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Computational Science

My approach to
Computational Science is
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Computational Science

starting with the numerics of PDEs,

and mathematics of the computation,

through the distillation into
high quality numerical libraries,

to scientific discovery through computing.
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Community Involvement

PETSc Citations
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M. Knepley (UC) CompSci Columbia 5 / 75



Operator Approximation

Outline

1 Operator Approximation

2 Residual Evaluation

3 Applications
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Operator Approximation

Collaborators

BIBEE
Researchers

Jaydeep Bardhan

Classical DFT
Researchers

Dirk Gillespie Bob Eisenberg

M. Knepley (UC) CompSci Columbia 7 / 75



Operator Approximation

Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Operator Approximation

Bioelectrostatics
Physical Model

Electrostatic Potential φ

Region II: solvent
Region I: protein

Surface
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Operator Approximation

Bioelectrostatics
Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced
surface charge σ,

σ(~r) + ε̂

∫
Γ

∂

∂n(~r)

σ(~r ′)d2~r ′

4π||~r −~r ′|| = −ε̂
Q∑

k=1

∂

∂n(~r)

qk

4π||~r −~rk ||
(I + ε̂D∗)σ(~r) =

where we define
ε̂ = 2

εI − εII
εI + εII

< 0
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Operator Approximation

Bioelectrostatics
Mathematical Model

The reaction potential is given by

φR(~r) =

∫
Γ

σ(~r ′)d2~r ′

4πε1||~r −~r ′||
= Cσ

which defines Ges, the electrostatic part of the solvation free energy

∆Ges =
1
2

〈
q, φR

〉
=

1
2
〈q,Lq〉

=
1
2

〈
q,CA−1Bq

〉
where

Bq = −ε̂
∫

Ω

∂

∂n(~r)

q(~r ′)d3~r ′

4π||~r −~r ′||
Aσ = I + ε̂D∗
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Operator Approximation

Problem

Boundary element discretizations of the
solvation problem (Eq. ??):

can be expensive to solve

are more accurate than required by
intermediate design iterations
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Operator Approximation

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1− ε̂

2

)
σCFA = Bq

Lower Bound:
no good physical motivation(

1 +
ε̂

2

)
σLB = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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Operator Approximation

BIBEE
Approximate D∗ by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation:
uniform normal field(

1− ε̂

2

)
σCFA = Bq

Preconditioning:
consider only local effects

σP = Bq

Eigenvectors: BEM ei · ej BIBEE/P
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Operator Approximation

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ∆Ges has upper and
lower bounds given by

1
2

(
1 +

ε̂

2

)−1

〈q,CBq〉 ≤ 1
2

〈
q,CA−1Bq

〉
≤ 1

2

(
1− ε̂

2

)−1

〈q,CBq〉 ,

and for spheres and prolate spheroids, we have the improved lower
bound,

1
2
〈q,CBq〉 ≤ 1

2

〈
q,CA−1Bq

〉
,

and we note that
|ε̂| < 1

2
.
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Operator Approximation

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

Replace C with B

Symmetrization

Eigendecomposition
shown in the following slides.

We will need the single layer operator S for step 1,

Sτ(~r) =

∫
τ(~r ′)d2~r ′

4π||~r −~r ′||
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Operator Approximation

Energy Bounds: First Step
Replace C with B

The potential at the boundary Γ given by

φCoulomb(~r) = CT q

can also be obtained by solving an exterior Neumann problem for τ ,

φCoulomb(~r) = Sτ

= S(I − 2D∗)−1(
2
ε̂

Bq)

=
2
ε̂
S(I − 2D∗)−1Bq

so that the solvation energy is given by

1
2

〈
q,CA−1Bq

〉
=

1
ε̂

〈
S(I − 2D∗)−1Bq, (I + ε̂D∗)−1Bq

〉
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Operator Approximation

Energy Bounds: Second Step
Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD∗ = DS

and we have
S = S1/2S1/2

which means that we can define a Hermitian operator H similar to D∗

H = S1/2D∗S−1/2

leading to an energy

1
2

〈
q,CA−1Bq

〉
=

1
ε̂

〈
Bq,S1/2(I − 2H)−1(I + ε̂H)−1S1/2Bq

〉
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Operator Approximation

Energy Bounds: Third Step
Eigendecomposition

The spectrum of D∗ is in [−1
2 ,

1
2), and the energy is

1
2

〈
q,CA−1Bq

〉
=
∑

i

1
ε̂

(1− 2λi)
−1 (1 + ε̂λi)

