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Necessity Of Simulation

Experiment are ...

Expensive Difficult

Impossible Dangerous
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What is the Way Forward?

How do we move Scientific Computing forward?

@ Performance
e Bandwidth on multicore chips
@ Experimentation
@ Solvers (solved)
o Elements
o Models
@ Coupling
o How does this interact with the discretization. . .
@ or solver?
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Synergy
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Synergy
Problems

The biggest problem in scientific computing is programmability:
@ Lack of usable implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

@ Meshes
@ Discretizations

M. Knepley (ANL) Refactoring Cl°08 5/56



Synergy
Problems

The biggest problem in scientific computing is programmability:
@ Lack of widespread implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

@ Meshes
@ Discretizations

We should reorient thinking from
@ characterizing the solution (FEM)
e “what is the convergence rate (in h) of this finite element?”
to
@ characterizing the computation (FErari)
e “how many digits of accuracy per flop for this finite element?”
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Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages
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Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Distributed Computing Datamining

Programming Languages
Code Generation
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Synergy
Future Compilers

| think compilers are victims of their own success (ala Rob Pike)

@ Efforts to modularize compilers retain the same primtives

e compiling on the fly (JIT)
o Low Level Virtual Machine

@ Raise the level of abstraction

e Fenics Form Compiler (variational form compiler)
e Mython (Domain Specific Language generator)
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http://llvm.org

Synergy
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation
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Synergy
Representation Hierarchy

Divide the work into levels:  Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)
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http://www.spiral.net

Synergy
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)
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http://www.cs.utexas.edu/users/flame

Synergy
Representation Hierarchy

Divide the work into levels: FEniCS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)
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http://www.fenics.org

Synergy
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)
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Synergy
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer
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Optimizing Linear Operator Construction
Outline

e Optimizing Linear Operator Construction
@ Problem Statement
@ Plan of Attack
@ Results
@ Mixed Integer Linear Programming
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Optimizing Linear Operator Construction Problem Statement
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Optimizing Linear Operator Construction Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 V6i(%) - Voy(x)dx (1)
= - 32;(()() (X )dx @)
= Jp 22020 ‘93; |J|dx 3)
= ol [ 20O gy @
= G&Y(T)K& (5)

Coefficients are also put into the geometric part.
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Optimizing Linear Operator Construction Problem Statement

Element Matrix Formation

@ Element matrix K is now made up of small tensors
@ Contract all tensor elements with each the geometry tensor G(7)

3 0 0 -1 1 1 -4 -4 0 4 0 0
0 0 0 O 0 0 0 O 0 0 0 0
0 O 0 0 0 0 0 0 0 0 0 O
-1 0 0 3 1 1 0 0 4 0 -4 -4
1 0 0o 1 3 3 -4 0 0 0 0 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
-4 0 0 O -4 -4 8 4 0 -4 0 4
-4 0 0 0 0 O 4 8 -4 -8 4 0
0 0 0 4 0 0 0 -4 8 4 -8 -4
4 0 0 O 0 O -4 -8 4 8 -4 0
0 0 0 -4 0 O 0 4 -8 -4 8 4
0 O 0 -4 -4 -4 4 0 -4 0 4 8
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Optimizing Linear Operator Construction Problem Statement

Element Matrix Computation

@ Element matrix K can be precomputed

e FFC
o SyFi

@ Can be extended to nonlinearities and curved geometry

@ Many redundancies among tensor elements of K
e Could try to optimize the tensor contraction. ..
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http://www.fenics.org/wiki/SyFi
http://www.fenics.org/wiki/FFC

Optimizing Linear Operator Construction Problem Statement

Abstract Problem

Given vectors v; € R™, minimize flops(v'g) for arbitrary g € R

@ The set v; is not at all random
@ Not a traditional compiler optimization

@ How to formulate as an optimization problem?
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Optimizing Linear Operator Construction Plan of Attack
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@ Plan of Attack
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Optimizing Linear Operator Construction Plan of Attack

Complexity Reducing Relations

If v/ g is known, is flops(v] g) < 2m —1?

