Refactoring Finite Element Computation

Matthew Knepley

Mathematics and Computer Science Division Argonne National Laboratory

> CI Talk University of Chicago March 20, 2008

Refactoring

Necessity Of Simulation Experiment are ...

Expensive

Impossible

Difficult

Dangerous

M. Knepley (ANL)

Refactoring

How do we move Scientific Computing forward?

- Performance
 - Bandwidth on multicore chips
- Experimentation
 - Solvers (solved)
 - Elements
 - Models
- Coupling
 - How does this interact with the discretization...
 - or solver?

Outline

Synergy

- 2 Optimizing Linear Operator Construction
- 3 Other Thrusts
- 4 Conclusions
- 5 Sieve

イロト イポト イヨト イヨ

Problems

The biggest problem in scientific computing is programmability:

- Lack of usable implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"
 - to
 - characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

< 回 ト < 三 ト < 三

Problems

The biggest problem in scientific computing is programmability:

- Lack of widespread implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations

We should reorient thinking from

- characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"

to

- characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

.

We have to bridge the gap with Systems to enable Scientific Computing

Programming Languages

CI '08 6 / 56

CI '08 6 / 56

I think compilers are victims of their own success (ala Rob Pike)

- Efforts to modularize compilers retain the same primtives
 - compiling on the fly (JIT)
 - Low Level Virtual Machine
- Raise the level of abstraction
 - Fenics Form Compiler (variational form compiler)
 - Mython (Domain Specific Language generator)

Divide the work into levels:

- Model
- Algorithm
- Implementation

Divide the work into levels: Spiral Project:

- Model
 Discrete Fourier Transform (DSP)
- Algorithm
 Fast Fourier Transform (SPL)
- Implementation

• C Implementation (SPL Compiler)

Divide the work into levels:

- Model
- Algorithm
- Implementation

FLAME Project:

- Abstract LA (PME/Invariants)
- Basic LA (FLAME/FLASH)
- Scheduling (SuperMatrix)

Divide the work into levels:

- Model
- Algorithm
- Implementation

FEniCS Project:

- Navier-Stokes (FFC)
- Finite Element (FIAT)
- Integration/Assembly (FErari)

Divide the work into levels:

- Model
- Algorithm
- Implementation

Treecodes:

- Kernels with decay (Coulomb)
- Treecodes (PetFMM)
- Scheduling (PetFMM-GPU)

Divide the work into levels:

Treecodes:

• Kernels with decay (Coulomb)

Algorithm

Model

- Treecodes (PetFMM)
- Implementation
 Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

Outline

Synergy

Optimizing Linear Operator Construction

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

3 Other Thrusts

4 Conclusions

Outline

Optimizing Linear Operator Construction

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

4 A N

Form Decomposition

Element integrals are decomposed into <u>analytic</u> and <u>geometric</u> parts:

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(1)

$$= \int_{\mathcal{T}} \frac{\partial \phi_i(\mathbf{x})}{\partial x_{\alpha}} \frac{\partial \phi_j(\mathbf{x})}{\partial x_{\alpha}} d\mathbf{x}$$
(2)

$$= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} |J| d\mathbf{x}$$
(3)

$$= \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} |J| \int_{\mathcal{T}_{ref}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} d\mathbf{x}$$
(4)
$$= \frac{G^{\beta \gamma}(\mathcal{T}) \mathcal{K}_{\beta \gamma}^{ij}}{G^{\beta \gamma}}$$
(5)

M Kne	nlev i	(ANIL)
141. 1 (110	picy i	

CI '08 11 / 56

Element Matrix Formation

Optimizing Linear Operator Construction

- Element matrix K is now made up of small tensors
- Contract all tensor elements with each the geometry tensor $G(\mathcal{T})$

Problem Statement

3	0	0	-1	1	1	-4	-4	0	4	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	0	0	3	1	1	0	0	4	0	-4	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
-4	0	0	0	-4	-4	8	4	0	-4	0	4
-4	0	0	0	0	0	4	8	-4	-8	4	0
0	0	0	4	0	0	0	-4	8	4	-8	-4
4	0	0	0	0	0	-4	-8	4	8	-4	0
0	0	0	-4	0	0	0	4	-8	-4	8	4
0	0	0	-4	-4	-4	4	0	-4	0	4	8

コト (個) (注) (主) (主) の

Element Matrix Computation

• Element matrix K can be precomputed

- FFC
- SyFi
- Can be extended to nonlinearities and curved geometry
- Many redundancies among tensor elements of *K*
 - Could try to optimize the tensor contraction...

