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Algorithmic Breakdown Nonlinear BIE Architecture Capabilities:

Design goals: All BEM packages today are based upon linear integral operators. However, nonlinearity e Explicit, specialized panel integrals as needed for pre-correction
can be crucial for model fidelity. In molecular electrostatics, we have shown that replacing » Fast summation algorithm is completely orthogonal to discretization

the standard Maxwell boundary condition at the molecular surface with
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can calculate very accurate energies (matching Generalized Born models wih hundreds
of parameters), and also deliver accurate entropy in solution. Here Ae = €¢,,+ — €;,, and
En(rg_) is the normal electric field at 7¢_. Note that the electric field just outside the
surface does not explicitly enter into the interface condition. The equivalent BIE is then
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N panel ¢ Z panel j ! I y A Our extensible framework allowed us to investigate the tradeoff between work and accu-
where (f I+ K 4+ h ( En)) o 1 ( 8G> ¢, (3) racy for representative variants of the BEM discretization, and quantity the dependence of
on this tradeoff on mesh resolution and the geometric complexity of the molecular boundary
& Green's Function or derivative in which the nonlinear operator h represents a pointwise multiplication, and is given by (https://arxiv.org/abs/1512.08406). Point discretizations are generally assumed to lack the
Y basis function (usually piecewise constant or linear) accuracy for practical prediction. This intuition is borne out by simple experiments on a
3 test function ( for Galerkin, (" — 7;) collocation) h(Ep) = atanh (BE, —v) + . (4) sphere of radius 6 A and ¢ = 4, immersed in water (e = 80), with 10 random charges
inside it. The panel method is superior below 3 Kcal/mol accuracy, but considering only
the surface-to-surface operator (S2S) the point method is superior down to 1.5 Kcal/mol.

e Ability to interface with parallel /N-body algorithms
e Flexbllity in discretization (Galerkin, collocation, higher-order methods)
o Ability to couple to other models, including FEM, time-stepping, nonlinear solvers (€, — Ae h (Ep(rg_)))

e Discretization choices (element types, basis and test functions) local to one layer
(rg.) (2) e Handle Galerkin, collocation, other approaches readily via the I K PD decomposition
e Panel quadrature order can be adjusted as needed
e Multiple panel types and basis/test functions can be used in a single BEM simulation

BIE Architecture:
The prototypical linear BEM problem Ax = b can be decomposed into

Panel vs. Point Discretization
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In order to compute these parts, we propose a divison of the software into four pieces: which we term the Solvation Layer Interface Gondition (SLIC).

P Sparse, matrix-free projection maps
basis function weights to source densities

Solver Integration
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Our BIE framework now plugs into the PETSc SNES interface for parallel nonlinear al- [ ) ——
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N KScalable N-body algorithm This aff f ' I . v th . [ 84
(point-to-point kernel) is affords a range of nonlinear solvers, even using only the operator action, : : |
e Nonlinear Richardson 107} N 2
D Sparse pre-correction can be applied | | | | R 2f
natrix-free e Nonlinear Conjugate Gradients | | |

e Nonlinear Krylov and Anderson mixing
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Challenge e Nonlinear Multigrid

Software and modeling components in boundary-integral methods are usually tightly
coupled, so that the computational choices are linked:

The convergence for an arginine molecule (ARG) is much noisier due to the geometric
complexity, and the panel method does not outperform the point method until 0.75 Kcal/mol

Model Coupling (0.25 Kcal/mol for S2S), enough accuracy for many molecular conformational searches.
Modeling decisions In addition, we can integrate with the PETSc DM framework for specifying data layout, e ARG recidue: ARG
function spaces, and equations. We can use a DMPlex object to specify our boundary T T T T T 1 R e
I | mesh and data layout, even for higher order discretizations. This can be combined with | oo | 5| : o Szgl
iscretization-specifc other discretized fields which have support on the boundary mesh itself or a volumetric o) —= | —
mesh which intersects the boundary. We can use | |
I -finite element fields, using PetscFE g 107 3 z -
Scalable primitive -Frszg‘;'fp‘"e -finite volume fields, using PetscFV H“HH 51 1‘, _
s _finite difference fields, using DMDA

D = Ajocal — (1K P)iocal and then the full residual for the combined system can be formed as fed to a PETSc TS
or SNES object which solves the full time-dependent system.
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