−1 x2
i

where
H = V ΛV T

and
~x = V TS1/2Bq
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Operator Approximation

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1
2

〈
q,CA−1

CFABq
〉

=
∑

i

1
ε̂

(1− 2λi)
−1
(

1− ε̂

2

)−1

x2
i

1
2

〈
q,CA−1

P Bq
〉

=
∑

i

1
ε̂

(1− 2λi)
−1 x2

i

1
2

〈
q,CA−1

LB Bq
〉

=
∑

i

1
ε̂

(1− 2λi)
−1
(

1 +
ε̂

2

)−1

x2
i

where we note that
|ε̂| < 1

2
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Operator Approximation

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures

BEM, GBMV, SGB/CFA, BIBEE/CFA, and BIBEE/P. Figure
3!a" is a plot of the eigenvalues of the calculated matrices.
The SGB/CFA eigenvalues are slightly more accurate than
the BIBEE/CFA eigenvalues for the dominant eigenmodes
but less accurate for the smaller eigenmodes. Of the four
electrostatic approximations, the GBMV method appears to
provide the most accurate eigenvalue estimates. As noted
previously, BIBEE/CFA is most accurate for the largest-
magnitude eigenvalues and the BIBEE/P method offers the
best fidelity to BEM for the smallest eigenvalues.38

It is important that methods for estimating electrostatic
interactions calculate not only an accurate total free energy
but also preserve the energetics of interaction between
chemical groups. To analyze how different methods preserve
pairwise interactions with respect to the BEM calculations,
we project the eigenvectors of the approximate reaction-
potential matrices onto the eigenvectors of the reaction-
potential matrix from BEM. For example, the !i , j" entry of
the matrix

VBEM
T VSGB/CFA !33"

represents the projection of the jth eigenvector of the SGB/
CFA reaction-potential matrix onto the jth eigenvector of the
BEM reaction-potential matrix. In this projection framework,
perfect preservation of the pairwise interactions would give
rise to a diagonal matrix with diagonal entries of unit mag-
nitude. Conversely, if a method imperfectly reproduces pair-
wise interactions, the off-diagonal entries are nonzero. The
degree to which the approximate-method eigenvectors align
with the actual eigenvectors can then be assessed visually
using a heat map; Figs. 4–6 are plots of the projections of the
SGB/CFA, GBMV, and BIBEE/P eigenvectors onto the
eigenvectors of the BEM reaction-potential matrix.38 We be-
lieve that discrepancies between the BIBEE and BEM eigen-
vectors may be a result of discretizing the integral equation
for simulation using BEM.72 However, the various BIBEE
methods give rise to essentially identical eigenvectors !data
not shown", which is expected given that the diagonal ap-
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FIG. 1. !Color online" Comparison of electrostatic solvation free energies using met-enkephalin structures taken from a 500-ps MD simulation plotted as time
series; snapshots have been taken at 10-ps intervals. Energies are in kcal/mol. !a" All estimates are plotted. !b" BIBEE/LB has been omitted for clarity.
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FIG. 2. !Color online" Comparison of estimated electrostatic solvation free
energies using met-enkephalin structures taken from a 500-ps MD simula-
tion plotted as a scatter plot against energies calculated using BEM. Ener-
gies are in kcal/mol.
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FIG. 3. !Color" Eigenvalues of the reaction-potential matrices computed
from the final met-enkephalin structure using BEM, BIBEE/CFA, BIBEE/P,
GBMV, and SGB/CFA methods.