Abstract Problem

Given vectors $v_i \in \mathbb{R}^m$, minimize $flops(v^Tg)$ for arbitrary $g \in \mathbb{R}^m$

- The set *v_i* is not at all random
- Not a traditional compiler optimization
- How to formulate as an optimization problem?

Outline

Optimizing Linear Operator Construction

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

→ ∃ →

Complexity Reducing Relations

If
$$v_i^T g$$
 is known, is $flops(v_j^T g) < 2m - 1$?

We can use binary relations among the vectors:

Equality

• If
$$v_j = v_i$$
, then $flops(v_j^T g) = 0$

Colinearity

• If
$$v_j = \alpha v_i$$
, then $flops(v_i^T g) = 1$

- Hamming distance
 - If $dist_H(v_j, v_i) = k$, then $flops(v_j^T g) = 2k$

Algorithm for Binary Relations

Construct a weighted graph on v_i

- The weight w(i, j) is $flops(v_i^T g)$ given $v_i^T g$
- With the above relations, the graph is symmetric
- Find a minimum spanning tree
 - Use Prim or Kruskal for worst case $O(n^2 \log n)$
- Traverse the MST, using the appropriate calculation for each edge
 - Roots require a full dot product

Coplanarity

Ternary relation

- If $v_k = \alpha v_i + \beta v_j$, then $flops(v_k^T g) = 3$
- Does not fit our undirected graph paradigm

• SVD for vector triples is expensive

- Use a randomized projection into a few \mathbb{R}^3s
- Use a hypergraph?
 - MST algorithm available
- Appeal to geometry?
 - Incidence structures

Outline

Optimizing Linear Operator Construction

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

FErari

Finite Element rearragement to automaically reduce instructions

- Open source implementation http://www.fenics.org/wiki/FErari
- Build tensor blocks K^{ij}_{m,m'} as vectors using FIAT
- Discover dependencies
 - Represented as a DAG
 - Can also use hypergraph model
- Use minimal spanning tree to construct computation

Results

Preliminary Results

Order	Entries	Base MAPs	FErari MAPs
1	6	24	7
2	21	84	15
3	55	220	45
4	120	480	176
5	231	924	443
6	406	1624	867

M. Knepley (ANL)

টা টি টি থি El '08 21/56

イロト イヨト イヨト イヨ

Outline

Optimizing Linear Operator Construction

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

4 A N

- 3 →

Modeling the Problem

- Objective is cost of dot products (tensor contractions in FEM)
 Set of vectors V with a given arbitrary vector g
- The original MINLP has a nonconvex, nonlinear objective
- Reformulate to obtain a MILP using auxiliary binary variables

Modeling the Problem

Variables

- $\alpha_{ij} =$ Basis expansion coefficients
- y_i = Binary variable indicating membership in the basis
- s_{ij} = Binary variable indicating nonzero coefficient α_{ij}
- z_{ij} = Binary variable linearizes the objective function (equivalent to $y_i y_j$)
- U =Upper bound on coefficients

Constraints

- Eq. (6b) : Basis expansion
- Eq. (6c) : Exclude nonbasis vector from the expansion
- Eq. (6d) : Remove offdiagonal coefficients for basis vectors
- Eq. (7c) : Exclude vanishing coefficients from cost

Original Formulation

MINLP Model

minimize
$$\sum_{i=1}^{n} \left\{ y_i(2m-1) + (1-y_i) \left(2 \sum_{j=1, j \neq i}^{n} y_j - 1 \right) \right\}$$
(6a)
subject to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$
 $- Uy_j \le \alpha_{ij} \le Uy_j$
 $- U(1-y_i) \le \alpha_{ij} \le U(1-y_i)$
 $i, j = 1, \dots, n$
(6b)
 $i, j = 1, \dots, n$
(6c)
 $i, j = 1, \dots, n$
(6d)

 $y_i \in \{0, 1\}$ $i = 1, \dots, n.$ (6e)

