Computational Bioelectrostatics

Matthew Knepley

Computation Institute University of Chicago

Computational and Applied Mathematics Colloquium Rice University Houston, TX February 9, 2015

Begins with the numerics of BIEs and PDEs, and mathematics of the computation,

- Begins with the numerics of BIEs and PDEs, and mathematics of the computation, is
- Distilled into high quality numerical libraries, and

- Begins with the numerics of BIEs and PDEs, and mathematics of the computation, is
- Distilled into high quality numerical libraries, and
- Culminates in scientific discovery.

Mathematics

- Scalable solution of Nonlinear PDE
- Discretization on unstructured meshes
- Massively parallel algorithms
- Fast methods for integral equations

Applications

- Bioelectrostatics
- Crustal and Magma Dynamics
- Wave Mechanics
- Fracture Mechanics

Funding

Community Involvement

PETSc **NSF CIG Rep** NSF CIG EC Rush Medical Center Simula Research, NO Széchenyi István, HU

GUCAS, CN

M. Knepley (UC)

PETSc is one of the most popular software libraries in scientific computing.

Knepley, Karpeev, Sci. Prog., 2009. Brune, Knepley, Scott, SISC, 2013.

Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

Туре	Sym	Statement	Abbreviation
Additive	+	$ec{m{x}}+lpha(\mathcal{M}(\mathcal{F},ec{m{x}},ec{m{b}})-ec{m{x}})$	$\mathcal{M} + \mathcal{N}$
		$+ eta(\mathcal{N}(\mathcal{F},ec{x},ec{b}) - ec{x})$	
Multiplicative	*	$\mathcal{M}(\mathcal{F},\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{b})$	$\mathcal{M} * \mathcal{N}$
Left Prec.	-L	$\mathcal{M}(ec{x} - \mathcal{N}(\mathcal{F}, ec{x}, ec{b}), ec{x}, ec{b})$	$\mathcal{M}L \mathcal{N}$
Right Prec.	-R	$\mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F},ec{x},ec{b})),ec{x},ec{b})$	$\mathcal{M}{R}\mathcal{N}$
Inner Lin. Inv.		$\vec{y} = \vec{J}(\vec{x})^{-1}\vec{r}(\vec{x}) = K(\vec{J}(\vec{x}), \vec{y}_0, \vec{b})$	$\mathcal{N} \setminus K$

Aagaard, Knepley, and Williams, J. of Geophysical Research, 2013.

Knepley and Terrel, Transactions on Mathematical Software, 2012.

PETSc Citations, 2783 Total

Outline

Bioelectrostatics

- 2 Approximate Operators
- 3 Approximate Boundary Conditions
- 4 Future Directions

Bioelectrostatics The Natural World

Induced Surface Charge on Lysozyme

M. Knepley (UC)

MGK

Bioelectrostatics Physical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||} (\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2\frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

Boundary element discretizations of the solvation problem:

• can be expensive to solve

 are more accurate than required by intermediate design iterations

Outline

Bioelectrostatics

2 Approximate Operators

3 Approximate Boundary Conditions

4 Future Directions

Bioelectrostatics Mathematical Model

The reaction potential is given by

1

$$\phi^{R}(ec{r}) = \int_{\Gamma} rac{\sigma(ec{r}')d^{2}ec{r}'}{4\pi\epsilon_{1}||ec{r}-ec{r}'||} = C\sigma$$

which defines Ges, the electrostatic part of the solvation free energy

$$egin{aligned} \Delta G_{es} &= rac{1}{2} \left\langle q, \phi^R
ight
angle \ &= rac{1}{2} \left\langle q, Lq
ight
angle \ &= rac{1}{2} \left\langle q, CA^{-1}Bq
ight
angle \end{aligned}$$

where

$$\begin{split} & \textit{Bq} = -\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial \textit{n}(\vec{r})} \frac{\textit{q}(\vec{r}')\textit{d}^{3}\vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} \\ & \textit{A}\sigma = \mathcal{I} + \hat{\epsilon}\mathcal{D}^{*} \end{split}$$

BIBEE Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Lower Bound: no good physical motivation

$$\left(1+rac{\hat{\epsilon}}{2}
ight)\sigma_{LB}=Bq$$

Eigenvectors: BEM e_i · e_i BIBEE/P

BIBEE Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Preconditioning: consider only local effects

$$\sigma_{P} = Bq$$

Eigenvectors: BEM *e_i* · *e_i* BIBEE/P

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ΔG_{es} has upper and lower bounds given by

$$\frac{1}{2}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,\textit{CBq}\right\rangle \leq \frac{1}{2}\left\langle q,\textit{CA}^{-1}\textit{Bq}\right\rangle \leq \frac{1}{2}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,\textit{CBq}\right\rangle,$$

and for spheres and prolate spheroids, we have the improved lower bound,

$$rac{1}{2}\left\langle q,\textit{CBq}
ight
angle \leqrac{1}{2}\left\langle q,\textit{CA}^{-1}\textit{Bq}
ight
angle ,$$

and we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

- Replace C with B
- Symmetrization
- Eigendecomposition

shown in the following slides.