104108-5 Bounding electrostatic free energies J. Chem. Phys. 130, 104108 !2009"

Downloaded 11 Mar 2009 to 18.51.1.222. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Operator Approximation

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Operator Approximation

Resolution

Boundary element discretizations of the
solvation problem:

can be expensive to solve
Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, JCP, 2009

are more accurate than required by
intermediate design iterations

Accuracy is not tunable
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Operator Approximation

Evolution of BIBEE

Sharp bounds for solvation energy

Exploration of behavior in simplified geometries
Mathematical Analysis of the BIBEE Approximation for Molecular Solvation:
Exact Results for Spherical Inclusions, JCP, 2011
Represent BIBEE as a deformed boundary condition
Fully developed series solution
Improve accuracy by combining CFA and P approximations

Application to protein-ligand binding
Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Molecular-Based Mathematical Biology, 2013
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Operator Approximation

Future of BIBEE

Framework for systematic exploration
Both analytical and computational foundation

Reduced-basis Method with analytic solutions
Tested in protein binding paper above
The spatial high frequency part is handled by BIBEE/P
topology is not important
The spatial low frequency part is handled by analytic solutions
insensitive to bumpiness
Computational science and re-discovery: open-source implementations of
ellipsoidal harmonics for problems in potential theory, CSD, 2012.

Extend to other kernels, e.g. Yukawa

Extend to full multilevel method
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Residual Evaluation

Outline

1 Operator Approximation

2 Residual Evaluation

3 Applications
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Residual Evaluation

Collaborators

PETSc
Developers

Barry Smith Jed Brown

Former UC
Students

Andy Terrel Peter Brune
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Residual Evaluation

Problem

Traditional PDE codes cannot:

Compare different discretizations
Different orders, finite elements
finite volume vs. finite element

Compare different mesh types
Simplicial, hexahedral, polyhedral

Run 1D, 2D, and 3D problems

Enable an optimal solver
Fields, auxiliary operators
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Residual Evaluation

Problem

Traditional Mesh/Solver Interface is Too General:

Solver not told about discretization data, e.g. fields

Cannot take advantage of problem structure
blocking
saddle point structure

Cannot use auxiliary data
Eigen-estimates
null spaces
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Residual Evaluation

Problem

Traditional Mesh/Solver Interface is Too Specific:

Assembly code specialized to each discretization
dimension
cell shape
approximation space

Explicit references to element type
getVertices(faceID), getAdjacency(edgeID, VERTEX),
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions

M. Knepley (UC) CompSci Columbia 28 / 75



Residual Evaluation

Mesh Representation

We represent each mesh as a Hasse Diagram:

Can represent any CW complex
Can be implemented as a Directed Acyclic Graph
Reduces mesh information to a single covering relation
Can discover dimension, since meshes are ranked posets

We use an abstract topological interface to organize traversals for:
discretization integrals
solver size determination
computing communication patterns

Mesh geometry is treated as just another mesh function.
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Residual Evaluation

Sample Meshes
Interpolated triangular mesh

7

8

9
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0 1

Vertices

Edges

Cells

Depth 0

Depth 1

Depth 2

7 8 9 10

2 3 4 5 6

0 1
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Residual Evaluation

Sample Meshes
Optimized triangular mesh
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Residual Evaluation

Sample Meshes
Interpolated quadrilateral mesh
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Residual Evaluation

Sample Meshes
Optimized quadrilateral mesh
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Residual Evaluation

Sample Meshes
Interpolated tetrahedral mesh
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Residual Evaluation

Mesh Interface

By focusing on the key topological relations,
the interface can be both concise and quite general

Single relation

Dual is obtained by reversing arrows

Can associate functions with DAG points
Dual operation gives the support of the function

Mesh Algorithms for PDE with Sieve I: Mesh Distribution, Knepley, Karpeev, Sci. Prog., 2009.
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Residual Evaluation

Basic Operations
Cone

We begin with the basic
covering relation,

cone(0) = {2, 3, 4} 7

8

9

10

2

3

4

5

6

0 1

Vertices

Edges

Cells

Depth 0

Depth 1

Depth 2

7 8 9 10

2 3 4 5 6

0 1

M. Knepley (UC) CompSci Columbia 36 / 75



Residual Evaluation

Basic Operations
Support

reverse arrows to get the
dual operation,

support(9) = {3, 4, 6} 7
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Residual Evaluation

Basic Operations
Closure

add the transitive closure
of the relation,

closure(0) = {0, 2, 3, 4, 7, 8, 9} 7
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Residual Evaluation