We can use binary relations among the vectors:
@ Equality
o If v; = v;, then flops(v/ g) = 0
@ Colinearity
o If v = av;, then flops(v/ g) = 1
@ Hamming distance
o If disty(v;, v;) = k, then flops(v] g) = 2k
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Optimizing Linear Operator Construction Plan of Attack

Algorithm for Binary Relations

@ Construct a weighted graph on v;
o The weight w(i,j) is flops(v]g) given v/ g
e With the above relations, the graph is symmetric

@ Find a minimum spanning tree
e Use Prim or Kruskal for worst case O(n? log n)

@ Traverse the MST, using the appropriate calculation for each edge
e Roots require a full dot product
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Optimizing Linear Operator Construction Plan of Attack

Coplanarity

@ Ternary relation
o If vk = av; + Bv;, then flops(v/ g) = 3
e Does not fit our undirected graph paradigm

@ SVD for vector triples is expensive
e Use a randomized projection into a few R3s

@ Use a hypergraph?
o MST algorithm available

@ Appeal to geometry?
@ Incidence structures
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Optimizing Linear Operator Construction Results
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9 Optimizing Linear Operator Construction

@ Results
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Optimizing Linear Operator Construction Results

FErari

Finite Element rearragement to automaically reduce instructions
@ Open source implementation http://www.fenics.org/wiki/FErari
@ Build tensor blocks K ., as vectors using FIAT

@ Discover dependencies

o Represented as a DAG
e Can also use hypergraph model

@ Use minimal spanning tree to construct computation

M. Knepley (ANL) Refactoring Cl°08
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http://www.fenics.org/wiki/FErari
http://www.fenics.org/wiki/FIAT

Optimizing Linear Operator Construction Results

Preliminary Results

M. Knepley (ANL)

Order | Entries | Base MAPs | FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867
Refactoring Cl’'08
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Optimizing Linear Operator Construction Mixed Integer Linear Programming
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@ Mixed Integer Linear Programming
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Modeling the Problem

@ Objective is cost of dot products (tensor contractions in FEM)
o Set of vectors V with a given arbitrary vector g

@ The original MINLP has a nonconvex, nonlinear objective

@ Reformulate to obtain a MILP using auxiliary binary variables
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Modeling the Problem

Variables

ajj = Basis expansion coefficients
yi = Binary variable indicating membership in the basis
s;j = Binary variable indicating nonzero coefficient
z; = Binary variable linearizes the objective function (equivalent to y;y;)
U = Upper bound on coefficients

Constraints

(6b) : Basis expansion
) : Exclude nonbasis vector from the expansion

Eq. (6d) : Remove offdiagonal coefficients for basis vectors
) : Exclude vanishing coefficients from cost
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Original Formulation

MINLP Model
n
minimize Z yim—-1)+(1—-y) (2 Z yi—1 (6a)
i=1 J=1,j#i
$t V,':ZO(,'/‘V/' i=1,....n
(6b)
—Uy; < aj < Uy ij=1,...,n
(6¢c)
—U(1—y,-)§a,-,-§U(1—y,-) Lj=1,....n i
(6d)
yi€{0,1} i=1,...,n
(6e)
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Original Formulation
Equivalent MILP Model: z,-j =Yy

minimize 2m Z yi+2 Z Z — Zj) — (6a)

i=1 j=1,j#i

st v;:Za,-jvj i=1,...,n (6b)

—Uy; < aj < Uy ihj=1,....n
(6¢)
—U(1—y,-)§oz,-j§U(1—y,-) ihj=1,....n i#j
(6d)

ZijSYia Z//S}’p ZUZyI+.}/j_17 i)j:1)"')n
(6e)

yi € {0,1}, Z,-,-E{O,1} ihj=1,...,n
(6f)
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation

@ Take advantage of sparsity of «;; coefficient
@ Introduce binary variables s; to model existence of «;;

@ Add constraints —Us;; < a;; < Us;;
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation

MINLP Model
n
minimize Z yiCm-1)+(1-y) |2 Z sj— 1 (7a)
=1 =1,
st V= a;y i=1,....,n
(7b)
— Usjj < i < Usjj ij=1,...,n
(7c)
—U(1—y,')§a,-j§U(1—y,-) ihj=1,....n
(7d)
Si <V hj=1,...,n
(7e)
¥i€{0,1}, s;€{0,1} ij=1,...,n
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation
Equivalent MILP Model

minimize 2mZy,+ZZ Z Sj — Zj) — (7a)
i=1 j=1j#i
St V/:Zaij\/j i=1,....n
(7b)
— Usj < aj < Us; ij=1,...,n
(7c)
—U(1—y)<a; <U1 —-Vy) ihj=1,....n i #]j
(7d)
Zi <y, zj<sj Zzj=yi+sj—1, i,j=1,...,n
(7e)

yi€{0,1}, z;€{0,1}, s;<c{0,1} ihj=1,...,n
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Results

Optimizing Linear Operator Construction

Mixed Integer Linear Programming

Initial Formulation

@ Initial formulation only had sparsity in the «;;
@ MINTO was not able to produce some optimal solutions
o Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element | Flops | Flops LPs  CPU | Flops LPs CPU
Py 2D 42 42 33 0.10 34 187 0.43
P> 2D 147 147 2577 37.12 67 6030501 36000
Py 3D 170 166 79 0.49 146 727 3.97
P> 3D 935 | 935 25283 36000 | 829 33200 36000

M. Knepley (ANL)
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Optimizing Linear Operator Construction Mixed Integer Linear Programming

Results

Formulation with Sparse Basis

@ We can also take account of the sparsity in the basis vectors
@ Count only the flops for nonzero entries
e Significantly decreases the flop count

Sparse Coefficient | Sparse Basis
Elements Flops Flops
P; 2D 34 12
P; 3D 146 26
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Other Thrusts
Sieve

Sieve is an interface for
@ general topologies
@ functions over these topologies (bundles)
@ traversals

One relation handles all hierarchy
@ Vast reduction in complexity
e Dimension independent code
o A single communication routine to optimize
@ Expansion of capabilities

Partitioning and distribution

Hybrid meshes

Complicated structures and embedded boundaries
Unstructured multigrid
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Other Thrusts
FIAT

Finite Element Integrator And Tabulator by Rob Kirby
http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)

@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)
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Other Thrusts
FIAT

Finite Element Integrator And Tabulator by Rob Kirby
http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)

FIAT is part of the FEniCS project
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Other Thrusts

Example: Discontinuous Galerkin Poisson

Poisson

—Au=f on Q=10,1] x [0,1]
Using a discontinuous Galerkin formulation (interior penalty method).

@ Define our Form and compile (FIAT + FFC)
@ Define our Simulation (DOLFIN)

o Define our mesh
o Assemble and solve
e Post process (visualize, error, ...)
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Other Thrusts

Example: Discontinuous Galerkin Poisson

Defining the form

element = FiniteElement ("Discontinuous Lagrange",
"triangle", 1)

n = FacetNormal ("triangle")
h = MeshSize ("triangle")
alpha = 4.0; gamma = 8.0
a = dot (grad(v), grad(u))xdx
- dot (avg(grad(v)), Jump(u, n))*dS
- dot (jJump (v, n), avg(grad(u)))*dsS
+ alpha/h (' +’)*dot (Jump (v, n), Jump(u, n))=*ds
- dot (grad(v), mult(u, n))=*xds
- dot (mult (v, n), grad(u))=*ds + gamma/hxvxuxds

see ffc/src/demo/PoissonDG. form, and compile with
$ ffc PoissonDG. form
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Other Thrusts