We will need the single layer operator S for step 1,

$$\mathcal{S} au(ec{r}) = \int rac{ au(ec{r}') d^2 ec{r}'}{4\pi ||ec{r}-ec{r}'||}$$

(

Energy Bounds: First Step Replace C with B

The potential at the boundary Γ given by

$$\phi^{Coulomb}(\vec{r}) = C^T q$$

can also be obtained by solving an exterior Neumann problem for τ ,

$$\phi^{Coulomb}(\vec{r}) = S\tau$$

= $S(\mathcal{I} - 2\mathcal{D}^*)^{-1}(\frac{2}{\hat{\epsilon}}Bq)$
= $\frac{2}{\hat{\epsilon}}S(\mathcal{I} - 2\mathcal{D}^*)^{-1}Bq$

so that the solvation energy is given by

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle \mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}Bq, (\mathcal{I} + \hat{\epsilon}\mathcal{D}^*)^{-1}Bq\right\rangle$$

Approximate Operators

Energy Bounds: Second Step Quasi-Hermiticity

Plemelj's symmetrization principle holds that

$$\mathcal{SD}^* = \mathcal{DS}$$

and we have

$$S = S^{1/2}S^{1/2}$$

which means that we can define a Hermitian operator H similar to \mathcal{D}^*

$$H = \mathcal{S}^{1/2} \mathcal{D}^* \mathcal{S}^{-1/2}$$

leading to an energy

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle Bq, \mathcal{S}^{1/2}(\mathcal{I} - 2H)^{-1}(\mathcal{I} + \hat{\epsilon}H)^{-1}\mathcal{S}^{1/2}Bq\right\rangle$$

Energy Bounds: Third Step Eigendecomposition

The spectrum of \mathcal{D}^* is in $\left[-\frac{1}{2}, \frac{1}{2}\right)$, and the energy is

$$\frac{1}{2}\left\langle q, CA^{-1}Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 + \hat{\epsilon}\lambda_{i}\right)^{-1} x_{i}^{2}$$

where

$$H = V \wedge V^T$$

and

$$\vec{x} = V^T \mathcal{S}^{1/2} B q$$

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

$$\frac{1}{2}\left\langle q, CA_{CFA}^{-1}Bq\right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 - \frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}$$
$$\frac{1}{2}\left\langle q, CA_{P}^{-1}Bq\right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} x_{i}^{2}$$
$$\frac{1}{2}\left\langle q, CA_{LB}^{-1}Bq\right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 + \frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}$$

where we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures

Snapshots taken from a 500-ps MD simulation at 10-ps intervals. Bardhan, Knepley, Anitescu, JCP, 2009.

M. Knepley (UC)

MGK

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

$$G_{es}^{ij} = rac{1}{8\pi} \left(rac{1}{\epsilon_{II}} - rac{1}{\epsilon_{I}}
ight) \sum_{i,j}^{N} rac{q_{i}q_{j}}{r_{ij}^{2} + R_{i}R_{j}e^{-r_{ij}^{2}/4R_{i}R_{j}}}$$

where the effective Born radius is

$$R_{i} = \frac{1}{8\pi} \left(\frac{1}{\epsilon_{II}} - \frac{1}{\epsilon_{I}} \right) \frac{1}{E_{i}}$$

where E_i is the *self-energy* of the charge q_i , the electrostatic energy when atom *i* has unit charge and all others are neutral.

Approximate Operators

Crowded Protein Solution

Important for drug design of antibody therapies

M. Knepley (UC)

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.

