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Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs,
and mathematics of the computation,
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Computational Science & Applied Mathematics

Begins with the numerics of BIEs and PDEs,
and mathematics of the computation, is

Distilled into
high quality numerical libraries, and

Culminates in scientific discovery.
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Research Areas

e Mathematics

e Scalable solution of Nonlinear PDE

e Discretization on unstructured meshes
o Massively parallel algorithms

o Fast methods for integral equations

e Applications

Bioelectrostatics

Crustal and Magma Dynamics
Wave Mechanics

Fracture Mechanics
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What is PETSc?

PETSc is one of the most popular software
libraries in scientific computing.
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What is PETSc?

Knepley, Karpeeyv, Sci. Prog., 2009. Brune, Knepley, Scott, SISC, 2013.
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What is PETSc?

Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

Type Sym Statement Abbreviation
Additive + X+ a(M(F, X, b) X) M+ N

+ B(N(F, X, b) - X)
Multiplicative | s M(F,N(F,X,b),b) MxN
Left Prec. — M(X = N(F, )?, B), X, b) M- N
Right Prec. —R M(F(N(F, %, b)), %, b) —rN
Inner Lin. Inv. | \ | ¥ = J(¥)"F(X) = K(J(X), Jo, b) | M\K
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What is PETSc?

Aagaard, Knepley, and Williams, J. of Geophysical Research, 2013.
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What is PETSc?

Knepley and Terrel, Transactions on Mathematical Software, 2012.
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What is PETSc?
PETSc Citations, 2783 Total
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Bioelectrostatics
Outline

0 Bioelectrostatics
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Bioelectrostatics

Bioelectrostatics
The Natural World

Induced Surface Charge on Lysozyme
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Bioelectrostatics

Bioelectrostatics
Physical Model

Electrostatic Potential ¢

Region II: solvent

Region I: protein

Surface

I

v2Spsolvent (I‘) =0

q 1.
v280proteln Z - Z

€0 6proteln

€protein

M. Knepley (UC) CAAM  10/45



Bioelectrostatics

Bioelectrostatics

Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced

surface charge o,

—‘/)d2
r
o(r) +¢ / G I
I + e'D* 7) =
where we define
o _ o€l €l
€ =
€+ €y
MGK
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Bioelectrostatics
Problem

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

e are more accurate than required by intermediate
design iterations
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Approximate Operators

Outline

e Approximate Operators
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Approximate Operators

Bioelectrostatics

Mathematical Model

The reaction potential is given by

r =C
() = /47751||r—r/|| 7

which defines Ggs, the electrostatic part of the solvation free energy

AGes = ! <q, ¢R>

§<q,Lq>
]
= 5(a.cA"'Bq)
where
d3—’/
Bg =~ an *)47r|\r—r/|\
AU—I+6D*
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Approximate Operators

BIBEE

Approximate D* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM e; - e; BIBEE/P
Coulomb Field Approximation:

uniform normal field

€
(1 - 2) ocea = Bq

Lower Bound:
no good physical motivation

(1 -i-;) olB = Bq

10 20 3o 40 S0 B0 TO a0
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Approximate Operators

BIBEE

Approximate D* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Eigenvectors: BEM e; - e; BIBEE/P
Coulomb Field Approximation:

uniform normal field

€
(1 - 2) ocea = Bq

Preconditioning:
consider only local effects

Up:Bq

10 20 3o 40 S0 B0 TO a0
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Approximate Operators
BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy AGes has upper and
lower bounds given by

1 e\ ! 1 1 1 &\
5 (1 + 2) (q.CBaq) < 5 <q, CA Bq> <3 (1 - 2) (q,CBq),

and for spheres and prolate spheroids, we have the improved lower

bound, 1 1
I I —1
5 (q.CBa) < 5 (9.CA™'Bg).
and we note that ’
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Approximate Operators
Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

| will break the proof into three steps,
@ Replace C with B
@ Symmetrization

@ Eigendecomposition
shown in the following slides.

