The Process of Computational Science

Matthew Knepley

Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center

Applied Physics and Applied Mathematics School of Engineering and Applied Science, Columbia University New York, NY February 18, 2013

My approach to Computational Science is

Holistic

M. Knepley (UC)

CompSci

My approach to Computational Science is

Holistic

M. Knepley (UC)

starting with the numerics of PDEs, and mathematics of the computation,

through the distillation into high quality numerical libraries,

to scientific discovery through computing.

starting with the numerics of PDEs, and mathematics of the computation,

through the distillation into high quality numerical libraries,

to scientific discovery through computing.

starting with the numerics of PDEs, and mathematics of the computation,

through the distillation into high quality numerical libraries,

to scientific discovery through computing.

Community Involvement

Outline

< 17 ▶

Collaborators

BIBEE Researchers

Jaydeep Bardhan

Classical DFT Researchers

Dirk Gillespie

Bob Eisenberg

CompSci

Bioelectrostatics The Natural World

Induced Surface Charge on Lysezyme

M. Knepley (UC)

CompSci

Columbia 8 / 75

Bioelectrostatics Physical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||} (\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2\frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

Bioelectrostatics Mathematical Model

The reaction potential is given by

1

$$\phi^{R}(ec{r}) = \int_{\Gamma} rac{\sigma(ec{r}')d^{2}ec{r}'}{4\pi\epsilon_{1}||ec{r}-ec{r}'||} = C\sigma$$

which defines G_{es} , the electrostatic part of the solvation free energy

$$egin{aligned} \Delta G_{es} &= rac{1}{2} \left\langle q, \phi^R
ight
angle \ &= rac{1}{2} \left\langle q, Lq
ight
angle \ &= rac{1}{2} \left\langle q, CA^{-1}Bq
ight
angle \end{aligned}$$

where

$$Bq = -\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q(\vec{r}') d^{3}\vec{r}'}{4\pi ||\vec{r} - \vec{r}'||}$$
$$A\sigma = \mathcal{I} + \hat{\epsilon}\mathcal{D}^{*}$$

- Boundary element discretizations of the solvation problem (Eq. **??**):
 - can be expensive to solve
 - are more accurate than required by intermediate design iterations

BIBEE Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Lower Bound: no good physical motivation

$$\left(1+rac{\hat{\epsilon}}{2}
ight)\sigma_{LB}=Bq$$

Eigenvectors: BEM e_i · e_i BIBEE/P

BIBEE Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Preconditioning: consider only local effects

$$\sigma_{P} = Bq$$

Eigenvectors: BEM *e_i* · *e_i* BIBEE/P

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ΔG_{es} has upper and lower bounds given by

$$\frac{1}{2}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,CBq\right\rangle \leq \frac{1}{2}\left\langle q,CA^{-1}Bq\right\rangle \leq \frac{1}{2}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,CBq\right\rangle,$$

and for spheres and prolate spheroids, we have the improved lower bound,

$$rac{1}{2}\left\langle q,\textit{CBq}
ight
angle \leqrac{1}{2}\left\langle q,\textit{CA}^{-1}\textit{Bq}
ight
angle ,$$

and we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

- Replace C with B
- Symmetrization
- Eigendecomposition

shown in the following slides.

We will need the single layer operator S for step 1,

$$\mathcal{S} au(ec{r}) = \int rac{ au(ec{r}')d^2ec{r}'}{4\pi|ec{r}-ec{r}'||}$$

(

Energy Bounds: First Step Replace C with B

The potential at the boundary Γ given by

$$\phi^{Coulomb}(ec{r}) = C^T q$$

can also be obtained by solving an exterior Neumann problem for τ ,

$$\phi^{Coulomb}(\vec{r}) = S\tau$$

= $S(\mathcal{I} - 2\mathcal{D}^*)^{-1}(\frac{2}{\hat{\epsilon}}Bq)$
= $\frac{2}{\hat{\epsilon}}S(\mathcal{I} - 2\mathcal{D}^*)^{-1}Bq$

so that the solvation energy is given by

$$\frac{1}{2}\left\langle q, \textit{CA}^{-1}\textit{B}q\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle \mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}\textit{B}q, (\mathcal{I} + \hat{\epsilon}\mathcal{D}^*)^{-1}\textit{B}q\right\rangle$$