CI '08

24/56

Original Formulation

M. Knepley (ANL)

Equivalent MILP Model: $z_{ii} = y_i \cdot y_i$ minimize $2m \sum_{i=1}^{n} y_i + 2 \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} (y_j - z_{ij}) - n$ (6a) subject to $v_i = \sum \alpha_{ij} v_j$ $i=1,\ldots,n$ (6b) $-Uy_i \leq \alpha_{ii} \leq Uy_i$ *i*, *j* = 1, . . . , *n* (6c) $i, j = 1, \ldots, n, i \neq j$ $-U(1-y_i) \leq \alpha_{ii} \leq U(1-y_i)$ (6d) $z_{ii} \leq y_i, \quad z_{ii} \leq y_i, \quad z_{ii} \geq y_i + y_i - 1, \qquad i, j = 1, \dots, n$ (6e) $y_i \in \{0, 1\}, \quad z_{ii} \in \{0, 1\}$ $(i,j=1,\ldots,\underline{n},\ldots,\underline{n})$

Refactoring

Sparse Coefficient Formulation

- Take advantage of sparsity of α_{ij} coefficient
- Introduce binary variables s_{ij} to model existence of α_{ij}
- Add constraints $-Us_{ij} \le \alpha_{ij} \le Us_{ij}$
Sparse Coefficient Formulation

.

MINLP Model

minimize

nize
$$\sum_{i=1}^{n} \left\{ y_i(2m-1) + (1-y_i) \left(2 \sum_{j=1, j \neq i}^{n} s_{ij} - 1 \right) \right\}$$
 (7a)
t to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ $i = 1, ..., n$

subject to

$$V_{i} = \sum_{j=1}^{i} \alpha_{ij} V_{j}$$

$$- Us_{ij} \le \alpha_{ij} \le Us_{ij}$$

$$- U(1 - y_{i}) \le \alpha_{ij} \le U(1 - y_{i})$$

$$i, j = 1, \dots, n$$
(7b)
$$i, j = 1, \dots, n$$
(7c)
$$i, j = 1, \dots, n$$
(7d)
$$i, j = 1, \dots, n$$
(7e)

$$y_i \in \{0, 1\}, \quad s_{ij} \in \{0, 1\}$$

CI '08

25 / 56

Sparse Coefficient Formulation

Equivalent MILP Model

minimize $2m\sum_{i=1}^{n}y_i+2\sum_{i=1}^{n}\sum_{j=1}^{n}(s_{ij}-z_{ij})-n$ (7a) i=1 $i=1, i\neq i$ subject to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ i = 1, ..., n(7b) i, j = 1, ..., n $-Us_{ii} \leq \alpha_{ii} \leq Us_{ii}$ (7c) $i, j = 1, \ldots, n, i \neq$ $-U(1-y_i) \leq \alpha_{ii} \leq U(1-y_i)$ (7d) $z_{ij} \leq y_i, \quad z_{ij} \leq s_{ij}, \quad z_{ij} \geq y_i + s_{ij} - 1, \qquad i, j = 1, \dots, n$ (7e) $y_i \in \{0,1\}, \quad z_{ij} \in \{0,1\}, \quad s_{ij} \in \{0,1\}, \quad i,j = 1, \dots, n.$

Results

Initial Formulation

- Initial formulation only had sparsity in the α_{ii}
- MINTO was not able to produce some optimal solutions
 - Report results after 36000 seconds

	Default		MILP		Spa	arse Coef. N	MILP
Element	Flops	Flops	LPs	CPU	Flops	LPs	CPU
<i>P</i> ₁ 2D	42	42	33	0.10	34	187	0.43
<i>P</i> ₂ 2D	147	147	2577	37.12	67	6030501	36000
P ₁ 3D	170	166	79	0.49	146	727	3.97
P ₂ 3D	935	935	25283	36000	829	33200	36000

Results

Formulation with Sparse Basis

- We can also take account of the sparsity in the basis vectors
- Count only the flops for nonzero entries
 - Significantly decreases the flop count

	Sparse Coefficient	Sparse Basis
Elements	Flops	Flops
<i>P</i> ₁ 2D	34	12
P ₁ 3D	146	26

Outline

Synergy

- 2 Optimizing Linear Operator Construction
- 3 Other Thrusts
 - 4 Conclusions

5 Sieve

イロト イ団ト イヨト イヨ

Sieve is an interface for

- general topologies
- functions over these topologies (bundles)
- traversals

One relation handles all hierarchy

- Vast reduction in complexity
 - Dimension independent code
 - A single communication routine to optimize
- Expansion of capabilities
 - Partitioning and distribution
 - Hybrid meshes
 - Complicated structures and embedded boundaries
 - Unstructured multigrid

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

< 🗇 > < 🖻 > < 🖻

Other Thrusts

Example: Discontinuous Galerkin Poisson

$$-\Delta u = f$$
 on $\Omega = [0, 1] \times [0, 1]$

Using a discontinuous Galerkin formulation (interior penalty method).

