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Necessity Of Simulation
Experiment are ...

Expensive

Impossible

Difficult

Dangerous
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What is the Way Forward?

How do we move Scientific Computing forward?

Performance
Bandwidth on multicore chips

Experimentation
Solvers (solved)
Elements
Models

Coupling
How does this interact with the discretization. . .
or solver?

M. Knepley (ANL) Refactoring CI ’08 3 / 56



Synergy

Outline

1 Synergy

2 Optimizing Linear Operator Construction

3 Other Thrusts

4 Conclusions

5 Sieve

6 PyLith

M. Knepley (ANL) Refactoring CI ’08 4 / 56



Synergy

Problems

The biggest problem in scientific computing is programmability:
Lack of usable implementations of modern algorithms

Unstructured Multigrid
Fast Multipole Method

Lack of comparison among classes of algorithms
Meshes
Discretizations

We should reorient thinking from
characterizing the solution (FEM)

“what is the convergence rate (in h) of this finite element?”

to
characterizing the computation (FErari)

“how many digits of accuracy per flop for this finite element?”
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Synergy

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages
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Synergy

Future Compilers

I think compilers are victims of their own success (ala Rob Pike)

Efforts to modularize compilers retain the same primtives
compiling on the fly (JIT)
Low Level Virtual Machine

Raise the level of abstraction
Fenics Form Compiler (variational form compiler)
Mython (Domain Specific Language generator)
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Synergy

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Spiral Project:
Discrete Fourier Transform (DSP)

Fast Fourier Transform (SPL)

C Implementation (SPL Compiler)

Each level demands a strong abstraction layer
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Synergy

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FLAME Project:
Abstract LA (PME/Invariants)

Basic LA (FLAME/FLASH)

Scheduling (SuperMatrix)

Each level demands a strong abstraction layer
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Synergy

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FEniCS Project:
Navier-Stokes (FFC)

Finite Element (FIAT)

Integration/Assembly (FErari)

Each level demands a strong abstraction layer
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Optimizing Linear Operator Construction Problem Statement

Outline

2 Optimizing Linear Operator Construction
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

M. Knepley (ANL) Refactoring CI ’08 10 / 56



Optimizing Linear Operator Construction Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇ϕi(x) · ∇ϕj(x)dx (1)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dx (2)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dx (3)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂ϕi (ξ)
∂ξβ

∂ϕj (ξ)
∂ξγ

dx (4)

= Gβγ(T )K ij
βγ (5)

Coefficients are also put into the geometric part.
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Optimizing Linear Operator Construction Problem Statement

Element Matrix Formation

Element matrix K is now made up of small tensors
Contract all tensor elements with each the geometry tensor G(T )
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Optimizing Linear Operator Construction Problem Statement

Element Matrix Computation

Element matrix K can be precomputed
FFC
SyFi

Can be extended to nonlinearities and curved geometry

Many redundancies among tensor elements of K
Could try to optimize the tensor contraction. . .
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Optimizing Linear Operator Construction Problem Statement

Abstract Problem

Given vectors vi ∈ Rm, minimize flops(vT g) for arbitrary g ∈ Rm

The set vi is not at all random

Not a traditional compiler optimization

How to formulate as an optimization problem?
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Optimizing Linear Operator Construction Plan of Attack

Complexity Reducing Relations

If vT
i g is known, is flops(vT

j g) < 2m − 1?

We can use binary relations among the vectors:
Equality

If vj = vi , then flops(vT
j g) = 0

Colinearity
If vj = αvi , then flops(vT

j g) = 1

Hamming distance
If distH(vj , vi) = k , then flops(vT

j g) = 2k
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Optimizing Linear Operator Construction Plan of Attack

Algorithm for Binary Relations

Construct a weighted graph on vi
The weight w(i , j) is flops(vT

j g) given vT
i g

With the above relations, the graph is symmetric

Find a minimum spanning tree
Use Prim or Kruskal for worst case O(n2 log n)

Traverse the MST, using the appropriate calculation for each edge
Roots require a full dot product
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Optimizing Linear Operator Construction Plan of Attack