Operator Approximation

Energy Bounds: Second Step Quasi-Hermiticity

Plemelj's symmetrization principle holds that

$$\mathcal{SD}^*=\mathcal{DS}$$

and we have

$$S = S^{1/2}S^{1/2}$$

which means that we can define a Hermitian operator H similar to \mathcal{D}^*

$$H = \mathcal{S}^{1/2} \mathcal{D}^* \mathcal{S}^{-1/2}$$

leading to an energy

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle Bq, \mathcal{S}^{1/2}(\mathcal{I} - 2H)^{-1}(\mathcal{I} + \hat{\epsilon}H)^{-1}\mathcal{S}^{1/2}Bq\right\rangle$$

M. Knepley (UC)

Energy Bounds: Third Step Eigendecomposition

The spectrum of \mathcal{D}^* is in $\left[-\frac{1}{2}, \frac{1}{2}\right)$, and the energy is

$$\frac{1}{2}\left\langle q, CA^{-1}Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 + \hat{\epsilon}\lambda_{i}\right)^{-1} x_{i}^{2}$$

where

$$H = V \wedge V^T$$

and

$$\vec{x} = V^T \mathcal{S}^{1/2} B q$$

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

$$\frac{1}{2} \left\langle q, CA_{CFA}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 - \frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}$$
$$\frac{1}{2} \left\langle q, CA_{P}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} x_{i}^{2}$$
$$\frac{1}{2} \left\langle q, CA_{LB}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 + \frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}$$

where we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures

Snapshots taken from a 500-ps MD simulation at 10-ps intervals. Bardhan, Knepley, Anitescu, JCP, 2009.

M. Kne	pley ((UC)
--------	--------	------

CompSci

Columbia 20 / 75

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.

M. Knepley (UC)

Boundary element discretizations of the solvation problem:

can be expensive to solve

 Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, JCP, 2009

are more accurate than required by intermediate design iterations

Accuracy is not tunable

Evolution of BIBEE

- Sharp bounds for solvation energy
- Exploration of behavior in simplified geometries
 - Mathematical Analysis of the BIBEE Approximation for Molecular Solvation: Exact Results for Spherical Inclusions, JCP, 2011
 - Represent BIBEE as a deformed boundary condition
 - Fully developed series solution
 - Improve accuracy by combining CFA and P approximations
- Application to protein-ligand binding
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Molecular-Based Mathematical Biology, 2013

Future of **BIBEE**

- Framework for systematic exploration
 - Both analytical and computational foundation
- Reduced-basis Method with analytic solutions
 - Tested in protein binding paper above
 - The spatial high frequency part is handled by BIBEE/P topology is not important
 - The spatial low frequency part is handled by analytic solutions insensitive to bumpiness
 - Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory, CSD, 2012.
- Extend to other kernels, e.g. Yukawa
- Extend to full multilevel method

Outline

< 17 ▶

Collaborators

PETSc **Developers**

Barry Smith

Jed Brown

Former UC Students

Andy Terrel

- 4 ∃ →

Peter Brune A 10

Problem

Traditional PDE codes cannot:

Compare different discretizations

- Different orders, finite elements
- finite volume vs. finite element

Compare different mesh types

- Simplicial, hexahedral, polyhedral
- Run 1D, 2D, and 3D problems

Enable an optimal solver

• Fields, auxiliary operators

Problem

Traditional Mesh/Solver Interface is Too General:

- Solver not told about discretization data, e.g. fields
- Cannot take advantage of problem structure
 - blocking
 - saddle point structure
- Cannot use auxiliary data
 - Eigen-estimates
 - null spaces

