
OS	History	and	OS	Structures	

Karthik	Dantu	
CSE	421/521:	Opera>ng	Systems	

Slides	adopted	from	CS162	class	at	Berkeley,	CSE	451	at	U-Washington	and	CSE	421	by	Prof	Kosar	at	UB	

Ac>on	Items	From	Last	Class	
•  Join	Piazza	
•  Look	through	assignment#0	
•  Set	up	development	environment:	VirtualBox	+	Ubuntu	
16.04	

•  Implement	assignment	and	test	in	the	environment	
•  Form	groups	

What	is	an	OS?	

•  	SoYware	to	manage	a	
computer’s	resources	
for	its	users	and	
applica>ons	

TCP/IP Networking

Virtual Memory

Hardware-Specific Software
and Device Drivers

File System

Scheduling

Graphics Processor

Address TranslationProcessors

Network

Hardware

Users

User-mode

Kernel-mode
Kernel-user Interface

(Abstract virtual machine)

Hardware Abstraction Layer

APP

System
Library

APP

System
Library

APP

System
Library

Disk

Computer	Performance	Over	Time	
1.3 Operating Systems: Past, Present, and Future 27

1981 1997 2014 Factor
(2014/1981)

Uniprocessor speed (MIPS) 1 200 2500 2.5K

CPUs per computer 1 1 10+ 10+

Processor MIPS/$ $100K $25 $0.20 500K

DRAM Capacity (MiB)/$ 0.002 2 1K 500K

Disk Capacity (GiB)/$ 0.003 7 25K 10M

Home Internet 300 bps 256 Kbps 20 Mbps 100K

Machine room network
10 Mbps
(shared)

100 Mbps
(switched)

10 Gbps
(switched) 1000

Ratio of users
to computers

100:1 1:1 1:several 100+

Figure 1.8: Approximate computer server performance over time, reflecting the most widely used servers of
each era: in 1981, a minicomputer; in 1997, a high-end workstation; in 2014, a rack-mounted multicore
server. MIPS stands for “millions of instructions per second,” a measure of processor performance. The VAX
11/782 was introduced in 1982; it achieved 1 MIP. DRAM prices are from Hennessey and Patterson,
“Computer Architecture: A Quantitative Approach.” Disk drive prices are from John McCallum. The Hayes
smartmodem, introduced in 1981, ran at 300bps. The 10 Mbps shared Ethernet standard was also
introduced in 1981. One of the authors built his first operating system in 1982, used a VAX at his first job,
and owned a Hayes to work from home.

from expensive to cheap devices occurred with telephones over the past
hundred years. Initially, telephone lines were very expensive, and a single
line was shared among everyone in a neighborhood. Over time, of course,
both computers and telephones have become cheap enough to sit idle until
we need them.

Despite these changes, operating systems still face the same conceptual
challenges as they did fifty years ago. To manage computer resources for ap-
plications and users, they must allocate resources among applications, provide
fault isolation and communication services, abstract hardware limitations, and
so forth. Tremendous progress has been made towards improving the reliabil-
ity, security, efficiency, and portability of operating systems, but much more is
needed. Although we do not know precisely how computing technology or
application demand will evolve over the next 10-20 years, it is highly likely
that these fundamental operating system challenges will persist.

Early Operating Systems
Computers were
expensive; users

would wait.
The first operating systems were runtime libraries intended to simplify the
programming of early computer systems. Rather than the tiny, inexpensive
yet massively complex hardware and software systems of today, the first
computers often took up an entire floor of a warehouse, cost millions of

Early	Opera>ng	Systems:	
Serial	Opera>ons	

•  One	applica>on	at	a	>me	
–  Had	complete	control	of	hardware	
–  OS	was	run>me	library	
–  Users	would	stand	in	line	to	use	the	computer	

•  Batch	systems	
–  Keep	CPU	busy	by	having	a	queue	of	jobs	
–  OS	would	load	next	job	while	current	one	runs	
–  Users	would	submit	jobs,	and	wait,	and	wait,	and		

Time-Sharing	Opera>ng	Systems:	
Client-Server	Age	

•  Mul>ple	users	on	computer	at	same	>me	
– Mul>programming:	run	mul>ple	programs	at	same	>me	
–  Interac>ve	performance:	try	to	complete	everyone’s	tasks	
quickly	

–  As	computers	became	cheaper,	more	important	to	op>mize	
for	user	>me,	not	computer	>me	