Coplanarity

Ternary relation
If vk = αvi + βvj , then flops(vT

k g) = 3
Does not fit our undirected graph paradigm

SVD for vector triples is expensive
Use a randomized projection into a few R3s

Use a hypergraph?
MST algorithm available

Appeal to geometry?
Incidence structures
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Optimizing Linear Operator Construction Results

FErari

Finite Element rearragement to automaically reduce instructions
Open source implementation http://www.fenics.org/wiki/FErari
Build tensor blocks K ij

m,m′ as vectors using FIAT

Discover dependencies
Represented as a DAG
Can also use hypergraph model

Use minimal spanning tree to construct computation
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Optimizing Linear Operator Construction Results

Preliminary Results

Order Entries Base MAPs FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Modeling the Problem

Objective is cost of dot products (tensor contractions in FEM)
Set of vectors V with a given arbitrary vector g

The original MINLP has a nonconvex, nonlinear objective

Reformulate to obtain a MILP using auxiliary binary variables
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Modeling the Problem
Variables

αij = Basis expansion coefficients
yi = Binary variable indicating membership in the basis
sij = Binary variable indicating nonzero coefficient αij

zij = Binary variable linearizes the objective function (equivalent to yiyj )
U = Upper bound on coefficients

Constraints

Eq. (6b) : Basis expansion
Eq. (6c) : Exclude nonbasis vector from the expansion
Eq. (6d) : Remove offdiagonal coefficients for basis vectors
Eq. (7c) : Exclude vanishing coefficients from cost
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Original Formulation
MINLP Model

minimize
n∑

i=1

yi(2m − 1) + (1 − yi)

2
n∑

j=1,j ̸=i

yj − 1

 (6a)

st vi =
n∑

j=1

αijvj i = 1, . . . ,n

(6b)

− Uyj ≤ αij ≤ Uyj i , j = 1, . . . ,n
(6c)

− U(1 − yi) ≤ αij ≤ U(1 − yi) i , j = 1, . . . ,n, i ̸= j
(6d)

yi ∈ {0,1} i = 1, . . . ,n.
(6e)

M. Knepley (ANL) Refactoring CI ’08 24 / 56



Optimizing Linear Operator Construction Mixed Integer Linear Programming

Original Formulation
Equivalent MILP Model: zij = yi · yj

minimize 2m
n∑

i=1

yi + 2
n∑

i=1

n∑
j=1,j ̸=i

(yj − zij)− n (6a)

st vi =
n∑

j=1

αijvj i = 1, . . . ,n (6b)

− Uyj ≤ αij ≤ Uyj i , j = 1, . . . ,n
(6c)

− U(1 − yi) ≤ αij ≤ U(1 − yi) i , j = 1, . . . ,n, i ̸= j
(6d)

zij ≤ yi , zij ≤ yj , zij ≥ yi + yj − 1, i , j = 1, . . . ,n
(6e)

yi ∈ {0,1}, zij ∈ {0,1} i , j = 1, . . . ,n.
(6f)
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation

Take advantage of sparsity of αij coefficient

Introduce binary variables sij to model existence of αij

Add constraints −Usij ≤ αij ≤ Usij
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation
MINLP Model

minimize
n∑

i=1

yi(2m − 1) + (1 − yi)

2
n∑

j=1,j ̸=i

sij − 1

 (7a)

st vi =
n∑

j=1

αijvj i = 1, . . . ,n

(7b)
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(7c)
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation
Equivalent MILP Model

minimize 2m
n∑

i=1

yi + 2
n∑

i=1

n∑
j=1,j ̸=i

(sij − zij)− n (7a)

st vi =
n∑

j=1

αijvj i = 1, . . . ,n

(7b)

− Usij ≤ αij ≤ Usij i , j = 1, . . . ,n
(7c)

− U(1 − yi) ≤ αij ≤ U(1 − yi) i , j = 1, . . . ,n, i ̸= j
(7d)

zij ≤ yi , zij ≤ sij , zij ≥ yi + sij − 1, i , j = 1, . . . ,n
(7e)

yi ∈ {0,1}, zij ∈ {0,1}, sij ∈ {0,1} i , j = 1, . . . ,n.
(7f)