Problem

Traditional Mesh/Solver Interface is Too Specific:

- Assembly code specialized to each discretization
 - dimension
 - cell shape
 - approximation space
- Explicit references to element type
 - getVertices(faceID), getAdjacency(edgeID, VERTEX), getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions

Mesh Representation

We represent each mesh as a Hasse Diagram:

- Can represent any CW complex
- Can be implemented as a Directed Acyclic Graph
- Reduces mesh information to a single *covering* relation
- Can discover dimension, since meshes are ranked posets

We use an abstract topological interface to organize traversals for:

- discretization integrals
- solver size determination
- computing communication patterns

Mesh geometry is treated as just another mesh function.

Sample Meshes Interpolated triangular mesh

Sample Meshes Optimized triangular mesh

Sample Meshes Interpolated guadrilateral mesh

Sample Meshes Optimized guadrilateral mesh

Sample Meshes Interpolated tetrahedral mesh

By focusing on the key topological relations, the interface can be both concise and quite general

- Single relation
- Dual is obtained by reversing arrows
- Can associate functions with DAG points
 - Dual operation gives the support of the function

Mesh Algorithms for PDE with Sieve I: Mesh Distribution, Knepley, Karpeev, Sci. Prog., 2009.

I developed a single residual evaluation routine independent of spatial dimension, cell geometry, and finite element:

Discretizations Lagrange FEM H(div) FEM* H(curl) FEM* DG FEM *[‡]

- [†] Peter Brune, ANL
- * FEniCS Project
- [‡] Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.

I developed a single residual evaluation routine independent of spatial dimension, cell geometry, and finite element:

Discretizations Lagrange FEM H(div) FEM* H(curl) FEM* DG FEM *[‡]

- [†] Peter Brune, ANL
- * FEniCS Project
- [‡] Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.

I developed a single residual evaluation routine independent of spatial dimension, cell geometry, and finite element:

$$F(\vec{u}) = 0$$

Dim	Cell Types
1	Simplex
2	Tensor Product
3	Polyhedral
6†	Prism

Discretizations Lagrange FEM H(div) FEM* H(curl) FEM* DG FEM *[‡]

- [†] Peter Brune, ANL
- * FEniCS Project
- [‡] Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.

I developed a single residual evaluation routine independent of spatial dimension, cell geometry, and finite element:

$$F(\vec{u}) = 0$$

Dim	Cell Types
1	Simplex
2	Tensor Product
3	Polyhedral
6†	Prism

Discretizations Lagrange FEM H(div) FEM* H(curl) FEM* DG FEM *[‡]

- [†] Peter Brune, ANL
- * FEniCS Project
- [‡] Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.

M. Knepley (UC)

I developed a single residual evaluation routine independent of spatial dimension, cell geometry, and finite element:

$$F(\vec{u}) = 0$$

Dim	Cell Types
1	Simplex
2	Tensor Product
3	Polyhedral
6†	Prism

Discretizations Lagrange FEM H(div) FEM* H(curl) FEM* DG FEM *[‡]

- [†] Peter Brune, ANL
- * FEniCS Project
- [‡] Blaise Bourdin, LSU

We have also implemented a polyhedral FVM.

M. Knepley (UC)

FEM Integration Model Proposed by Jed Brown

•

We consider weak forms dependent only on fields and gradients,

$$\int_{\Omega} \phi \cdot f_0(u, \nabla u) + \nabla \phi : \vec{f}_1(u, \nabla u) = 0.$$
(1)

< < >>

Discretizing we have

$$\sum_{e} \mathcal{E}_{e}^{T} \left[B^{T} W^{q} f_{0}(u^{q}, \nabla u^{q}) + \sum_{k} D_{k}^{T} W^{q} \vec{f}_{1}^{k}(u^{q}, \nabla u^{q}) \right] = 0 \qquad (2)$$