We will need the single layer operator S for step 1,

[ ()PP
0= a7
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Approximate Operators

Energy Bounds: First Step

Replace C with B

The potential at the boundary I given by
¢Cou/omb(,-:) — CTC]
can also be obtained by solving an exterior Neumann problem for ,
¢Coulomb(;:) - Sr
2
= S(z-2p")7(3Bag)
= ES(I - 2D*)'Bg
€

so that the solvation energy is given by

% <q’ CA™' Bq> - 1? <8(I - ZD*)_1 Ba, (I+ éID*)_1Bq>
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Approximate Operators

Energy Bounds: Second Step

Quasi-Hermiticity

Plemelj’s symmetrization principle holds that

SD* =DS

and we have
S = 81/281/2

which means that we can define a Hermitian operator H similar to D*
H = 81/2D*8—1/2

leading to an energy

% (g.cA"'Bq) - % (Bq,S"3(T — 2H) (T + eH) ' s"/2Bq)
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http://www.math.ucsb.edu/~mputinar/poincare.pdf

Approximate Operators

Energy Bounds: Third Step

Eigendecomposition

The spectrum of D* is in [, 1), and the energy is
1 1 _ A
5(0.CATBg) =Y (1-20) " (1+an) '

where

and
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Approximate Operators

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

1 _ 1 _ e\ !

i

]
% (.CAz'Bg) =Y Z(1-23) 7"
i

1 _ 1 . e\
5(a.CAZBa) =Y < (1-2)) ‘<1+2> X2

where we note that
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Approximate Operators

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures
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3 ® BEM °
w = SGB/CFA
-140 & GBMV
A BIBEE/CFA|
BIBEE/P
160 . . . ,
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Time (ps)

Snapshots taken from a 500-ps MD simulation at 10-ps intervals.
Bardhan, Knepley, Anitescu, JCP, 2009.
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Approximate Operators

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:
N

j _ 1 (1 1 qiqj
b (1) e
es 81 €y €/ 2,,,: r//2 + RiRje—r,]?/4R,Rj

where the effective Born radius is

1 1 1\ 1
R=————|—=
" 8r <e// el> E;
where E; is the self-energy of the charge g, the electrostatic energy
when atom i has unit charge and all others are neutral.
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Approximate Operators
Crowded Protein Solution

Frs
¢ 2h% 4

Important for drug design of antibody therapies
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Approximate Operators

BIBEE Scalability

-0—-8 GPUs

== 16 GPUs
=32 GPUs
—o—64 GPUs
-8- 128 GPUs
10' H 256 GPUs
=¥-512 GPUs

Time per matrix—-vector product (s)

° 10° 10’ 10° 10° 10"
Number of boundary elements

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.
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Approximate Boundary Conditions
Outline

e Approximate Boundary Conditions
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Approximate Boundary Conditions

Bioelectrostatics
Physical Model

Electrostatic Potential ¢

Region II: solvent

Region I: protein

Surface

I

v2Spsolvent (I‘) =0

q 1.
v280proteln Z - Z

€0 6proteln

€protein
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Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The potential inside Region | is given by
Q
q)I = Z % + 1/1,

P €1 |I’— I’k|

and the potential in Region Il is given by

®y = Z Z n'jr’q P (cos 0)e™.

n=0 m=—n

M. Knepley (UC) MGK CAAM  28/45



Approximate Boundary Conditions

Kirkwood’s Solution (1934)

The reaction potential ¢ is expanded in a series

co N
Y= Z Z BnmrnP,r,n(COS H)e’m¢.

n=0 m=—n

and the source distribution is also expanded

n

Mo

k=1 n=0m=—n

M. Knepley (UC) MGK

Enm m oimo
61\r—rk\ Z Z E1rn+1P (cos 0)e™.
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Approximate Boundary Conditions

Kirkwood’s Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

Pilr=p = Pulr=p

9o, _ 0%
€/ or r=b — €l or r=b

we can eliminate C,n,, and determine the reaction potential coefficients
in terms of the source distribution,

_ 1 (6/—6//)(n+1)
E/bZH+1 en—+ e,,(n+ 1) nm-

B nm
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Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations
Acra=T (145
CFA = 5
Ap=T
have an equivalent PDE formulation,

@ €] 849?