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)

Other Thrusts

Example: Discontinuous Galerkin Poisson

```
element = FiniteElement("Discontinuous Lagrange",
                              "triangle", 1)
    . . .
    n = FacetNormal("triangle")
    h = MeshSize("triangle")
    alpha = 4.0; gamma = 8.0
    a = dot(grad(v), grad(u)) * dx
      - dot (avq(qrad(v)), jump(u, n)) * dS
      - dot(jump(v, n), avg(grad(u))) * dS
      + alpha/h('+') * dot(jump(v, n), jump(u, n)) * dS
      - dot(grad(v), mult(u, n))*ds
      - dot(mult(v, n), grad(u))*ds + gamma/h*v*u*ds
see ffc/src/demo/PoissonDG.form, and compile with
```

```
$ ffc PoissonDG.form
```

= nar

Example: Discontinuous Galerkin Poisson Writing the Simulation: Assemble and solve

```
// Create user defined functions
Source f(mesh); Flux g(mesh);
FacetNormal n(mesh);
AvgMeshSize h(mesh);
// Define PDE
PoissonBilinearForm a:
PoissonLinearForm L(f, g);
LinearPDE
                    pde(a, L, mesh, bc);
// Solve PDE
Function u;
pde.solve(u);
```

Other Thrusts

Example: Discontinuous Galerkin Poisson

Simulate!

M. Knepley (ANL)

CI '08 33 / 56

Outline

Synergy

- 2 Optimizing Linear Operator Construction
- 3 Other Thrusts
- 4 Conclusions

5 Sieve

イロト イ団ト イヨト イヨ

Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Declarative, rather than imperative, specification
 - Dimension independent code
- Opportunites for optimization
 - Higher level operations missed by traditional compilers
 - Single communication routine to optimize
- Expansion of capabilities
 - Easy model definition
 - Arbitrary elements
 - Complex geometries and embedded boundaries

Outline

Synergy

- 2 Optimizing Linear Operator Construction
- Other Thrusts
- 4 Conclusions

Hierarchy Abstractions

Generalize to a set of linear spaces

- Sieve provides topology, can also model Mat
- Section generalizes Vec
- Spaces interact through an Overlap (just a Sieve)
- Basic operations
 - Restriction to finer subspaces, restrict ()/update()
 - Assembly to the subdomain, complete()
- Allow reuse of geometric and multilevel algorithms

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - o dimension
 - shapes

→ ∃ →

Unstructured Interface (before)

Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - o dimension
 - shapes

Unstructured Interface (before)

Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, covering, on sieve points

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)
- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - can be more easily optimized

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM

Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology
- data layout

→ ∃ →

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Doublet Mesh

M. Knepley (ANL)

Refactoring

CI '08 41 / 56

Doublet Mesh

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

∃ >

Doublet Mesh

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

M. Knepley (ANL)

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$

M. Knepley (ANL)

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$
- $star(7) = \{7, 2, 3, 0\}$

M. Knepley (ANL)

Doublet Mesh

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

join(8,9) = {4
 M. Knepley (ANL)

Refactoring

CI '08 41 / 56

Doublet Mesh

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

M. Knepley (ANL)

Doublet Section

Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 47 ▶

.

Doublet Section

Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 47 ▶

.

Doublet Section

Section interface

- $restrict(0) = \{ f_0 \}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

э

Doublet Section

Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$
Doublet Section

Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

M. Knepley (ANL)

Refactoring

Image: A matrix

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

M. Knepley (ANL)

Refactoring

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

< 口 > < 同

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

< 🗇 🕨 < 🖻 > <

- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  coords = mesh->restrict(coordinates, c);
  v0, J, invJ, detJ = computeGeometry(coords);
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
  <Update output vector>
```

Sieve

- 31

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  inputVec = mesh->restrict(U, c);
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    realCoords = J*refCoords[q] + v0;
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
```