- *f_n* pointwise physics functions
- *u^q* field at a quad point
- W^q diagonal matrix of quad weights
- *B,D* basis function matrices which reduce over quad points
- *E* assembly operator

Batch Integration

```
DMPlexComputeResidualFEM(dm, X, F, user)
{
    VecSet(F, 0.0);
    <Put boundary conditions into local input vector>
    <Extract coefficients and geometry for batch>
    <Integrate batch of elements>
    <Insert batch of element vectors into global vector>
```

Batch Integration Set boundary conditions

```
DMPlexComputeResidualFEM(dm, X, F, user)
{
    VecSet(F, 0.0);
    DMPlexProjectFunctionLocal(dm, numComponents,
        bcFuncs, INSERT_BC_VALUES, X);
    <Extract coefficients and geometry for batch>
        <Integrate batch of elements>
        <Insert batch of element vectors into global vector>
}
```

→ ∃ →

Batch Integration Extract coefficients and geometry

```
DMPlexComputeResidualFEM(dm, X, F, user)
{
 VecSet(F, 0.0);
  <Put boundary conditions into local input vector>
  DMPlexGetHeightStratum(dm, 0, &cStart, &cEnd);
  for (c = cStart; c < cEnd; ++c) {
    DMPlexComputeCellGeometry(dm, c, &v0[c*dim],
      &J[c*dim*dim], &invJ[c*dim*dim], &detJ[c]);
   DMPlexVecGetClosure(dm, NULL, X, c, NULL, &x);
    for (i = 0; i < cellDof; ++i) u[c*cellDof+i] = x[i];
    DMPlexVecRestoreClosure(dm, NULL, X, c, NULL, &x);
  <Integrate batch of elements>
  <Insert batch of element vectors into global vector>
```

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Batch Integration

```
DMPlexComputeResidualFEM(dm, X, F, user)
 VecSet(F, 0.0);
  <Put boundary conditions into local input vector>
  <Extract coefficients and geometry for batch>
  for (field = 0; field < numFields; ++field) {</pre>
    (*mesh->integrateResidualFEM) (Ne, numFields, field,
      quad, u,
      v0, J, invJ, detJ,
      f0, f1, elemVec);
    (*mesh->integrateResidualFEM) (Nr, ...);
  }
  <Insert batch of element vectors into global vector>
```

Batch Integration

```
DMPlexComputeResidualFEM(dm, X, F, user)
{
    VecSet(F, 0.0);
    <Put boundary conditions into local input vector>
    <Extract coefficients and geometry for batch>
    <Integrate batch of elements>
    for (c = cStart; c < cEnd; ++c) {
        DMPlexVecSetClosure(dm, NULL, F, c,
            &elemVec[c*cellDof], ADD_VALUES);
    }
</pre>
```

Element Integration

A (10) A (10) A (10)

Element Integration Calculate x_q

```
FEMIntegrateResidualBatch(...)
  <Loop over batch of elements (e)>
    <Loop over quadrature points (q)>
      for (d = 0; d < \dim; ++d) {
        x[d] = v0[d];
        for (d2 = 0; d2 < dim; ++d2) {
          x[d] += J[d*dim+d2]*(quadPoints[q*dim+d2]+1);
      <Make x_q>
      <Make u_q and gradU_q>
      <Call f_0 and f_1>
    <Loop over element vector entries (f, fc)>
      <Add contributions from f 0 and f 1>
```

→ ∃ →

Element Integration Calculate u_a and ∇u_a

```
FEMIntegrateResidualBatch(...)
  <Loop over batch of elements (e)>
    <Loop over quadrature points (q)>
      <Make x_q>
      for (f = 0; f < numFields; ++f) {</pre>
         for (b = 0; b < Nb; ++b) {
           for (comp = 0; comp < Ncomp; ++comp) {
             u[comp] += coefficients[cidx] *basis[q+cidx];
             for (d = 0; d < \dim; ++d) {
               <Transform derivative to real space>
               gradU[comp*dim+d] +=
                 coefficients[cidx] *realSpaceDer[d];
      <Call f_0 and f_1>
    <Loop over element vector entries (f, fo)>() >()
                                                              - 31
     M. Knepley (UC)
                               CompSci
                                                          Columbia
```