Including Sparsity of vi -Vectors

minimize 2
n∑

i=1

nnz(vi)yi + 2
n∑

i=1

n∑
j=1,j ̸=i

(sij − zij)− n

where nnz(vi) is number of nonzeros in vi

M. Knepley (ANL) Refactoring CI ’08 25 / 56



Optimizing Linear Operator Construction Mixed Integer Linear Programming

Results

Initial Formulation
Initial formulation only had sparsity in the αij

MINTO was not able to produce some optimal solutions
Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element Flops Flops LPs CPU Flops LPs CPU
P1 2D 42 42 33 0.10 34 187 0.43
P2 2D 147 147 2577 37.12 67 6030501 36000
P1 3D 170 166 79 0.49 146 727 3.97
P2 3D 935 935 25283 36000 829 33200 36000
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Results

Formulation with Sparse Basis
We can also take account of the sparsity in the basis vectors
Count only the flops for nonzero entries

Significantly decreases the flop count

Sparse Coefficient Sparse Basis
Elements Flops Flops
P1 2D 34 12
P1 3D 146 26
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Other Thrusts

Sieve

Sieve is an interface for
general topologies
functions over these topologies (bundles)
traversals

One relation handles all hierarchy
Vast reduction in complexity

Dimension independent code
A single communication routine to optimize

Expansion of capabilities
Partitioning and distribution
Hybrid meshes
Complicated structures and embedded boundaries
Unstructured multigrid
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Other Thrusts

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project
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Other Thrusts

Example: Discontinuous Galerkin Poisson
Poisson

−∆u = f on Ω = [0,1]× [0,1]

Using a discontinuous Galerkin formulation (interior penalty method).

Define our Form and compile (FIAT + FFC)
Define our Simulation (DOLFIN)

Define our mesh
Assemble and solve
Post process (visualize, error, ...)
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Other Thrusts

Example: Discontinuous Galerkin Poisson
Defining the form

element = FiniteElement("Discontinuous Lagrange",
"triangle", 1)

...
n = FacetNormal("triangle")
h = MeshSize("triangle")
alpha = 4.0; gamma = 8.0
a = dot(grad(v), grad(u))*dx

- dot(avg(grad(v)), jump(u, n))*dS
- dot(jump(v, n), avg(grad(u)))*dS
+ alpha/h(’+’)*dot(jump(v, n), jump(u, n))*dS
- dot(grad(v), mult(u, n))*ds
- dot(mult(v, n), grad(u))*ds + gamma/h*v*u*ds

see ffc/src/demo/PoissonDG.form, and compile with

$ ffc PoissonDG.form
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Other Thrusts

Example: Discontinuous Galerkin Poisson
Writing the Simulation: Assemble and solve

// Create user defined functions
Source f(mesh); Flux g(mesh);
FacetNormal n(mesh);
AvgMeshSize h(mesh);
// Define PDE
PoissonBilinearForm a;
PoissonLinearForm L(f, g);
LinearPDE pde(a, L, mesh, bc);
// Solve PDE
Function u;
pde.solve(u);
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Other Thrusts

Example: Discontinuous Galerkin Poisson

Simulate!
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Conclusions

Conclusions

Better mathematical abstractions
bring concrete benefits

Vast reduction in complexity
Declarative, rather than imperative, specification
Dimension independent code

Opportunites for optimization
Higher level operations missed by traditional compilers
Single communication routine to optimize

Expansion of capabilities
Easy model definition
Arbitrary elements
Complex geometries and embedded boundaries
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Sieve

Hierarchy Abstractions

Generalize to a set of linear spaces
Sieve provides topology, can also model Mat
Section generalizes Vec
Spaces interact through an Overlap (just a Sieve)

Basic operations
Restriction to finer subspaces, restrict()/update()
Assembly to the subdomain, complete()

Allow reuse of geometric and multilevel algorithms
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Sieve

Unstructured Interface (before)

Explicit references to element type
getVertices(edgeID), getVertices(faceID)
getAdjacency(edgeID, VERTEX)
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions

Have to recode for meshes with different
dimension
shapes
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Sieve

