OS History and OS Structures

Karthik Dantu
CSE 421/521: Operating Systems

Slides adopted from CS162 class at Berkeley, CSE 451 at U-Washington and CSE 421 by Prof Kosar at UB

Action Items From Last Class

Join Piazza
Look through assignment#0

Set up development environment: VirtualBox + Ubuntu
16.04

Implement assignment and test in the environment
Form groups

What is an OS?

Software to manage a
computer’s resources

for its users and
applications

Users

User-mode

Kernel-mode

Hardware

(¢

APP APP APP
System System System
Library Library Library

)
File System [Virtual Memory]

Kernel-user Interface
(Abstract virtual machine

N

[TCP/IP Networking Scheduling

Hardware Abstraction Layer —

Hardware-Specific Software
and Device Drivers
— Processors [Address Translation]
Graphics Processor]

Disk

)

Computer Performance Over Time

1981 1997 2014 (;:1‘3:;’:98 "

Uniprocessor speed (MIPS) 1 200 2500 2.5K
CPUs per computer 1 1 10+ 10+

Processor MIPS/$ $100K $25 $0.20 500K
DRAM Capacity (MiB)/$ 0.002 2 1K 500K
Disk Capacity (GiB)/$ 0.003 / 25K 10M

Home Internet 300bps 256 Kbps 20 Mbps 100K

10Mbps 100Mbps 10 Gbps

Machine room network (shared) (switched) (switched) OO0
Ratio of users 100:1 1:1 1:several 100+

to computers

Early Operating Systems:
Serial Operations

* One application at a time
— Had complete control of hardware
— OS was runtime library
— Users would stand in line to use the computer

e Batch systems
— Keep CPU busy by having a queue of jobs
— OS would load next job while current one runs
— Users would submit jobs, and wait, and wait, and

Time-Sharing Operating Systemes:
Client-Server Age

 Multiple users on computer at same time
— Multiprogramming: run multiple programs at same time

— Interactive performance: try to complete everyone’s tasks
quickly

— As computers became cheaper, more important to optimize
for user time, not computer time

Today’s Operating Systems:
Computers Cheap

Smartphones
Embedded systems
Laptops

Tablets

Virtual machines
Data center servers

Tomorrow’s Operating Systems

Giant-scale data centers

Increasing numbers of processors per computer
Increasing numbers of computers per user

Very large scale storage

Mark Weiser: Ubiquitous and Pervasive Computing

OS History

1950 1960 1970 1980 1990 2000
MULTICS
mainframes
no compilers time \ distributed
software shared multiuser systems
batch multiprocessor
resident networked

X fault tolerant
monitors

- UNIX
minicomputers .
no compilers
software . : .
time multlus\er multiprocessor
i shared
resudent networked fault tolerant
monitors
clustered
UNIX
—_— desktop computers -
— no compilers
software interactive multiprocessor
multiuser Bl orked
UNIX
handheld computers |
compilers no
software
interactive
networked

Unix History

First developed in 1969 by Ken Thompson and Dennis Ritchie of
the Research Group at Bell Laboratories; incorporated features
of other operating systems, especially MULTICS

The third version was written in C, which was developed at Bell
Labs specifically to support UNIX

The most influential of the non-Bell Labs and non-AT&T UNIX

development groups — University of California at Berkeley
(Berkeley Software Distributions - BSD)

4BSD UNIX resulted from DARPA funding to develop a standard
UNIX system for government use

Developed for the VAX, 4.3BSD is one of the most influential
versions, and has been ported to many other platforms

Several standardization projects seek to consolidate the variant
flavors of UNIX leading to one programming interface to UNIX

Timeline of Unix versions

1069 USG/USDL/ATTIS First Edition Bell Labs Berkley
DSG/USO/USL | Research Software
1973 Fifth Edition Distributions

1977 PWB MERT CB UNIX

1976 Sixth |Edition
///‘ 1BSD

I VAX
1978 ;\IM [Seventh Editionk—_ 3oy ——— ABSD _-2BSD
1979 |
3.0 VAX 4.0BSD
i
1980 5 6.1 [XENIX |
1981 4.0.1
I 4.1aBSD
1982 sio System |l e | %8?80
ight 4.1cBSD
1983 5.2\\Sy§~em \V I XENIX 3 Edity | “»9BSD
4.2BSD|
1984 S\ [Sysemv SunOS /I
Release 2 /
1985 /,
1986 _— SunOS 3
Ninth 4.3BSD|~—___
1987 [Chorus ngégg‘e‘g Edition 2.10BSD
XENIX 5 J—
1989 SForEs System Vv SUROS 4 Edition Tarlloe
— va elease 4 | Plan g:] 438SD
Reno
1991
1992 Solaris |£1_._i&§_D_|
1993 v v v L 4 L 2 l v

What is an OS?