53/75

Element Integration Calculate u_a and ∇u_a

```
FEMIntegrateResidualBatch(...)
  <Loop over batch of elements (e)>
    <Loop over quadrature points (q)>
      <Make x_q>
      for (f = 0; f < numFields; ++f) {</pre>
        for (b = 0; b < Nb; ++b) {
          for (comp = 0; comp < Ncomp; ++comp) {</pre>
            u[comp] += coefficients[cidx] *basis[q+cidx];
             for (d = 0; d < \dim; ++d) {
              realSpaceDer[d] = 0.0;
               for (q = 0; q < \dim; ++q) {
                realSpaceDer[d] +=
                  invJ[g*dim+d] *basisDer[(g+cidx) *dim+g];
              gradU[comp*dim+d] +=
                coefficients[cidx] *realSpaceDer[d];
```

Element Integration Call f₀ and f₁

```
FEMIntegrateResidualBatch(...)
{
  <Loop over batch of elements (e)>
    <Loop over quadrature points (q)>
      <Make x q>
      <Make u_q and gradU_q>
      f0 func(u, gradU, x, &f0[g*Ncomp]);
      for (i = 0; i < Ncomp; ++i) {</pre>
        f0[q*Ncomp+i] *= detJ*quadWeights[q];
      f1_func(u, gradU, x, &f1[g*Ncomp*dim]);
      for (i = 0; i < Ncomp*dim; ++i) {</pre>
        f1[q*Ncomp*dim+i] *= detJ*quadWeights[q];
    <Loop over element vector entries (f, fc)>
      <Add contributions from f_0 and f_1>
}
```

Element Integration

```
FEMIntegrateResidualBatch(...)
{
  <Loop over batch of elements (e)>
    <Loop over quadrature points (q)>
      <Make x q>
      <Make u_q and gradU_q>
      <Call f 0 and f 1>
    <Loop over element vector entries (f, fc)>
      for (q = 0; q < Nq; ++q) {
        elemVec[cidx] += basis[q+cidx]*f0[q+comp];
        for (d = 0; d < \dim; ++d) {
          <Transform derivative to real space>
          elemVec[cidx] +=
            realSpaceDer[d] * f1[(q+comp) * dim+d];
        }
```

GPU Integration

Porting to the GPU meant changing only the element integration function

- Has the same flexibility as CPU version
- Multiple threads execute each cell integral
- Achieves 100 GF/s for 2D P₁ Laplacian
- Code is available here
- Finite Element Integration on GPUs, TOMS, 2013
- Finite Element Integration with Quadrature on the GPU, PLC, 2013

ex62: P_2/P_1 Stokes Problem on Unstructured Mesh Full Schur Complement

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur -pc_fieldsplit_schur_factorization_type full -fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi

$$\begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$$

ex62: P_2/P_1 Stokes Problem on Unstructured Mesh SIMPLE

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
    -fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
    -fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
    -fieldsplit_pressure_inner_ksp_type preonly
    -fieldsplit_pressure_inner_pc_type jacobi
    -fieldsplit_pressure_upper_ksp_type preonly
    -fieldsplit_pressure_upper_ksp_type jacobi
```

$$\begin{pmatrix} I & 0 \\ B^T D_A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & D_A^{-1} B \\ 0 & I \end{pmatrix}$$

・ロト ・聞 ト ・ 臣 ト ・ 臣 ト ・ 臣

ex31: P_2/P_1 Stokes Problem with Temperature on Unstructured Mesh Additive Schwarz + Full Schur Complement

$$\begin{pmatrix} I & 0 \\ B^{T}A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 \\ L_{T} \end{pmatrix}$$

ex31: P_2/P_1 Stokes Problem with Temperature on Unstructured Mesh Least-Squares Commutator + Upper Schur Comp. + Full Schur Comp.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_0_fields 0,1
-pc_fieldsplit_1_fields 2 -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_trol le-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi
-fieldsplit_temperature_ksp_type gmres
-fieldsplit_temperature_pc_type lsc

$$\begin{pmatrix} \begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix} \begin{pmatrix} G \\ \delta_{LSC} \end{pmatrix}$$

Traditional PDE codes:

- Cannot compare different discretizations
 - Automated FEM Discretizations for the Stokes Equation, Terrel, et.al., BIT, 2008
 - Efficient Assembly of H(div) and H(curl) Conforming Finite Elements, Rognes, et.al., SISC, 2009
- Compare different mesh types
 - A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation, Aagaard, Knepley, Williams, JGR, 2013

Run 1D, 2D, and 3D problems

• Ibid.

Enabling an optimal solver without programming

- Ibid.
- Composable linear solvers for multiphysics, Brown, et.al., IPDPS, 2012
- On the rise of strongly tilted mantle plume tails, Mériaux, PEPI, 201

Traditional PDE codes:

- Cannot compare different discretizations
 - Automated FEM Discretizations for the Stokes Equation, Terrel, et.al., BIT, 2008
 - Efficient Assembly of H(div) and H(curl) Conforming Finite Elements, Rognes, et.al., SISC, 2009
- Compare different mesh types
 - A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation, Aagaard, Knepley, Williams, JGR, 2013
- Run 1D, 2D, and 3D problems
 - Ibid.
- Enabling an optimal solver without programming
 - Ibid.
 - Composable linear solvers for multiphysics, Brown, et.al., IPDPS, 2012
 - On the rise of strongly tilted mantle plume tails, Mériaux, PEPI, 201

M. Knepley (UC)

Columbia 59 / 75

Traditional PDE codes:

- Cannot compare different discretizations
 - Automated FEM Discretizations for the Stokes Equation, Terrel, et.al., BIT, 2008
 - Efficient Assembly of H(div) and H(curl) Conforming Finite Elements, Rognes, et.al., SISC, 2009
- Compare different mesh types
 - A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation, Aagaard, Knepley, Williams, JGR, 2013

Run 1D, 2D, and 3D problems

Ibid.

Enabling an optimal solver without programming

- Ibid.
- Composable linear solvers for multiphysics, Brown, et.al., IPDPS, 2012
- On the rise of strongly tilted mantle plume tails, Mériaux, PEPI, 201

M. Knepley (UC)

Traditional PDE codes:

- Cannot compare different discretizations
 - Automated FEM Discretizations for the Stokes Equation, Terrel, et.al., BIT, 2008
 - Efficient Assembly of H(div) and H(curl) Conforming Finite Elements, Rognes, et.al., SISC, 2009
- Compare different mesh types
 - A Domain Decomposition Approach to Implementing Fault Slip in Finite-Element Models of Quasi-static and Dynamic Crustal Deformation, Aagaard, Knepley, Williams, JGR, 2013
- Run 1D, 2D, and 3D problems
 - Ibid.
- Enabling an optimal solver without programming
 - Ibid.
 - Composable linear solvers for multiphysics, Brown, et.al., IPDPS, 2012
 - On the rise of strongly tilted mantle plume tails, Mériaux, PEPI, 2011

Future Work

- Unify FEM and FVM residual evaulation
- Batched integration on accelerators
- Integrate auxiliary fields
- Incorporate cell problems for coefficients
Outline

Operator Approximation

< (□) < 三 > (□)

PyLith is an open source, parallel simulator for crustal deformation problems developed by myself, Brad Aagaard, and Charles Williams.

Brad Aagaard

Charles Williams

PyLith employs a finite element discretization on unstructured meshes and is built on the PETSc libraries from ANL.

Multiple problems

- Dynamic rupture
- Quasi-static relaxation

Multiple models

- Fault constitutive models
- Nonlinear visco-elastic-plastic
- Finite deformation

Multiple Meshes

- 1D, 2D, 3D
- Hex and tet meshes

イロト イポト イヨト イヨ

Multiple problems

• Dynamic rupture

Quasi-static relaxation

Multiple models

- Fault constituti
- Nonlinear visco
- Finite deformat

Multiple Meshes

- 1D, 2D, 3D
- Hex and tet me

イロト イポト イヨト イヨ

PyLith

- Multiple problems
 - Dynamic rupture
 - Quasi-static relaxation
- Multiple models
 - Fault constitutive models
 - Nonlinear visco-elastic-plastic
 - Finite deformation
- Multiple Meshes
 - 1D, 2D, 3D
 - Hex and tet meshes

• • • • • • • • • • • •

- Multiple problems
 - Dynamic rupture
 - Quasi-static relaxation
- Multiple models
 - Fault constitutive models
 - Nonlinear visco-elastic-plastic
 - Finite deformation

Multiple Meshes

- 1D, 2D, 3D
- Hex and tet meshes

2.0 3.0

- 12.5

- Multiple problems
 - Dynamic rupture