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

Abstract to a relation, covering, on sieve points
Points can represent any mesh element
Covering can be thought of as adjacency
Relation can be expressed in a DAG (Hasse Diagram)

Simple query set:
provides a general API for geometric algorithms
leads to simpler implementations
can be more easily optimized
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Sieve

Unstructured Interface (after)

NO explicit references to element type
A point may be any mesh element
getCone(point): adjacent (d-1)-elements
getSupport(point): adjacent (d+1)-elements

Transitive closure
closure(cell): The computational unit for FEM

Algorithms independent of mesh
dimension
shape (even hybrid)
global topology
data layout
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Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL) Refactoring CI ’08 41 / 56



Sieve

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL) Refactoring CI ’08 41 / 56



Sieve

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL) Refactoring CI ’08 41 / 56



Sieve

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}

M. Knepley (ANL) Refactoring CI ’08 41 / 56



Sieve

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}

M. Knepley (ANL) Refactoring CI ’08 41 / 56
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Doublet Mesh
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Sieve

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)
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Sieve

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {

<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>
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Sieve

Integration
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Sieve

Reentrant Problems

Reentrant corners need nonnuiform refinement to maintain
accuracy
Coarsening preserves accuracy in MG without user intervention

M. Knepley (ANL) Refactoring CI ’08 45 / 56



Sieve

Reentrant Problems
Reentrant corners need nonnuiform refinement to maintain
accuracy
Coarsening preserves accuracy in MG without user intervention

M. Knepley (ANL) Refactoring CI ’08 45 / 56



Sieve

Reentrant Problems
Exact Solution for reentrant problem: u(x , y) = r

2
3 sin(2

3θ)
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Sieve

GMG Performance
Linear solver iterates are constant as system size increases:
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PyLith
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PyLith

Reverse-slip Benchmark
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PyLith

Multiple Mesh Types

Triangular Tetrahedral

Rectangular Hexahedral
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PyLith

Cohesive Cells
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PyLith

Cohesive Cells

Cohesive cells are used to enforce slip conditions on
a fault

Demands complex mesh manipulation
We allow specification of only fault vertices
Must “sew” together on output

Use Lagrange multipliers to enforce constraints
Forces illuminate physics

Allow different fault constitutive models
Simplest is enforced slip
Rate-and-state friction
Poroelastic faults are in development
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Partial Geometries

Partial Geometry

Given a set V and a set of lines L ⊂ P(V ), (V ,L) is a partial geometry
if

there is at most one line through each pair of points
each line has at least three point

Note that
Typical geometries have exactly one line through each pair of
points
Encoded by ternary relations, like coplanarity, which satisfy

R(x , y , z) ∧ R(y , z,p) ⇒ R(x , y ,p) ∧ R(y , z,p)

Generalizes to higher arity relations
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Partial Geometries

Definitions

vertex
A point lying in two or more lines

closure
The transitive closure S̄ under R of some S ⊂ V
z ∈ V ∧ ∃x , y ∈ S ∋ R(x , y , z) ⇒ z ∈ S̄

independent set
A set S such that for any S′ ⊂ S, S̄′ ̸= S

basis
An independent set S such that S̄ = V
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Partial Geometries

Goal

We want a basis of minimal cost, which now means size.

Something like a “minimum spanning hypertree”
Closure operation produces a DAG

Use topological sort to get computation sequence

Complexity is unknown
Unfortunate example shows bases of differing size

At odds with matroid theory
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Partial Geometries

Geometric Reduction

Eliminate parallel lines (no vertices)
Can add any two points on the line to a minimal basis

Eliminate single vertex lines
Can add any non-vertex on the line to a minimal basis

Eliminate non-vertices from basis
Each line has at least two vertices

If two vertices are already present, discard point
Otherwise, switch with a vertex

The generated set is the same, and the size has not increased
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Partial Geometries

Exchange Property

We want to show that all reduced bases are the same size.

Remove a vertex p from the basis B
Now there is a set Ex(p) which is no longer in B̄

Choose q from Ex(p)
Reverse the generation path from p to q

If we generate p, we generate all of Ex(p)

Now
We have an easy algorithm for a minimal basis
Matroid results apply
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