Basic Operations
Star

and the transitive closure
of the dual,

star(7) = {7, 2, 3, 0} 7
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Residual Evaluation

Basic Operations
Meet

and augment with lattice
operations.

meet(0, 1) = {4} 7
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Residual Evaluation

Basic Operations
Join

and augment with lattice
operations.

join(8, 9) = {4} 7
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Residual Evaluation

Residual Evaluation

I developed a single residual evaluation routine independent of
spatial dimension, cell geometry, and finite element:

F (~u) = 0

Dim Cell Types Discretizations
1 Simplex Lagrange FEM
2 Tensor Product H(div) FEM∗

3 Polyhedral H(curl) FEM∗

6† Prism DG FEM ∗‡
† Peter Brune, ANL
∗ FEniCS Project
‡ Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.
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Residual Evaluation

FEM Integration Model
Proposed by Jed Brown

We consider weak forms dependent only on fields and gradients,∫
Ω
φ · f0(u,∇u) +∇φ : ~f1(u,∇u) = 0. (1)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q~f k

1 (uq,∇uq)

]
= 0 (2)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator
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Residual Evaluation

Batch Integration

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
<Integrate batch of elements>
<Insert batch of element vectors into global vector>

}
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https://bitbucket.org/petsc/petsc-dev/src/91b3a1ba482763c5245a33da88fc5d3c2468d6a3/src/dm/impls/plex/plex.c?at=default#cl-9782


Residual Evaluation

Batch Integration
Set boundary conditions

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
DMPlexProjectFunctionLocal(dm, numComponents,
bcFuncs, INSERT_BC_VALUES, X);

<Extract coefficients and geometry for batch>
<Integrate batch of elements>
<Insert batch of element vectors into global vector>

}
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Residual Evaluation

Batch Integration
Extract coefficients and geometry

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
for (c = cStart; c < cEnd; ++c) {
DMPlexComputeCellGeometry(dm, c, &v0[c*dim],

&J[c*dim*dim], &invJ[c*dim*dim], &detJ[c]);
DMPlexVecGetClosure(dm, NULL, X, c, NULL, &x);
for (i = 0; i < cellDof; ++i) u[c*cellDof+i] = x[i];
DMPlexVecRestoreClosure(dm, NULL, X, c, NULL, &x);

}
<Integrate batch of elements>
<Insert batch of element vectors into global vector>

}
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Residual Evaluation

Batch Integration
Integrate element batch

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
for (field = 0; field < numFields; ++field) {
(*mesh->integrateResidualFEM)(Ne, numFields, field,

quad, u,
v0, J, invJ, detJ,
f0, f1, elemVec);

(*mesh->integrateResidualFEM)(Nr, ...);
}
<Insert batch of element vectors into global vector>

}
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Residual Evaluation

Batch Integration
Insert element vectors

DMPlexComputeResidualFEM(dm, X, F, user)
{
VecSet(F, 0.0);
<Put boundary conditions into local input vector>
<Extract coefficients and geometry for batch>
<Integrate batch of elements>
for (c = cStart; c < cEnd; ++c) {
DMPlexVecSetClosure(dm, NULL, F, c,

&elemVec[c*cellDof], ADD_VALUES);
}

}
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Residual Evaluation

Element Integration

FEMIntegrateResidualBatch(Ne, numFields, field,
quad[], coefficients[],
v0s[], jacobians[], jacobianInv[], jacobianDet[],
f0_func, f1_func)

{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

<Make x_q>
<Make u_q and gradU_q>
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Calculate xq

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

for (d = 0; d < dim; ++d) {
x[d] = v0[d];
for (d2 = 0; d2 < dim; ++d2) {
x[d] += J[d*dim+d2]*(quadPoints[q*dim+d2]+1);

}
}
<Make x_q>
<Make u_q and gradU_q>
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Calculate uq and ∇uq

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

<Make x_q>
for (f = 0; f < numFields; ++f) {

for (b = 0; b < Nb; ++b) {
for (comp = 0; comp < Ncomp; ++comp) {
u[comp] += coefficients[cidx]*basis[q+cidx];
for (d = 0; d < dim; ++d) {
<Transform derivative to real space>
gradU[comp*dim+d] +=
coefficients[cidx]*realSpaceDer[d];