 - Quasi-static relaxation
- Multiple models
 - Fault constitutive models
 - Nonlinear visco-elastic-plastic
 - Finite deformation

Multiple Meshes

- 1D, 2D, 3D
- Hex and tet meshes

- Multiple problems
 - Dynamic rupture
 - Quasi-static relaxation
- Multiple models
 - Fault constitutive models
 - Nonlinear visco-elastic-plastic
 - Finite deformation
- Multiple Meshes
 - 1D, 2D, 3D
 - Hex and tet meshes

- Multiple problems
 - Dynamic rupture
 - Quasi-static relaxation
- Multiple models
 - Fault constitutive models
 - Nonlinear visco-elastic-plastic
 - Finite deformation
- Multiple Meshes
 - 1D, 2D, 3D
 - Hex and tet meshes

- Multiple problems
 - Dynamic rupture
 - Quasi-static relaxation
- Multiple models
 - Fault constitutive models
 - Nonlinear visco-elastic-plastic
 - Finite deformation
- Multiple Meshes
 - 1D, 2D, 3D
 - Hex and tet meshes

Classical DFT in Three Dimensions

I wrote the first 3D Classical DFT with true hard sphere chemical potential using fundamental measure theory. It used an $\mathcal{O}(N \log N)$ algorithm based upon the FFT. We examined the physics of ion channels, such as the ryanodine receptor. Advanced electrostatics allowed prediction of I-V curves for 100+ solutions. including polyvalent species.

The implementation is detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Classical DFT in Three Dimensions

I wrote the first 3D Classical DFT with true hard sphere chemical potential using fundamental measure theory. It used an $\mathcal{O}(N \log N)$ algorithm based upon the FFT. We examined the physics of ion channels, such as the ryanodine receptor. Advanced electrostatics allowed prediction of I-V curves for 100+ solutions. including polyvalent species.

The implementation is detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Classical DFT in Three Dimensions

I wrote the first 3D Classical DFT with true hard sphere chemical potential using fundamental measure theory. It used an $\mathcal{O}(N \log N)$ algorithm based upon the FFT. We examined the physics of ion channels, such as the ryanodine receptor. Advanced electrostatics allowed prediction of I-V curves for 100+ solutions. including polyvalent species.

< 47 ▶

The implementation is detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Fracture simulation, Blaise Bourdin

- Full variational formulation
 - Phase field for crack
 - Linear or quadratic penalty
- Cracks are not prescribed
 - Arbitrary crack geometry
 - Arbitrary crack intersections
- Multiple materials and composite toughness

Fracture simulation, Blaise Bourdin

- Full variational formulation
 - Phase field for crack
 - Linear or quadratic penalty
- Cracks are not prescribed
 - Arbitrary crack geometry
 - Arbitrary crack intersections
- Multiple materials and composite toughness

Fracture simulation, Blaise Bourdin

- Full variational formulation
 - Phase field for crack
 - Linear or quadratic penalty
- Cracks are not prescribed
 - Arbitrary crack geometry
 - Arbitrary crack intersections
- Multiple materials and composite toughness

Respiration modeling, HiFlow3

- Multi-purpose finite element software
- Arose from EMCL at Karlsruhe Institute of Technology

Flow behavior in the human respiratory system

Respiration modeling, HiFlow3

- Multi-purpose finite element software
- Arose from EMCL at Karlsruhe Institute of Technology
- Flow behavior in the human respiratory system

Respiration modeling, HiFlow3

- Multi-purpose finite element software
- Arose from EMCL at Karlsruhe Institute of Technology
- Flow behavior in the human respiratory system

Projects Using PETSc Composable Solvers

Magma Dynamics, TerraFERMA (Columbia)

- Cian Wilson and Marc Spiegelman
- Flexible model builder
- Finite element
- Nested FieldSplit solver

Projects Using PETSc Composable Solvers

Magma Dynamics (Oxford)

- Sam Weatherley and Richard Katz
- Finite volume
- Nested FieldSplit solver
- Small scale parallel (10²-10³)

M. Knepley (UC)

Columbia 66 / 75

Projects Using PETSc Composable Solvers

Magma Dynamics (Oxford)

- Sam Weatherley and Richard Katz
- Finite volume
- Nested FieldSplit solver
- Small scale parallel (10²-10³)

Projects Using PETSc Composable Solvers

Lithospheric and Mantle dynamics, PTatin3d (ETHZ)

Dave May

H (km) 0_____2.5

- Finite element
- Lagrangian particles
- Nested FieldSplit solver
- Large scale parallel (10³–10⁵)

CompSci

9.8e-17

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

PETSc

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Enabling Scientific Discovery

Additional Slides

イロト イヨト イヨト イ

ex55: Allen-Cahn problem in 2D

- constant mobility
- triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65 -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition user -mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly -mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd -mg_levels_fieldsplit_0_ksp_type preonly -mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5 -mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin -snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11 -mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ - 三 - の へ ()

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

- ./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
 -da_grid_x 65 -da_grid_y 65
- Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

- Use SVD as the coarse grid saddle point solver
- -mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
 -da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

