E(z_{ik}) = \frac{p(z_{ik} = 1 \mid x_i, \pi, \mu, \Sigma) \cdot p(x_i \mid z_{ik} = 1, \pi, \mu, \Sigma)}{\sum_{k=1}^{K} p(z_{ik} = 1) \cdot p(x_i \mid z_{ik} = 1, \pi, \mu, \Sigma)} = \frac{\pi_k \mathcal{N}(x_i \mid u_k, \Sigma_k)}{\sum_{k=1}^{K} \pi_k \mathcal{N}(x_i \mid u_k, \Sigma_k)}
\]

- Note that \(r_{ik} \in [0, 1] \) instead of \(\{0, 1\} \) but we still have \(\sum_{k=1}^{K} r_{ik} = 1 \) for all \(i \)
Expectation-Maximization (EM) Algorithm

- **M-step:** maximize the expected complete log likelihood

\[
E[\ln p(x, z|\pi, \mu, \Sigma)] = \sum_{i=1}^{n} \sum_{k=1}^{K} r_{ik} \left\{ \ln \pi_k + \ln \mathcal{N}(x_i|\mu_k, \Sigma_k) \right\}
\]

- **Parameter update:**

\[
\pi_k = \frac{\sum_i r_{ik}}{n} \quad \mu_k = \frac{\sum_i r_{ik} x_i}{\sum_i r_{ik}}
\]

\[
\Sigma_k = \frac{\sum_i r_{ik} (x_i - \mu_k)(x_i - \mu_k)^T}{\sum_i r_{ik}}
\]
EM Algorithm

• Iterate E-step and M-step until the log likelihood of data does not increase any more.
 – Converge to local optimal
 – Need to restart algorithm with different initial guess of parameters (as in K-means)

• Relation to K-means
 – Consider GMM with common covariance
 $\sum_k = \delta^2 I$
 – As $\delta^2 \to 0$, $r_{ik} \to 0$ or 1, two methods coincide
L = 20
K-means vs GMM

- **Objective function**
 - Minimize sum of squared Euclidean distance
- **Can be optimized by an EM algorithm**
 - E-step: assign points to clusters
 - M-step: optimize clusters
 - Performs hard assignment during E-step
- **Assumes spherical clusters with equal probability of a cluster**

- **Objective function**
 - Maximize log-likelihood
- **EM algorithm**
 - E-step: Compute posterior probability of membership
 - M-step: Optimize parameters
 - Perform soft assignment during E-step
- **Can be used for non-spherical clusters**
- **Can generate clusters with different probabilities**
Mixture Model

• **Strengths**
 – Give probabilistic cluster assignments
 – Have probabilistic interpretation
 – Can handle clusters with varying sizes, variance etc.

• **Weakness**
 – Initialization matters
 – Choose appropriate distributions
 – Overfitting issues
Take-away Message

- Probabilistic clustering
- Maximum likelihood estimate
- Gaussian mixture model for clustering
- EM algorithm that assigns points to clusters and estimates model parameters alternatively
- Strengths and weakness