Outline

Bioelectrostatics

- 2 Approximate Operators
- 3 Approximate Boundary Conditions

4 Future Directions

Bioelectrostatics Physical Model

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$\Phi_I = \sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} + \psi,$$

and the potential in Region II is given by

$$\Phi_{II} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{nm}}{r^{n+1}} P_n^m(\cos\theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$\psi = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{nm} r^{n} P_{n}^{m} (\cos \theta) e^{im\phi}.$$

and the source distribution is also expanded

$$\sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{nm}}{\epsilon_1 r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius *b*,

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b}$$
$$\epsilon_{I}\frac{\partial\Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II}\frac{\partial\Phi_{II}}{\partial r}|_{r=b}$$

we can eliminate C_{nm} , and determine the reaction potential coefficients in terms of the source distribution,

$$B_{nm} = \frac{1}{\epsilon_I b^{2n+1}} \frac{(\epsilon_I - \epsilon_{II})(n+1)}{\epsilon_I n + \epsilon_{II}(n+1)} E_{nm}.$$
Approximate Boundary Conditions

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$egin{aligned} & \mathsf{A}_{CF\!A} = \mathcal{I}\left(1 + rac{\hat{\epsilon}}{2}
ight) \ & \mathsf{A}_{P} = \mathcal{I} \end{aligned}$$

have an equivalent PDE formulation,

$$\epsilon_{I}\Delta\Phi_{CFA,P} = \sum_{k=1}^{Q} q_{k}\delta(\vec{r} - \vec{r}_{k}) \qquad \qquad \frac{\epsilon_{I}}{\epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial\Phi_{II}}{\partial r} - \frac{\partial\psi_{CFA}}{\partial r}|_{r=b}$$

$$\epsilon_{II}\Delta\Phi_{CFA,P} = 0 \qquad \qquad \text{or}$$

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b} \qquad \qquad \frac{3\epsilon_{I} - \epsilon_{II}}{\epsilon_{I} + \epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial\Phi_{II}}{\partial r} - \frac{\partial\psi_{P}}{\partial r}|_{r=b},$$

where Φ_1^C is the Coulomb field due to interior charges.

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum

- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = \frac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
$$B_{nm}^{CFA} = \frac{1}{\epsilon_2} \frac{1}{2n+1} \gamma_{nm}$$
$$B_{nm}^P = \frac{1}{\epsilon_1 + \epsilon_2} \frac{1}{n+\frac{1}{2}} \gamma_{nm}.$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = \frac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
$$B_{nm}^{CFA} = \frac{1}{\epsilon_2} \frac{1}{2n+1} \gamma_{nm}$$
$$B_{nm}^P = \frac{1}{\epsilon_1 + \epsilon_2} \frac{1}{n+\frac{1}{2}} \gamma_{nm}.$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$\textbf{B}_{00} = \textbf{B}_{00}^{\textit{CFA}} = \frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$\lim_{n\to\infty} B_{nm} = \lim_{n\to\infty} B_{nm}^P = \frac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}.$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00} = B_{00}^{CFA} = \frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$\lim_{n\to\infty} B_{nm} = \lim_{n\to\infty} B_{nm}^{P} = \frac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}.$$

Asymptotics

In the limit $\epsilon_1/\epsilon_2 \rightarrow 0$,

$$\begin{split} &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm} = \frac{\gamma_{nm}}{\epsilon_2(n+1)} \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^{CFA} = \frac{\gamma_{nm}}{\epsilon_2(2n+1)}, \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^P = \frac{\gamma_{nm}}{\epsilon_2(n+\frac{1}{2})}, \end{split}$$

so that the approximation ratios are given by

$$\frac{B_{nm}^{CFA}}{B_{nm}} = \frac{n+1}{2n+1}, \qquad \frac{B_{nm}^P}{B_{nm}} = \frac{n+1}{n+\frac{1}{2}}.$$

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.

Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using *electrostatic component analysis* to identify residue contributions to binding and molecular recognition.

Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5% accuracy for all synthetic proteins tested.

Resolution

Boundary element discretizations of the solvation problem:

can be expensive to solve

• Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

are more accurate than required by intermediate design iterations

 Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

Outline

Bioelectrostatics

- 2 Approximate Operators
- 3 Approximate Boundary Conditions

4 Future Directions

Phenomenon:

Model:

Phenomenon:

Dielectric Saturation

Model:

Phenomenon:

Dielectric Saturation

Model:

Nonlocal Dielectric

Phenomenon:

Charge–Hydration Asymmetry **Model:**

Phenomenon:

Charge–Hydration Asymmetry **Model:**

Nonlinear Boundary Condition

Phenomenon:

Solute–Solvent Interface Potential **Model:**

M. Knepley (UC)

MGK

Phenomenon:

Solute–Solvent Interface Potential **Model:**

Static Solvation Potential

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

PETSc

Impact of Mathematics on Science

Computational Leaders have always embraced the latest technology and been inspired by physical problems,

Enabling Scientific Discovery
Thank You!

http://www.cs.uchicago.edu/~knepley