Software to manage a
computer’s resources

for its users and
applications

Users

User-mode

Kernel-mode

Hardware

(¢

APP APP APP
System System System
Library Library Library

)
File System [Virtual Memory]

Kernel-user Interface
(Abstract virtual machine

N

[TCP/IP Networking Scheduling

Hardware Abstraction Layer —

Hardware-Specific Software
and Device Drivers
— Processors [Address Translation]
Graphics Processor]

Disk

)

Operating System Roles

* Referee:
— Resource allocation among users, applications
— |Isolation of different users, applications from each other
— Communication between users, applications

* Illlusionist
— Each application appears to have the entire machine to itself

— Infinite number of processors, (near) infinite amount of
memory, reliable storage, reliable network transport

* Glue
— Libraries, user interface widgets, ...

Example: File Systems

e Referee

— Prevent users from accessing each other’s files without
permission

— Even after a file is deleting and its space re-used
* Illlusionist
— Files can grow (nearly) arbitrarily large

— Files persist even when the machine crashes in the middle of
a save

e Glue

— Named directories, printf, ...

Question

 What (hardware, software) do you need to be able to
run an untrustworthy application?

OS Challenges - Correctness

Reliability

— Does the system do what it was designed to do?
Availability

— What portion of the time is the system working?

— Mean Time To Failure (MTTF), Mean Time to Repair

Security
— Can the system be compromised by an attacker?

Privacy
— Data is accessible only to authorized users

OS Challenges — Wide Applicability

e Portability
— For programs:

e Application programming
interface (API)

e Abstract virtual machine
(AVM)

— For the operating system
* Hardware abstraction layer

Users

User-mode

Kernel-mode

Hardware

APP

System
Library

File System

TCP/IP Networking

Kernel-user Interface
(Abstract virtual machine)

Hardware Abstraction Layer

10

Virtual Memory

)
APP ApP
System System
Library Library

Scheduling

Hardware-Specific Software
and Device Drivers

)

Disk

Y

Processors

Address Translation

Graphics Processor

N

[Network]

OS Challenges - Performance

Latency/response time
— How long does an operation take to complete?

Throughput
— How many operations can be done per unit of time?

Overhead

— How much extra work is done by the OS?

Fairness

— How equal is the performance received by different users?
Predictability

— How consistent is the performance over time?

OPERATING SYSTEMS STRUCTURES

Today: Four Fundamental OS Concepts
Thread

— Single unique execution context: fully describes program state
— Program Counter, Registers, Execution Flags, Stack

Address space (with translation)

— Programs execute in an address space that is distinct from the
memory space of the physical machine

Process

— An instance of an executing program is a process consisting of an
address space and one or more threads of control

Dual mode operation / Protection

— Only the “system” has the ability to access certain resources

— The OS and the hardware are protected from user programs and
user programs are isolated from one another by controlling the
translation from program virtual addresses to machine physical
addresses

OS Bottom Line: Run Programs

Executable
Program Source

data

==
edltor

l compiler
Load &

instructions

=

a.out

foo.c

Load instruction and data segments of
executable file into memory

Create stack and heap

“Transfer control to program”
Provide services to program
While protecting OS and program

Execute

PC:

OxFFF...

Aiowa|,

instructions

registers

Processor

0x000...

Instruction Fetch/Decode/Execute Cycle

The instruction cycle

Memor
Processor [next]<— 4
7
PC: I
Instruction fetch v instruction
Decode [decode |
v
Registers
Execute v J
\ ALU
|
| > data
v v

What happens during program execution?

Addr 232-]

Inst237
Inst236

_ Inst5
Execution sequence: Inst4
— Fetch Instruction at PC Inst3
— Decode Inst2
— Execute (possibly using registers) Inst|
— Write results to registers/mem InstO
— PC = Next Instruction(PC)
— Repeat

Addr O

PC
PC
PC
PC

First OS Concept: Thread of Control

Certain registers hold the context of thread

— Stack pointer holds the address of the top of stack
* Other conventions: Frame pointer, Heap pointer, Data

— May be defined by the instruction set architecture or by
compiler conventions

Thread: Single unique execution context
— Program Counter, Registers, Execution Flags, Stack

A thread is executing on a processor when it is
resident in the processor registers.