}
}

}
}
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Calculate uq and ∇uq

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

<Make x_q>
for (f = 0; f < numFields; ++f) {

for (b = 0; b < Nb; ++b) {
for (comp = 0; comp < Ncomp; ++comp) {
u[comp] += coefficients[cidx]*basis[q+cidx];
for (d = 0; d < dim; ++d) {
realSpaceDer[d] = 0.0;
for (g = 0; g < dim; ++g) {
realSpaceDer[d] +=

invJ[g*dim+d]*basisDer[(q+cidx)*dim+g];
}
gradU[comp*dim+d] +=
coefficients[cidx]*realSpaceDer[d];

}
}

}
}
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
<Add contributions from f_0 and f_1>

}
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Residual Evaluation

Element Integration
Call f0 and f1

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

<Make x_q>
<Make u_q and gradU_q>
f0_func(u, gradU, x, &f0[q*Ncomp]);
for (i = 0; i < Ncomp; ++i) {
f0[q*Ncomp+i] *= detJ*quadWeights[q];

}
f1_func(u, gradU, x, &f1[q*Ncomp*dim]);
for (i = 0; i < Ncomp*dim; ++i) {
f1[q*Ncomp*dim+i] *= detJ*quadWeights[q];

}
<Loop over element vector entries (f, fc)>

<Add contributions from f_0 and f_1>
}
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Residual Evaluation

Element Integration
Update element vector

FEMIntegrateResidualBatch(...)
{
<Loop over batch of elements (e)>
<Loop over quadrature points (q)>

<Make x_q>
<Make u_q and gradU_q>
<Call f_0 and f_1>

<Loop over element vector entries (f, fc)>
for (q = 0; q < Nq; ++q) {
elemVec[cidx] += basis[q+cidx]*f0[q+comp];
for (d = 0; d < dim; ++d) {
<Transform derivative to real space>
elemVec[cidx] +=

realSpaceDer[d]*f1[(q+comp)*dim+d];
}

}
}
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Residual Evaluation

GPU Integration

Porting to the GPU meant changing
only the element integration function:

Has the same flexibility as CPU version

Multiple threads execute each cell integral

Achieves 100 GF/s for 2D P1 Laplacian

Code is available here

Finite Element Integration on GPUs, TOMS, 2013
Finite Element Integration with Quadrature on the GPU, PLC,
2013
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https://bitbucket.org/petsc/petsc-dev/src/a86497f023abdabc7031d8e16494be6c96d5e91d/src/snes/examples/tutorials/ex52_integrateElement.cu?at=default
http://arxiv.org/abs/1103.0066


Residual Evaluation

Solver Integration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Full Schur Complement

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
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Residual Evaluation

Solver Integration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

SIMPLE

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_inner_ksp_type preonly
-fieldsplit_pressure_inner_pc_type jacobi

-fieldsplit_pressure_upper_ksp_type preonly
-fieldsplit_pressure_upper_pc_type jacobi

(
I 0

BT D−1
A I

)(
Â 0
0 Ŝ

)(
I D−1

A B
0 I

)
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Residual Evaluation

Solver Integration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Additive Schwarz + Full Schur Complement

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2 -pc_fieldsplit_type additive
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type preonly
-fieldsplit_temperature_pc_type lu

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
0

0 LT


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Residual Evaluation

Solver Integration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Least-Squares Commutator + Upper Schur Comp. + Full Schur Comp.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2 -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type gmres
-fieldsplit_temperature_pc_type lsc

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
G

0 ŜLSC


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Residual Evaluation

Resolution

Traditional PDE codes:

Cannot compare different discretizations
Automated FEM Discretizations for the Stokes Equation, Terrel, et.al., BIT, 2008
Efficient Assembly of H(div) and H(curl) Conforming Finite Elements, Rognes, et.al.,
SISC, 2009

Compare different mesh types
A Domain Decomposition Approach to Implementing Fault Slip in
Finite-Element Models of Quasi-static and Dynamic Crustal Deformation,
Aagaard, Knepley, Williams, JGR, 2013

Run 1D, 2D, and 3D problems
Ibid.