Today’s	Opera>ng	Systems:	
Computers	Cheap	

•  Smartphones	
•  Embedded	systems	
•  Laptops	
•  Tablets	
•  Virtual	machines	
•  Data	center	servers	

Tomorrow’s	Opera>ng	Systems	

•  Giant-scale	data	centers	
•  Increasing	numbers	of	processors	per	computer	
•  Increasing	numbers	of	computers	per	user	
•  Very	large	scale	storage	
•  Mark	Weiser:	Ubiquitous	and	Pervasive	Compu>ng	

OS	History	

Unix	History	
•  First	developed	in	1969	by	Ken	Thompson	and	Dennis	Ritchie	of	

the	Research	Group	at	Bell	Laboratories;	incorporated	features	
of	other	opera>ng	systems,	especially	MULTICS	

•  The	third	version	was	wriden	in	C,	which	was	developed	at	Bell	
Labs	specifically	to	support	UNIX	

•  The	most	influen>al	of	the	non-Bell	Labs	and	non-AT&T	UNIX	
development	groups	—	University	of	California	at	Berkeley	
(Berkeley	SoYware	Distribu>ons	-	BSD)	

•  4BSD	UNIX	resulted	from	DARPA	funding	to	develop	a	standard	
UNIX	system	for	government	use	

•  Developed	for	the	VAX,	4.3BSD	is	one	of	the	most	influen>al	
versions,	and	has	been	ported	to	many	other	planorms	

•  Several	standardiza>on	projects	seek	to	consolidate	the	variant	
flavors	of	UNIX	leading	to	one	programming	interface	to	UNIX	

Timeline	of	Unix	versions	

What	is	an	OS?	

•  	SoYware	to	manage	a	
computer’s	resources	
for	its	users	and	
applica>ons	

TCP/IP Networking

Virtual Memory

Hardware-Specific Software
and Device Drivers

File System

Scheduling

Graphics Processor

Address TranslationProcessors

Network

Hardware

Users

User-mode

Kernel-mode
Kernel-user Interface

(Abstract virtual machine)

Hardware Abstraction Layer

APP

System
Library

APP

System
Library

APP

System
Library

Disk

Opera>ng	System	Roles	

•  Referee:	
–  Resource	alloca>on	among	users,	applica>ons	
–  Isola>on	of	different	users,	applica>ons	from	each	other	
–  Communica>on	between	users,	applica>ons	

•  Illusionist	
–  Each	applica>on	appears	to	have	the	en>re	machine	to	itself	
–  Infinite	number	of	processors,	(near)	infinite	amount	of	
memory,	reliable	storage,	reliable	network	transport	

•  Glue	
–  Libraries,	user	interface	widgets,	…	

Example:	File	Systems	

•  Referee	
–  Prevent	users	from	accessing	each	other’s	files	without	
permission	

–  Even	aYer	a	file	is	dele>ng	and	its	space	re-used	
•  Illusionist	
–  Files	can	grow	(nearly)	arbitrarily	large	
–  Files	persist	even	when	the	machine	crashes	in	the	middle	of	
a	save	

•  Glue	
–  Named	directories,	prinn,	…	

Ques>on	

•  What	(hardware,	soYware)	do	you	need	to	be	able	to	
run	an	untrustworthy	applica>on?	

OS	Challenges	-	Correctness	
•  Reliability	
–  Does	the	system	do	what	it	was	designed	to	do?	

•  Availability	
– What	por>on	of	the	>me	is	the	system	working?	
– Mean	Time	To	Failure	(MTTF),	Mean	Time	to	Repair	

•  Security	
–  Can	the	system	be	compromised	by	an	adacker?	

•  Privacy	
–  	Data	is	accessible	only	to	authorized	users	

OS	Challenges	–	Wide	Applicability	

•  Portability	
–  For	programs:	

•  Applica>on	programming	
interface	(API)	

•  Abstract	virtual	machine	
(AVM)	

–  For	the	opera>ng	system	
•  Hardware	abstrac>on	layer	

TCP/IP Networking

Virtual Memory

Hardware-Specific Software
and Device Drivers

File System

Scheduling

Graphics Processor

Address TranslationProcessors

Network

Hardware

Users

User-mode

Kernel-mode
Kernel-user Interface

(Abstract virtual machine)

Hardware Abstraction Layer

APP

System
Library

APP

System
Library

APP

System
Library

Disk

OS	Challenges	-	Performance	

•  Latency/response	>me	
–  How	long	does	an	opera>on	take	to	complete?	

