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BFBT

BFBT preconditions the Schur complement using

S−1
b = L−1

p GT KGL−1
p (1)

where Lp is the Laplacian in the pressure space.
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Current Problems

The current BFBT code is limited by

Bandwidth constraints
Sparse matrix-vector product
Achieves at most 10% of peak performance

Synchronization
GMRES orthogonalization
Coarse problem

Convergence
Viscosity variation
Mesh dependence
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Alternative Proposal

Use a Boundary Element Method,

for the Laplace solves in BFBT,

accelerated by FMM.
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Missing Pieces

BEM discretization and assembly
Matrix-free operator application using the Fast Multipole Method
Overcomes bandwidth limit, 480 GF on an NVIDIA 1060C GPU
Overcomes coarse bottleneck by overlapping direct work

Solver for BEM system
Same total work as FEM due to well-conditioned operator
Possibility of multilevel preconditioner (even better)

Interpolation between FEM and BEM
Boundary interpolation just averages
Can again use FMM for interior
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Direct Fast Method for Variable-Viscosity Stokes

Complexity not currently precisely quantified
We would like a given number of flops/digit of accuracy

Brute Force
Use BEM to compute layers between regions of constant viscosity
Better conditioned, but not direct

Elegant method should be possible
The operator is pseudo-differential
“Kernel-independent” FMM exists
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What are the Problems? Bandwidth

Bandwidth

Small bandwidth to main memory can limit performance

Sparse matrix-vector product

Operator application

AMG restriction and interpolation
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What are the Problems? Bandwidth

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
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What are the Problems? Bandwidth

Analysis of Sparse Matvec (SpMV)

Assumptions
No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (2)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (3)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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What are the Problems? Bandwidth

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (4)

which is a dismal 8.8% of peak.

Can improve performance by
Blocking
Multiple vectors

but operation issue limitations take over.
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For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (4)

which is a dismal 8.8% of peak.

Better approaches:
Unassembled operator application (Spectral elements, FMM)

N data, N2 computation
Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

N data, Nk computation
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What are the Problems? Synchronization

Synchronization

Synchronization penalties can come from

Reductions
GMRES orthogonalization
More than 20% penalty for PFLOTRAN on Cray XT5

Small subproblems
Multigrid coarse problem
Lower levels of Fast Multipole Method tree
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What are the Problems? Convergence

Convergence

Convergence of the BFBT solve depends on
Viscosity constrast (slightly)
Viscosity topology
Mesh

Convergence of the AMG Poisson solve depends on
Mesh
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Missing Pieces

BEM discretization and assembly

Solver for BEM system
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Can we do Better? BEM Formulation

Boundary Element Method

The Poisson problem

∆u(x) = f (x) on Ω (5)
u(x) |∂Ω = g(x) (6)
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Can we do Better? BEM Formulation

Boundary Element Method

The Poisson problem (Boundary Integral Equation formulation)

C(x)u(x) =

∫
∂Ω

F (x,y)g(y)−G(x,y)
∂u(y)

∂n
dS(y) (5)

G(x,y) = − 1
2π

log r (6)

F (x,y) =
1

2πr
∂r
∂n

(7)
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Can we do Better? BEM Formulation

Boundary Element Method

Restricting to the boundary, we see that

1
2

g(x) =

∫
∂Ω

F (x,y)g(y)−G(x,y)
∂u(y)

∂n
dS(y) (5)
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Can we do Better? BEM Formulation

Boundary Element Method

Discretizing, we have

−Gq =

(
1
2

I − F
)

g (5)
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Can we do Better? BEM Formulation

Boundary Element Method

Now we can evaluate u in the interior

u(x) =

∫
∂Ω

F (x,y)g(y)−G(x,y)
∂u(y)

∂n
dS(y) (5)
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Can we do Better? BEM Formulation

Boundary Element Method

Or in discrete form

u = Fg −Gq (5)
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Can we do Better? BEM Formulation

Boundary Element Method

The sources in the interior may be added in using superposition

1
2

g(x) =

∫
∂Ω

F (x,y)g(y)−G(x,y)

(
∂u(y)

∂n
− f
)

dS(y) (5)
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Can we do Better? BEM Solver

BEM Solver

The solve has two pieces:

Operator application
Boundary solve
Interior evaluation
Accomplished using the Fast Multipole Method

Iterative solver
Usually GMRES
We use PETSc
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Can we do Better? BEM Solver

Operator Application

Using the Fast Multiple Method,
the Green’s functions (F and G) can be applied:

in O(N) time
using small memory bandwidth
in the interior and on the boundary
with much higher serial and parallel performance
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Can we do Better? BEM Solver

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

K (xi , xj)q(xj) (6)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques
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Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

qj

|xi − xj |
(6)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987
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Can we do Better? BEM Solver

PetFMM CPU Performance
Strong Scaling
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PetFMM CPU Performance
Strong Scaling
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Can we do Better? BEM Solver

PetFMM Load Balance
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Can we do Better? BEM Solver

GPU Performance

In our C++ code on a CPU, M2L transforms take 85% of the time
This does vary depending on N

New M2L design was implemented using PyCUDA
Port to C++ is underway

We can now achieve 500 GF on the NVIDIA Tesla
Previous best performance we found was 100 GF

We will release PetFMM-GPU in the new year

M. Knepley (UC) GPU AGU09 32 / 44
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Can we do Better? BEM Solver

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method

http://barbagroup.bu.edu/Barba_group/PetFMM.html

Leverages PETSc
Same open source license
Uses Sieve for parallelism

Extensible design in C++
Templated over the kernel
Templated over traversal for evaluation

MPI implementation
Novel parallel strategy for anisotropic/sparse particle distributions
PetFMM–A dynamically load-balancing parallel fast multipole library
86% efficient strong scaling on 64 procs

Example application using the Vortex Method for fluids
(coming soon) GPU implementation
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Can we do Better? BEM Solver

Convergence

BEM Laplace operator is well-conditioned
κ = O(NB) = O(

√
N)

Dijkstra and Mattheij
Thus the total work is in O(N2

B) = O(N)

Same as MG
Regular integral operators require only two multigrid cycles

Multigrid of the 2nd kind by Hackbush
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Can we do Better? Interpolation

FEM←→ BEM

FEM −→ BEM
FEM boundary conditions can be directly used in BEM
May require a VecScatter

FEM←− BEM
BEM can evaluate the field at any domain point
Cost is linear in the number of evaluations using FMM
Can accomodate both

pointwise values, and
moments by quadrature
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Advantages and Disadvantages Bandwidth

Bandwidth and Serial Performance

Provably low bandwidth
Shang-Hua Teng, SISC, 19(2), 635–656, 1998

Key advantage over algebraic methods like FFT
Similar to wavelet transform

Amenable to GPU implementation
Also highly concurrent
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Advantages and Disadvantages Convergence

Convergence and Synchronization

BEM matrices are better conditioned
However, FEM has better preconditioners
Without better preconditioners, might see more synchronization
Underexplored

FMM can avoid bottleneck at lower levels
Overlap direct work with lower tree levels
Can provably eliminate bottleneck
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Advantages and Disadvantages Convergence

Debatable Advantages

Small memory
FEM can be done matrix-free

Opens door to using Stokes operator for PC
We currently do not know what to do here
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What is Next?

Direct Fast Method for Variable-Viscosity Stokes

Complexity not currently precisely quantified
We would like a given number of flops/digit of accuracy

Brute Force
Use BEM to compute layers between regions of constant viscosity
Better conditioned, but not direct

Elegant method should be possible
The operator is pseudo-differential
“Kernel-independent” FMM exists
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