Enabling an optimal solver without programming
Ibid.
Composable linear solvers for multiphysics, Brown, et.al., IPDPS, 2012
On the rise of strongly tilted mantle plume tails, Mériaux, PEPI, 2011
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Residual Evaluation

Future Work

Unify FEM and FVM residual evaulation

Batched integration on accelerators

Integrate auxiliary fields

Incorporate cell problems for coefficients
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Applications

Outline

1 Operator Approximation

2 Residual Evaluation

3 Applications
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Applications

PyLith

PyLith is an open source, parallel
simulator for crustal deformation
problems developed by myself,
Brad Aagaard, and Charles Williams.

Brad Aagaard

Charles Williams

PyLith employs a finite element
discretization on unstructured
meshes and is built on the
PETSc libraries from ANL.
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http://www.mcs.anl.gov/petsc


Applications

PyLith

Multiple problems
Dynamic rupture
Quasi-static relaxation

Multiple models
Fault constitutive models
Nonlinear visco-elastic-plastic
Finite deformation

Multiple Meshes
1D, 2D, 3D
Hex and tet meshes
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Applications

Classical DFT in Three Dimensions

I wrote the first 3D Classical DFT
with true hard sphere chemical
potential using fundamental
measure theory. It used an
O(N log N) algorithm based upon
the FFT. We examined the physics
of ion channels, such as the
ryanodine receptor. Advanced
electrostatics allowed prediction of
I-V curves for 100+ solutions,
including polyvalent species.

The implementation is detailed in An Efficient Algorithm for Classical Density

Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.
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Applications

Projects Using My Mesh

Fracture simulation, Blaise Bourdin
Full variational formulation

Phase field for crack
Linear or quadratic penalty

Cracks are not prescribed
Arbitrary crack geometry
Arbitrary crack intersections

Multiple materials and composite toughness
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Applications

Projects Using My Mesh

Respiration modeling, HiFlow3
Multi-purpose finite element software
Arose from EMCL at Karlsruhe Institute of Technology
Flow behavior in the human respiratory system
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Applications

Projects Using PETSc Composable Solvers
Magma Dynamics, TerraFERMA (Columbia)

Cian Wilson and Marc Spiegelman
Flexible model builder
Finite element
Nested FieldSplit solver
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Fluid Model (ω/vs0 = 50)
Compaction & Buoyancy Buoyancy Only

16% Melt 0.1% Melt

0.01 100.0Porosity, ϕ/0.003
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Applications

Projects Using PETSc Composable Solvers
Magma Dynamics (Oxford)

Sam Weatherley and Richard Katz
Finite volume
Nested FieldSplit solver
Small scale parallel (102–103)
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Applications

Projects Using PETSc Composable Solvers
Magma Dynamics (Oxford)

Sam Weatherley and Richard Katz
Finite volume
Nested FieldSplit solver
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Applications

Projects Using PETSc Composable Solvers
Lithospheric and Mantle dynamics, PTatin3d (ETHZ)

Dave May
Finite element
Lagrangian particles
Nested FieldSplit solver
Large scale parallel (103–105)

M. Knepley (UC) CompSci Columbia 66 / 75
Fig. 3. Evolution of topography (H) and basin structures from a rifting
experiment ⇠10 Myr after breakup has occurred. Upper panel outlines the
passive margins (topographic lows), which are accurately simulated via the
deformed free surface. Lower panel shows the second invariant of the strain-
rate tensor (eII), which highlights the complex geometry of cross-cutting
faults that intersect the isolated basin (front face). This simulation employed
2 mm/yr shortening which resulted in the development of oblique active
structures (denoted by yellow isosurfaces).

consisting of 2⇥6 Intel Xeon (Series 5600) cores running at
2.8 GHz. Each model utilized a mesh resolution of 256 ⇥
32 ⇥ 128 Q2 elements. Convergence of the nonlinear Stokes
problem was defined to have occurred when kFk < 10�2, or
when the initial nonlinear residual (redefined at each time step)
was reduced by a factor of 104. We restricted the nonlinear
solver to perform a maximum of five iterations. For the non
dimensional scaling we adopted, these nonlinear stopping
conditions proved effective for the transient rift problems
considered here (see Figure 4). We defined the action of
J̃�1

uu in Equation (17) via a V (3, 3) cycle. The multigrid
preconditioner was configured with three levels, using the
following element hierarchy (from the coarsest to the finest
level): 32 ⇥ 16 ⇥ 16, 128 ⇥ 32 ⇥ 64, 256 ⇥ 32 ⇥ 128.