•  Throughput	
–  How	many	opera>ons	can	be	done	per	unit	of	>me?	

•  Overhead	
–  How	much	extra	work	is	done	by	the	OS?	

•  Fairness	
–  How	equal	is	the	performance	received	by	different	users?	

•  Predictability	
–  How	consistent	is	the	performance	over	>me?	

OPERATING	SYSTEMS	STRUCTURES	

Today:	Four	Fundamental	OS	Concepts	
•  Thread	

–  Single	unique	execu>on	context:	fully	describes	program	state	
–  Program	Counter,	Registers,	Execu>on	Flags,	Stack	

•  Address	space	(with	transla>on)	
–  Programs	execute	in	an	address	space	that	is	dis>nct	from	the	
memory	space	of	the	physical	machine	

•  Process	
–  An	instance	of	an	execu>ng	program	is	a	process	consis,ng	of	an	
address	space	and	one	or	more	threads	of	control	

•  Dual	mode	opera>on	/	Protec>on	
–  Only	the	“system”	has	the	ability	to	access	certain	resources	
–  The	OS	and	the	hardware	are	protected	from	user	programs	and	
user	programs	are	isolated	from	one	another	by	controlling	the	
transla,on	from	program	virtual	addresses	to	machine	physical	
addresses	

OS	Bodom	Line:	Run	Programs	

int main()
{ … ;
 }

ed
ito

r
Program Source

foo.c

Lo
ad

 &

Ex
ec

ut
e M

em
ory

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

co
m

pi
le

r

Executable

a.out

data

instructions

•  Load	instruc>on	and	data	segments	of	
executable	file	into	memory	

•  Create	stack	and	heap	
•  “Transfer	control	to	program”	
•  Provide	services	to	program	
•  While	protec>ng	OS	and	program	

Instruc>on	Fetch/Decode/Execute	Cycle	
The	instruc>on	cycle	

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

Fetch
Exec

R0
…

R31
F0
…
F30
PC

…
Data1
Data0
Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2�
Inst1
Inst0

Addr 0

Addr 232-1

What	happens	during	program	execu>on?	

•  Execu>on	sequence:	
–  Fetch	Instruc>on	at	PC			
–  Decode	
–  Execute	(possibly	using	registers)	
– Write	results	to	registers/mem	
–  PC	=	Next	Instruc>on(PC)	
–  Repeat		

PC
PC
PC
PC

First	OS	Concept:	Thread	of	Control	
•  Certain	registers	hold	the	context	of	thread	
–  Stack	pointer	holds	the	address	of	the	top	of	stack	

•  Other	conven>ons:	Frame	pointer,	Heap	pointer,	Data	
– May	be	defined	by	the	instruc>on	set	architecture	or	by	
compiler	conven>ons	

•  Thread:	Single	unique	execu>on	context	
–  Program	Counter,	Registers,	Execu>on	Flags,	Stack	

•  A	thread	is	execu>ng	on	a	processor	when	it	is	
resident	in	the	processor	registers.	

•  PC	register	holds	the	address	of	execu>ng	
instruc>on	in	the	thread	

•  Registers	hold	the	root	state	of	the	thread.	
–  The	rest	is	“in	memory”	

Second	OS	Concept:	Program’s	Address	
Space	

0x000…

0xFFF…

code

Static Data

heap

stack•  Address	space	⇒	the	set	of	accessible	
addresses	+	state	associated	with	
them:	
–  For	a	32-bit	processor	there	are	232	=	4	
billion	addresses	

•  What	happens	when	you	read	or	write	
to	an	address?	
–  Perhaps	nothing	
–  Perhaps	acts	like	regular	memory	
–  Perhaps	ignores	writes	
–  Perhaps	causes	I/O	opera>on	

•  (Memory-mapped	I/O)	
–  Perhaps	causes	excep>on	(fault)	

Address	Space:	In	a	Picture	

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

•  What’s	in	the	code	segment?	Sta>c	data	segment?	
•  What’s	in	the	Stack	Segment?	

–  How	is	it	allocated?	How	big	is	it?	
•  What’s	in	the	Heap	Segment?	

–  How	is	it	allocated?		How	big?	

Mul>programming	-	Mul>ple	Threads	of	
Control	

OS

Proc
1

Proc
2

Proc
n…

code
Static Data

heap

stack

code
Static Data

heap

stack

code
Static Data

heap

stack

CPU	

How	can	we	give	the	illusion	of	mul>ple	processors?	

vCPU3vCPU2vCPU1

Shared Memory

•  Assume	a	single	processor.		How	do	we	provide	the	illusion	
of	mul>ple	processors?	
–  Mul>plex	in	>me!	