PC register holds the address of executing
instruction in the thread

Registers hold the root state of the thread.
— The rest is “in memory”

Second OS Concept: Program’s Address
Space

* Address space = the set of accessible stack OXFFF..
addresses + state associated with v
them: A
— For a 32-bit processor there are 232=4 heap
billion addresses .
Static Data

 What happens when you read or write code
to an address? 0x000. ..
— Perhaps nothing
— Perhaps acts like regular memory
— Perhaps ignores writes

— Perhaps causes I/O operation
* (Memory-mapped 1/0)
— Perhaps causes exception (fault)

Address Space: In a Picture

PC:
SP: _

Processor
registers

stack
v
A
heap
Static Data

instruction

Code Segment

OxFFF...

0x000...

 What's in the code segment? Static data segment?

* What’s in the Stack Segment?
— How is it allocated? How big is it?

 What's in the Heap Segment?
— How is it allocated? How big?

Multiprogramming - Multiple Threads of

heap

Static Data
code

| stack |

heap

Static Data
code

How can we give the illusion of multiple processors?

vCPUI vCPU2 |JvCPU3} vCPUI jvCPU2

Assume a single processor. How do we provide the illusion
of multiple processors?

— Multiplex in time!
Each virtual “CPU” needs a structure to hold:
— Program Counter (PC), Stack Pointer (SP)
— Registers (Integer, Floating point, others...?)
How switch from one virtual CPU to the next?
— Save PC, SP, and registers in current state block
— Load PC, SP, and registers from new state block
What triggers switch?
— Timer, voluntary yield, 1/O, other things

The Basic Problem of Concurrency

* The basic problem of concurrency involves resources:
— Hardware: single CPU, single DRAM, single I/O devices

— Multiprogramming API: processes think they have exclusive
access to shared resources

* OS has to coordinate all activity
— Multiple processes, 1/0 interrupts, ...
— How can it keep all these things straight?
* Basic Idea: Use Virtual Machine abstraction

— Simple machine abstraction for processes
— Multiplex these abstract machines

Properties of this simple multiprogramming technique

e All virtual CPUs share same non-CPU resources

— 1/0 devices the same
— Memory the same

* Consequence of sharing:

— Each thread can access the data of every other thread
(good for sharing, bad for protection)

— Threads can share instructions
(good for sharing, bad for protection)

— Can threads overwrite OS functions?

* This (unprotected) model is common in:
— Embedded applications
— Windows 3.1/Early Macintosh (switch only with yield)
— Windows 95—ME (switch with both yield and timer)

Protection
Operating System must protect itself from user programs

— Reliability: compromising the operating system generally
causes it to crash

— Security: limit the scope of what processes can do
— Privacy: limit each process to the data it is permitted to access

— Fairness: each should be limited to its appropriate share of
system resources (CPU time, memory, 1/0, etc)

It must protect User programs from one another

Primary Mechanism: limit the translation from program
address space to physical memory space
— Can only touch what is mapped into process address space

Additional Mechanisms:

— Privileged instructions, in/out instructions, special registers

— syscall processing, subsystem implementation
* (e.g., file access rights, etc)

Third OS Concept: Process
Process: execution environment with Restricted Rights
— Address Space with One or More Threads
— Owns memory (address space)
— Owns file descriptors, file system context, ...
— Encapsulate one or more threads sharing process resources

Why processes?
— Protected from each other!
— OS Protected from them
— Processes provides memory protection
— Threads more efficient than processes (later)

Fundamental tradeoff between protection and efficiency
e Communication easier within a process
e Communication harder between processes

Application instance consists of one or more processes
— E.g., Facebook app on your phone

Single and Multithreaded Processes

code

data

files

code

data

files

registers

stack

registers

registers

registers

stack

stack

stack

Ik

single-threaded process

;4—— thread

multithreaded process

* Threads encapsulate concurrency: “Active” component
* Address spaces encapsulate protection: “Passive” part
— Keeps buggy program from trashing the system

* Why have multiple threads per address space?
— E.g., web server

Fourth OS Concept: Dual Mode Operation

 Hardware provides at least two modes:

|H

— “Kernel” mode (or “supervisor” or “protected”)

— “User” mode: Normal programs executed

* What is needed in the hardware to support “dual mode”
operation?
— A bit of state (user/system mode bit)
— Certain operations / actions only permitted in system/kernel mode
* In user mode they fail or trap

— User =2 Kernel transition sets system mode AND saves the user PC

* QOperating system code carefully puts aside user state then performs the
necessary operations

— Kernel = User transition clears system mode AND restores
appropriate user PC
* return-from-interrupt

User/Kernel (Privileged) Mode

Limited HWV access Full HWV access

Simple Protection: Base and Bound

code 0000... ()
—> Static Data
heap
v
A
stack
0100...
Base
0010... 1000... = kem-zzc-m-----
Program 1010... E
address
Bound

1 100...

0000...
code 1000...
Static Data
heap
1 100...

FFFF...