€IAP A p ; Qko(r — rk) o or lr=b o o lr=b
€nA®Pcrap =0 or
N S - 90F, 004 _ oue
Ilr=b Il'r=b €1+ € or r=b or or r=b;

where ¢ is the Coulomb field due to interior charges.
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Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral opera-
tor approximations have eigenspaces are identical to that of the original
operator.

0 20 an 40 50 G 7 an

BEM eigenvector e; - ¢; BIBEE/P eigenvector
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Approximate Boundary Conditions
Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,
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Approximate Boundary Conditions
Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these PDEs are equivalent to the original BIEs,

@ Start with the fundamental solution to Laplace’s equation G(r, r’)

@ Note that [ G(r,r')o(r')dr satisfies the bulk equation
and decay at infinity

@ Insertion into the approximate BC gives the
BIBEE boundary integral approximation
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution

@ Use completeness of the spherical harmonic basis
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Approximate Boundary Conditions
Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators
share a common eigenbasis,

@ Note that, for a spherical boundary,
D* is compact and has a pure point spectrum

@ Examine the effect of the operator on a
unit spherical harmonic charge distribution

@ Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.
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Approximate Boundary Conditions
Series Solutions

Note that the approximate solutions are separable:

1
€1nN + 62(/7 +1
1 1
BCFA
nm €2 2n +
1 1

61 —|-62n+

Ynm
)

1 e 1 /nm

1 —= Ynm-
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Approximate Boundary Conditions
Series Solutions

Note that the approximate solutions are separable:

1

B, =
nm 61n+62(n+ 1)')’nm
1 1
BCFA -
me= 21 M
1 1
P _
nm €1 +62n+%7nm.

If e, = ey = €, both approximations are exact:

1

Bnm = BI,)C,";A = Bﬁm = m’ynm
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Approximate Boundary Conditions
Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

_ npCFA __ Y00
Boo = By " = P

9
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Approximate Boundary Conditions
Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

_ npCFA __ Y00
Boo = By " = P

9

whereas BIBEE/P approaches the exact response in the limit n — oc:

1
. T P
nII—)mOO Bnm o nII—>mOO Bnm o (61 -+ 62)n7nm'
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Approximate Boundary Conditions
Asymptotics

In the limit €1 /eo — 0,

. Ynm
im Byp=—7""+
61/624)0 m 62(n+ 1)
lim BGHA—
61/62—>0 nm 62(2n+ 1)
lim BP. — 7”7’"7
er/ee0 € (n + %)

so that the approximation ratios are given by

BSA  n+1 Bim  n+1
Bom  2n+1’ Bnm_n—l-%.
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Approximate Boundary Conditions

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

0 ‘ :
o BIBEE, ) =-0.20
o BIBEE/CFA

< 5007 & BIBEEP ]
= 2
£ -1000- ce S 8
= %
9 Al
[0 a A
{0 -1500} a .
Q o ° ° ©°
o a %8
[ o sa
8 2000} R .
g oo a8
= o

-2500 . R g

a
-3000 ‘ ‘ ‘ ‘ ‘
3000 -2500  -2000  -1500  -1000  -500 0

Reference Free Energy (kcal/mol)
Bardhan, Knepley, JCP, 2011.
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Approximate Boundary Conditions

Basis Augmentation

We examined the more complex problem of protein-ligand binding
using trypsin and bovine pancreatic trypsin inhibitor (BPTI),

using electrostatic component analysis to identify residue contributions
to binding and molecular recognition.
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Approximate Boundary Conditions
Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that
BIBEE/CFA becomes more accurate as the monopole moment
increases, and BIBEE/P more accurate as it decreases. BIBEE/| is
accurate for spheres, but must be extended for ellipses.