```
./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
  -da_grid_x 65 -da_grid_y 65
```

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

```
./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
  -da_grid_x 65 -da_grid_y 65
```

Use the Galerkin process to compute the coarse grid operators

```
-pc_mg_galerkin
```

Use SVD as the coarse grid saddle point solver

```
-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd
```

イロト イポト イヨト イヨト

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

イロト 不得 トイヨト イヨト
Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres -mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

イロン イ理 とくさ とくさ とうしょう

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

イロン イ理 とく ヨン イヨン 二 ヨー

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

```
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
```

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Nonlinear Preconditioning

- Major Point: Composable structures for computation reduce system complexity and generate real application benefits
- Minor Point: Numerical libraries are communication medium for scientific results
- Minor Point: Optimal solvers can be constructed on the fly to suit the problem
- Slides for Stokes PCs
- Slide with programming with options

Nonlinear Preconditioning

- NPC in PETSc
- Paper with Barry and Peter
- Cite Peter and Jed paper for use cases

Parallel Fast Multipole Method

- Using mesh partitioner to develop schedule removes load balance barrier
- Partitioner can be proved to work with Teng's result
- Simple parallelization can be proved to work with overlap
- Ex: Work with May, 512 GPU paper

GPU Computing

- Papers with Andy about FEM Integration
- Paper with PETSc about solvers
- Conferences with Yuen