Sieve

<Aggregate updates>

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

M. Kneplev (ANL)

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      elemVec[f] += basis[q,f] *rhsFunc(realCoords);
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>

    A = A = A = ØQQ
```

Refactoring

CI '08

44 / 56

Sieve

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      for (d = 0; d < \dim; ++d)
        for(e) testDerReal[d] += invJ[e,d]*basisDer[q,
      for (q = 0; q < numBasisFuncs; ++q) {
        for (d = 0; d < \dim; ++d)
          for(e) basisDerReal[d] += invJ[e,d]*basisDer
          elemMat[f,g] += testDerReal[d] * basisDerReal[
        elemVec[f] += elemMat[f,g]*inputVec[g];
                                           ▲ 臣 ▶ ▲ 臣 ▶ 臣 ● � � � �
```

Sieve

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      elemVec[f] += basis[q, f] *lambda*exp(inputVec[f])
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
 mesh->updateAdd(F, c, elemVec);
}
<Aggregate updates>
```

Sieve

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Sieve

```
M. Kneplev (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
```

Sieve

Distribution<Mesh>::completeSection(mesh, F); => = oac

Reentrant Problems

- Reentrant corners need nonnulform refinement to maintain accuracy
- Coarsening preserves accuracy in MG without user intervention

Reentrant Problems

- Reentrant corners need nonnulform refinement to maintain accuracy
- Coarsening preserves accuracy in MG without user intervention

Reentrant Problems

Exact Solution for reentrant problem: $u(x, y) = r^{\frac{2}{3}} sin(\frac{2}{3}\theta)$

Reentrant Problems

Exact Solution for reentrant problem: $u(x, y) = r^{\frac{2}{3}} sin(\frac{2}{3}\theta)$

GMG Performance

Linear solver iterates are constant as system size increases:

Sieve

KSP Iterates on Reentrant Domains

M. Knepley (ANL)

GMG Performance

Work to build the preconditioner is constant as system size increases:

M. Knepley (ANL)

Refactoring

Outline

Synergy

- 2 Optimizing Linear Operator Construction
- 3 Other Thrusts
- 4 Conclusions

5 Sieve

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Reverse-slip Benchmark

PyLith

Multiple Mesh Types

PyLith

Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault

- Demand complex mesh manipulation
 - We allow specification of only fault vertices
 - Must "sew" together on output
- Use Lagrange multipliers to enforce constraints
 - Forces illuminate physics
- Allow different fault constitutive models
 - Simplest is enforced slip
 - Now have fault constitutive models

Partial Geometry

Given a set V and a set of lines $L \subset \mathcal{P}(V)$, (V, L) is a partial geometry if

- there is at most one line through each pair of points
- each line has at least three point

Note that

- Typical geometries have exactly one line through each pair of points
- Encoded by ternary relations, like coplanarity, which satisfy

$$R(x,y,z) \land R(y,z,p) \Rightarrow R(x,y,p) \land R(y,z,p)$$

• Generalizes to higher arity relations
Definitions

vertex

A point lying in two or more lines

closure

- The transitive closure \bar{S} under R of some $S \subset V$
- $z \in V \land \exists x, y \in S \ni R(x, y, z) \Rightarrow z \in \overline{S}$

independent set

• A set S such that for any $S' \subset S, \, \bar{S}' \neq S$

basis

• An independent set S such that $\bar{S} = V$

We want a basis of minimal cost, which now means size.

- Something like a "minimum spanning hypertree"
- Closure operation produces a DAG
 - Use topological sort to get computation sequence
- Complexity is unknown
- Unfortunate example shows bases of differing size
 - At odds with matroid theory

Geometric Reduction

- Eliminate <u>parallel</u> lines (no vertices)
 - Can add any two points on the line to a minimal basis
- Eliminate single vertex lines
 - · Can add any non-vertex on the line to a minimal basis
- Eliminate non-vertices from basis
 - Each line has at least two vertices
 - If two vertices are already present, discard point
 - Otherwise, switch with a vertex
 - The generated set is the same, and the size has not increased

Exchange Property

We want to show that all reduced bases are the same size.

- Remove a vertex *p* from the basis *B*
 - Now there is a set Ex(p) which is no longer in \overline{B}
- Choose q from Ex(p)
- Reverse the generation path from p to q
 - If we generate p, we generate all of Ex(p)

Now

- We have an easy algorithm for a minimal basis
- Matroid results apply