We used a coarse grid solver consisting of an inexact Krylov
method (CG), preconditioned with an algebraically defined
additive Schwarz method (ASM). The ASM preonditioner
employed an overlap of 4, with subdomain solves defined
via a single application of ILU(0). The coarse grid solver
was terminated after 25 iterations, or if the initial residual
was reduced by a factor of 104. From our experience, using
ASM preconditioners for variable viscosity Stokes problems in
which the total number of cores (subdomains) is < 2-3⇥103,
will result in an efficient coarse grid solver. However, when
the numbers of cores (subdomains) becomes larger than >
4⇥103, we find ASM is inefficient, leading to coarse grid
solve times which are larger than the total time spent applying
the smoother on the finest level. This is in part associated
to (i) the poor algorithmic scalability of ASM and (ii) the
number of global reductions required by the Krylov method
which is applied to a fully distributed coarse grid operator
which possesses as many subdomains as the fine grid operator,
thereby exposing network latency. In such situations, where the
core count exceeds 2k, we find that coarse grid preconditioners

which are both computational and algorithmically scalable
(e.g. the smoothed aggregation based GAMG implementation
in PETSc) are essential.

In Figure 4 we summarize the performance characteristics of
the nonlinear solver and preconditioner configuration adopted
for the rifting experiments. As a function of each model time
step, we show the total number of nonlinear iterations (“Total
Newton” - green dots) required to ensure that kFk < 10�2,
and the total number of Krylov iterations required to solve
the linearized Stokes problem (“Total Krylov” - grey bars).
The average number of Krylov iterations per time step is
shown via the blue line. In the early stages of the simulation
(first five time steps), we observe failure of our nonlinear
solver, with more than five iterations being required. This is
attributed to rapid variations in the free surface (topography)
which occur due to an initial buoyancy structure that is out of
equilibrium with the initially horizontal topography. Once this
nonzero and dynamically consistent topographic surface has
been established, enforcing kFk < 10�2 is possible with 1-
2 Newton iterations. As time advances, damage accumulates
in the central region of the domain and shear zones, repre-
sented via rheological nonlinearities, become highly localized.
We note that despite the yielding condition (associated with
strain-rate and pressure dependent viscosity) being activated
throughout the entire simulation, we observe convergence of
the nonlinear Stokes problem in typically less than three
iterations.

Each model required approximately 1500-2000 time steps,
with the average CPU time per time step being ⇠160-200
seconds. This average reflects the time required to: solve the
nonlinear Stokes problem; perform all nonlinear residual eval-
uations; interpolate between material points and the quadrature
points; the update of material point history variables (plastic
strain) and the coordinates; perform all mesh updates asso-
ciated with the ALE formulation; solve the conservation of
energy (Equation (20)) and to write any requested data to disk.

Our models on continental rifting confirm that a weak
lower crust favors wider passive margins and that a quiescent
period of propagation of continental rifting can be induced by
shortening in the direction normal to the ridge. These models
highlight that a very small amount of axial shortening also
induces obliquity and that the accommodation of this obliquity
by the mid-oceanic ridge or by the continental structures is
a strong function of the viscosity of the lower crust. A weak
lower crust favors margins that are oblique to spreading, while
a strong lower crust favors ridge jumps and transform margins.

VI. OUTLOOK

We have presented a practical geodynamics package using a
material-point method and stable, locally conservative, mixed
finite element discretization. By eschewing assembled sparse
matrices in favor of a matrix-free evaluation that exploits
tensor-product structure, the cost of applying the operator in
multigrid smoothing and residual evaluation was reduced by
an order of magnitude. With regards to time-to-solution, our

Fig. 1. Streamlines for a sedimentation example with Nc = 75 and Rc =
0.05. The streamline diameter is scaled according to the magnitude of the
fluid velocity. The viscosity contrast between the inclusions (blue spheres)
and the background material is �⌘ = 104.