•  Each	virtual	“CPU”	needs	a	structure	to	hold:	
–  Program	Counter	(PC),	Stack	Pointer	(SP)	
–  Registers	(Integer,	Floa>ng	point,	others…?)	

•  How	switch	from	one	virtual	CPU	to	the	next?	
–  Save	PC,	SP,	and	registers	in	current	state	block	
–  Load	PC,	SP,	and	registers	from	new	state	block	

•  What	triggers	switch?	
–  Timer,	voluntary	yield,	I/O,	other	things	

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

The	Basic	Problem	of	Concurrency	
•  The	basic	problem	of	concurrency	involves	resources:	
–  Hardware:	single	CPU,	single	DRAM,	single	I/O	devices	
– Mul>programming	API:	processes	think	they	have	exclusive	
access	to	shared	resources	

•  OS	has	to	coordinate	all	ac>vity	
– Mul>ple	processes,	I/O	interrupts,	…	
–  How	can	it	keep	all	these	things	straight?	

•  Basic	Idea:	Use	Virtual	Machine	abstrac>on	
–  Simple	machine	abstrac>on	for	processes	
– Mul>plex	these	abstract	machines	

Proper>es	of	this	simple	mul>programming	technique	

•  All	virtual	CPUs	share	same	non-CPU	resources	
–  I/O	devices	the	same	
– Memory	the	same	

•  Consequence	of	sharing:	
–  Each	thread	can	access	the	data	of	every	other	thread	
(good	for	sharing,	bad	for	protec>on)	

–  Threads	can	share	instruc>ons	
(good	for	sharing,	bad	for	protec>on)	

–  Can	threads	overwrite	OS	func>ons?		
•  This	(unprotected)	model	is	common	in:	
–  Embedded	applica>ons	
– Windows	3.1/Early	Macintosh	(switch	only	with	yield)	
– Windows	95—ME	(switch	with	both	yield	and	>mer)	

Protec>on	
•  Opera>ng	System	must	protect	itself	from	user	programs	
–  Reliability:	compromising	the	opera>ng	system	generally	
causes	it	to	crash	

–  Security:	limit	the	scope	of	what	processes	can	do	
–  Privacy:	limit	each	process	to	the	data	it	is	permided	to	access	
–  Fairness:	each	should	be	limited	to	its	appropriate	share	of	
system	resources	(CPU	>me,	memory,	I/O,	etc)	

•  It	must	protect	User	programs	from	one	another	
•  Primary	Mechanism:	limit	the	transla>on	from	program	
address	space	to	physical	memory	space	
–  Can	only	touch	what	is	mapped	into	process	address	space	

•  Addi>onal	Mechanisms:	
–  Privileged	instruc>ons,	in/out	instruc>ons,	special	registers	
–  syscall	processing,	subsystem	implementa>on		

•  (e.g.,	file	access	rights,	etc)		

Third	OS	Concept:	Process	
•  Process: execu>on	environment	with	Restricted	Rights	

–  Address Space with One or More Threads
–  Owns	memory	(address	space)	
–  Owns	file	descriptors,	file	system	context,	…	
–  Encapsulate	one	or	more	threads	sharing	process	resources	

•  Why	processes?		
–  Protected	from	each	other!	
–  OS	Protected	from	them	
–  Processes	provides	memory	protec>on	
–  Threads	more	efficient	than	processes	(later)	

•  Fundamental	tradeoff	between	protec>on	and	efficiency	
•  Communica>on	easier	within	a	process	
•  Communica>on	harder	between	processes	

•  Applica>on	instance	consists	of	one	or	more	processes	
–  E.g.,	Facebook	app	on	your	phone		

	

Single	and	Mul>threaded	Processes	

•  Threads	encapsulate	concurrency:	“Ac>ve”	component	
•  Address	spaces	encapsulate	protec>on:	“Passive”	part	
–  Keeps	buggy	program	from	trashing	the	system	

•  Why	have	mul>ple	threads	per	address	space?	
–  E.g.,	web	server	

	

Fourth	OS	Concept:		Dual	Mode	Opera>on	
•  Hardware	provides	at	least	two	modes:	

–  “Kernel”	mode	(or	“supervisor”	or	“protected”)	
–  “User”	mode:	Normal	programs	executed		