Spheres Ellpsoids

oz .
'A‘MI IM"E‘.'.&‘

: iy i
-nz - a . .
-na . EEEENFA

Relalive error
Relative error
= &

EBEEN

Maonopole Manopole
{a) (b}
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Approximate Boundary Conditions

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the
octopole, to recover 5% accuracy for all synthetic proteins tested.

Spheres Ellpsoids

[1] LL]

[T}

B
=

[ ¥}

B
s

B
Relative error
?x

Relative error

-az2 EEEEM -2
-ua EeEn 4
-ua eessn s
-ua ey us
he @ -8 -4 - o & 4 & & TTw a4 -4 - 8o @ 4 & & m
Maonapole Monopole
(b) (d)
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Approximate Boundary Conditions
Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

e are more accurate than required by intermediate
design iterations
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Boundary element discretizations of the solvation
problem:

e can be expensive to solve

@ Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
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Approximate Boundary Conditions
Resolution

Boundary element discretizations of the solvation
problem:

e can be expensive to solve

@ Bounding the electrostatic free energies associated with linear continuum
models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

e are more accurate than required by intermediate
design iterations

@ Analysis of fast boundary-integral approximations for modeling electrostatic
contributions of molecular binding, Kreienkamp, et al., Molecular-Based
Mathematical Biology, 2013
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Future Directions
New Physics

Phenomenon:

Model:
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Future Directions
New Physics

Phenomenon:
Dielectric Saturation
Model:
Nonlocal Dielectric

80f 1
]

60| ¢
"

L]

a0f |}
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"
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p

W
-20F w
'
'
Lo J
-4or —— Experiment
' ---BKLS 1A
-60r H -~ Lorentz 1A (
' -+ Local response
-80 1 L T
0 5 10 15
k

M. Knepley (UC) MGK CAAM  43/45



Future Directions
New Physics

Phenomenon:

Charge—Hydration Asymmetry
Model:

1.8 T T T
O Explicit-solvent molecular dynamics FEP
] —— Standard Maxwell boundary condition
1.6f O Proposed nonlinear boundary condition
°
A8 m gy
o
3z 12
O c
w
1k
o
08l ey mm oo
° o
0.6 . . .
-1 -05 O 0.5
Er\
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Future Directions
New Physics

Phenomenon:

Charge—Hydration Asymmetry
Model:

Nonlinear Boundary Condition

1.8 T T T
O Explicit-solvent molecular dynamics FEP
»] —— Standard Maxwell boundary condition
1.6F O Proposed nonlinear boundary condition |
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Future Directions
New Physics

Phenomenon:

Solute—Solvent Interface Potential

Model:

M. Knepley (UC)

G99 (1 cal/mol)

o FEP0.0
-40 Aﬁ»f, A FEP 2.0
-5“’;&? < > FEP 25
,44 ; < FEP3.0
—60lq 4 o FEP35
4 —NLBC 0.0
70} , - --NLBC 2.0
/ - - NLBC 25
-80;" NLBC 3.0
- - NLBC 3.5
%0 -0.5 0 0.5
Charge q
MGK
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Future Directions
New Physics

Phenomenon:
Solute—Solvent Interface Potential

Model:
Static Solvation Potential

10 T

M. Knepley (UC)

3
£
3 o
£ P o FEPO0.0
g gl A FEP20
[ L > FEP25
5 Fa o < FEP3.0
0 4 o FEP35
4 F —NLBC 0.0
—70F é” - - -NLBC 2.0
/ - - NLBC 25
-80;" NLBC 3.0
- - NLBC 3.5
~90 . : .
-1 -0.5 0 0.5
Charge q
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Future Directions
Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology
and been inspired by physical problems,
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Future Directions

Impact of Mathematics on Science

Computational Leaders have always
embraced the latest technology
and been inspired by physical problems,

Enabling Scientific Discovery
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Thank You!
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