The product (rx⇠)
T (!⌘)(rx⇠), even if ⌘ is tensor-valued, is a

rank-4 tensor containing 21 distinct entries (due to symmetry).
If this is stored, the data requirements for an element increase
to 2 · 8 · 3 + 21 · 27 = 4920 bytes (perfect cache) or
2 ·27 ·3+21 ·27 = 5832 bytes (pessimal cache), but the flops
are reduced to 2·4920+2·81·27 = 14214. This is little benefit
for the present problem, and we do not pursue it further;
but it is justified if ⌘ is anisotropic or for scalar problems
(for which coordinate transformations are disproportionately
expensive and anisotropy is only a rank-2 tensor).

IV. NUMERICAL RESULTS

A. Robustness

To investigate solver robustness, we consider a sedimen-
tation problem chosen as a more demanding variant of the
“sinker” problem in [29]. We populate the cubic domain [0, 1]3

with Nc randomly-placed nonintersecting spheres of radius
Rc. Flow is driven by density variations between the spheres
and background material. In Equation (1) the gravity vector
is taken as g = (0, 0,�9.8) (positive z-direction pointing
towards the free surface). The ambient fluid has viscosity
(�⌘)�1 and density 1, while the spheres have viscosity 1 and
density 1.2. Slip boundary conditions are imposed at the walls
and a free surface at the top (z = 1). As shown in Figure 1 via
the streamlines, the flow pattern is complicated and nonlocal.
Unlike the case Nc = 1, the presence of many inclusions
prevents Krylov methods from accelerating convergence on
the test problem beyond that seen in realistic scenarios.

In the performance tests presented, we chose Nc = 8
and Rc = 0.1 and ran the solver over three time steps
(scientifically relevant sedimentation experiments would be
run for many steps). To explore robustness with respect to

Fig. 2. Convergence of full-space iteration in varying viscosity contrast �⌘.

coefficient contrast, we fix the spatial discretization at 643

Q2 elements and vary the coefficient contrast. We employ the
lower-triangular preconditioner (see Equation (17)) iterating
in the full space and use a single application of a V (2, 2)
cycle (one V-cycle employing two pre- and post- applications
of the smoother) of our geometric multigrid preconditioner to
define the action of J̃�1

uu . The geometric hierarchy contained
three levels, with the coarsest operator defined via Galerkin
projection. A single V (2, 2) cycle of a smoothed aggregation
based algebraic multigrid preconditioner (GAMG) is used
as the coarse grid solver. Both the geometric and algebraic
multigrid utilize a Chebyshev iteration, preconditioned with
Jacobi as the smoother on every level. At the coarsest level
within the algebraic multigrid preconditioner, the coarse level
solver was defined via a block Jacobi preconditioner, with an
exact LU factorization applied on each of the subdomains. (see
§ III-C for further details). All Stokes problems are solved
to an unpreconditioned relative tolerance of 10�5. Unless
otherwise stated, all numerical results reported have been
computed using 64-bit indices.

Convergence for the vertical momentum residual and pres-
sure (incompressibility) residual is shown in Figure 2. As is
typical with buoyancy-driven flows, the iteration starts with
a large vertical momentum residual and the pressure residual
must increase to the same order as the momentum residual
before the momentum begins to converge. As the contrast
�⌘ increases, these components take longer to equilibrate,
at which point relatively steady convergence is observed.
Replacing the momentum V-cycle with an accurate solve does
not significantly change this behavior.

Since the Schur complement preconditioner S̃ is spectrally
equivalent, we attribute the slow convergence to non-normality
of the preconditioned operator. Non-normality can be avoided
by using Schur complement reduction (SCR), at the expense
of accurate inner solves. This is usually significantly more
expensive but is more robust to extreme coefficient contrasts.
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Additional Slides

Programming with Options

ex55: Allen-Cahn problem in 2D
constant mobility
triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition user
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly
-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5
-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5
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http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex55.c.html


Additional Slides

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd
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Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_factorization_type full
-mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
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