•  What	is	needed	in	the	hardware	to	support	“dual	mode”	
opera>on?	
–  A	bit	of	state	(user/system	mode	bit)	
–  Certain	opera>ons	/	ac>ons	only	permided	in	system/kernel	mode	

•  In	user	mode	they	fail	or	trap	

–  User	à	Kernel	transi>on	sets	system	mode	AND	saves	the	user	PC	
•  Opera>ng	system	code	carefully	puts	aside	user	state	then	performs	the	
necessary	opera>ons	

–  Kernel	à	User	transi>on	clears	system	mode	AND	restores	
appropriate	user	PC	
•  return-from-interrupt	

User/Kernel	(Privileged)	Mode	

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

Simple	Protec>on:	Base	and	Bound	
(B&B)	

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

Simple	Protec>on:	Base	and	Bound	
(B&B)	

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

•  Requires	reloca>ng	loader	
•  S>ll	protects	OS	and	isolates	
program	

•  No	addi>on	on	address	path	

Addresses translated
when program is loaded

Another	idea:	Address	Space	Transla>on	
•  Program	operates	in	an	address	space	that	is	dis>nct	
from	the	physical	memory	space	of	the	machine	

Processor Memory

0x000…

0xFFF…

translator

A	simple	address	transla>on	with	Base	and	
Bound	

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

•  Can	the	program	touch	OS?	
•  Can	it	touch	other	programs?	

0010…
0010…

Addresses translated �
on-the-fly

Tying	it	together:	Simple	B&B:	OS	loads	
process	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

Simple	B&B:	OS	gets	ready	to	execute	
process		

•  Privileged	
Inst:	set	
special	
registers	

•  RTU	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

Simple	B&B:	User	Code	Running	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

•  How	does		
kernel	switch	
between	
processes?	

•  First	
ques>on:	
How	to	return	
to	system?	

0001…

3	types	of	Mode	Transfer	
•  Syscall	

–  Process	requests	a	system	service,	e.g.,	exit	
–  Like	a	func>on	call,	but	“outside”	the	process	
–  Does	not	have	the	address	of	the	system	func>on	to	call	
–  Like	a	Remote	Procedure	Call	(RPC)	–	for	later	
–  Marshall	the	syscall	id	and	args	in	registers	and	exec	syscall	

•  Interrupt	
–  External	asynchronous	event	triggers	context	switch	
–  e.	g.,	Timer,	I/O	device	
–  Independent	of	user	process	

•  Trap	or	Excep>on	
–  Internal	synchronous	event	in	process	triggers	context	switch	
–  e.g.,	Protec>on	viola>on	(segmenta>on	fault),	Divide	by	zero,	…	

•  All	3	are	an	UNPROGRAMMED	CONTROL	TRANSFER	
–  Where	does	it	go?	

How	do	we	get	the	system	target	address	of	the	
“unprogrammed	control	transfer?”	

Interrupt	Vector	

interrupt number (i)

intrpHandler_i () {
 ….
}

Address and properties of
each interrupt handler

Simple	B&B:	User	=>	Kernel	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

•  How	to	return	
to	system?	

0000 1234

Simple	B&B:	Interrupt	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

•  How	to	save	
registers	and	
set	up	system	
stack?	

IntrpVector[i]

Simple	B&B:	Switch	User	Process	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…

•  How	to	save	
registers	and	
set	up	system	
stack?	

0001 0124

1000 …

1100 …

0000 1234

regs

00FF…

RTU

Simple	B&B:	“resume”	

OS

Proc
1

Proc
2

Proc
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…

•  How	to	save	
registers	and	
set	up	system	
stack?	

000 0248

1000 …

1100 …

0000 1234

regs

00FF…

RTU

Conclusion:	Four	fundamental	OS	
concepts	

•  Thread	
–  Single	unique	execu>on	context	
–  Program	Counter,	Registers,	Execu>on	Flags,	Stack	

•  Address	Space	with	Transla>on	
–  Programs	execute	in	an	address	space	that	is	dis>nct	from	the	
memory	space	of	the	physical	machine	

•  Process	
–  An	instance	of	an	execu>ng	program	is	a	process	consis,ng	of	an	
address	space	and	one	or	more	threads	of	control	

•  Dual	Mode	opera>on/Protec>on	
–  Only	the	“system”	has	the	ability	to	access	certain	resources	
–  The	OS	and	the	hardware	are	protected	from	user	programs	and	
user	programs	are	isolated	from	one	another	by	controlling	the	
transla,on	from	program	virtual	addresses	to	machine	physical	
addresses	