Simple Protection: Base and Bound

e 0000... () 0000...
—> Static Data
heap
v
A
stack
0100...
Base
0010... 1000... R =T code 1000...
Static Data
Program I 0 I 0 .o
address heap
Addresses translated Bound
when program is loaded 1100, 1100...

* Requires relocating loader

» Still protects OS and isolates
program

e No addition on address path

FFFF...

Another idea: Address Space Translation

* Program operates in an address space that is distinct
from the physical memory space of the machine

&
Q
S
ke
\fb'
o
O
(2)
&
<

R

5
7

S

ke

\"D’
S
NT N\

translator

_ J

Memory

0x000...

OxFFF...

A simple address translation with Base and
Bound

code

—> Static Data

heap

> <

stack

0010...
Program

0000...

Addresses translated

[on-the-fly

Base Address

1000...

0010...

address

e Can the program touch OS?
 Can it touch other programs?

Bound

0100...

code

Static Data

heap

0000...

1000...

1 100...

FFFF...

Tying it together: Simple B&B: OS loads

Process 0000
Proc
2]
L]
sysmode - g 7T cod 1000...
Base | xxxx ... / ’ 0000... Static Data
Bound | xxxx... / FFFF... heap
uPC oo sk | 1100...
PC
/ 3000...
regs
l

3080...

FFFF...

Simple B&B: OS gets ready to execute

Proc
2...
L

sysmode
Base
Bound
uPC
* Privileged -
regs
Inst: set
special
registers
e RTU

1000 ...

1100...

0001...

OOFF...

process

0000. .
FFFE...

0000...

1000...

code

Static Data

heap

L a1 100...

3000...

3080...
FFFF...

Simple B&B: User Code Running

Proc
2]
OS

sysmode
Base
Bound
e Howdoes uPC
kernel switch pc
between regs
processes?
* First
question:
How to return
to system?

1000 ...

1100...

XXXX...

0001...

OOFF...

0000...
FFFF. /.

0000...

1000...

code

Static Data

heap

1 100...
3000...

3080...
FFFF...

3 types of Mode Transfer

Syscall
— Process requests a system service, e.g., exit
— Like a function call, but “outside” the process
— Does not have the address of the system function to call
— Like a Remote Procedure Call (RPC) — for later
— Marshall the syscall id and args in registers and exec syscall

Interrupt
— External asynchronous event triggers context switch
— e. g, Timer, 1/O device
— Independent of user process
Trap or Exception
— Internal synchronous event in process triggers context switch

— e.g., Protection violation (segmentation fault), Divide by zero, ...

All 3 are an UNPROGRAMMED CONTROL TRANSFER
— Where does it go?

How do we get the system target address of the
“unprogrammed control transfer?”

Interrupt Vector

Address and properties of
each interrupt handler

.

interrupt number (i)

intrpHandler 1 () {

}

miili

Simple B&B: User => Kernel

Proc
2]
OS

sysmode
Base
Bound
uPC

PC

regs

How to return
to system?

0

1000 ...

1100...

XXXX...

0000 1234

OOFF...

0000...
FFFF. /.

1000...

code

Static Data

heap

1 100...
3000...

3080...
FFFF...

0000...

Simple B&B: Interrupt

Proc
2...
L

sysmode -

0000...

1000...
code
Base | 1000 ... Static Data
Bound | 1100 ... heap
uPC | 0000 1234
1 100..
PC | IntrpVectorli]
3000..
regs
OOFF...
* How to save
registers and 3080...

set up system FEEF
stack?

Simple B&B: Switch User Process

Proc
2...
L

sysmode -

. I
1000 ...
Base
1100 ...
Bound
0000 1234
uPC
regs PC
OOFF...
)
* How to save

registers and
set up system
stack?

/

0001 0124

0000...

1000...

code

Static Data

heap

1 100...
3000...

3080...
FFFF...

Simple B&B: “resume”

Proc
2]
OS

0000...

= ~ Sysmode | 0 y 1000...
1000 ... coce
Base - 0000... Static Data
1100 ...
Bound - FFFF... heap
0000 1234
uPC | xxxx xxxx
regs 1 100...
PC | 000 0248 —
OOFF...
N) - 3000...
* How to save
registers and 3080...
set up system FEEF

stack?

Conclusion: Four fundamental OS

conce ptS
Thread

— Single unigue execution context
— Program Counter, Registers, Execution Flags, Stack

Address Space with Translation

— Programs execute in an address space that is distinct from the
memory space of the physical machine

Process

— An instance of an executing program is a process consisting of an
address space and one or more threads of control

Dual Mode operation/Protection

— Only the “system” has the ability to access certain resources

— The OS and the hardware are protected from user programs and
user programs are isolated from one another by controlling the
translation from program virtual addresses to machine physical
addresses