Example: Discontinuous Galerkin Poisson

Writing the Simulation: Assemble and solve

// Create user defined functions
Source f (mesh); Flux g(mesh);
FacetNormal n (mesh);

AvgMeshSize h (mesh);

// Define PDE
PoissonBilinearForm a;
PoissonLinearForm L(f, 9);
LinearPDE pde (a, L, mesh, bc);
// Solve PDE

Function u;

pde.solve (u) ;
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Other Thrusts

Example: Discontinuous Galerkin Poisson

Simulate!
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Conclusions
Conclusions

Better mathematical abstractions
bring concrete benefits

@ Vast reduction in complexity

e Declarative, rather than imperative, specification
e Dimension independent code

@ Opportunites for optimization

e Higher level operations missed by traditional compilers
e Single communication routine to optimize

@ Expansion of capabilities

o Easy model definition
o Arbitrary elements
o Complex geometries and embedded boundaries
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e Sieve
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Sieve

Hierarchy Abstractions

@ Generalize to a set of linear spaces

@ Sieve provides topology, can also model Mat
@ Section generalizes vec
e Spaces interact through an Overlap (justa Sieve)

@ Basic operations

o Restriction to finer subspaces, restrict () /update ()
@ Assembly to the subdomain, complete ()

@ Allow reuse of geometric and multilevel algorithms
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Sieve

Unstructured Interface (before)

@ Explicit references to element type

o getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)
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Sieve

Unstructured Interface (before)

@ Explicit references to element type
o getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure
o Awkward nested loops to handle different dimensions
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Sieve

Unstructured Interface (before)

@ Explicit references to element type

o getVertices(edgelD), getVertices(facelD)

e getAdjacency(edgelD, VERTEX)

o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure

o Awkward nested loops to handle different dimensions
@ Have to recode for meshes with different

e dimension
e shapes
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Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.
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Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element
e Covering can be thought of as adjacency
o Relation can be expressed in a DAG (Hasse Diagram)
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Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element

e Covering can be thought of as adjacency

o Relation can be expressed in a DAG (Hasse Diagram)
@ Simple query set:

e provides a general API for geometric algorithms

@ leads to simpler implementations

e can be more easily optimized
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Sieve

Unstructured Interface (after)

@ NO explicit references to element type

@ A point may be any mesh element
o getCone(point): adjacent (d-1)-elements
o getSupport(point): adjacent (d+1)-elements
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Sieve

Unstructured Interface (after)

@ NO explicit references to element type

@ A point may be any mesh element
o getCone(point): adjacent (d-1)-elements
o getSupport(point): adjacent (d+1)-elements

@ Transitive closure
o closure(cell): The computational unit for FEM
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Sieve

Unstructured Interface (after)

@ NO explicit references to element type

@ A point may be any mesh element

e getCone(point): adjacent (d-1)-elements

o getSupport(point): adjacent (d+1)-elements
@ Transitive closure

o closure(cell): The computational unit for FEM
@ Algorithms independent of mesh

e dimension
shape (even hybrid)
global topology
data layout
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Doublet Mesh

@ Incidence/covering arrows
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Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}
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Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,83,4}
@ support(7) = {2,3}
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Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,8,4,7,8,9}
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Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,8,4,7,8,9}
@ star(7) ={7,2,3,0}
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Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
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Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
@ join(8,9) = {4}
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Doublet Section

@ Section interface
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Doublet Section

@ Section interface
e restrict(0) = {fv}
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Doublet Section

@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}

M. Knepley (ANL) Refactoring Cl°08 42/56



Doublet Section

@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}
e restrict(6) = {ep, e1}
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Doublet Section

@ Topological traversals: follow connectivity
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Doublet Section

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fhepeie2e3e465VpViVa}
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Doublet Section

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fhepeie2e3e465VpViVa}
o restrictStar(7) = {vpepeies6esy }
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Global and Local

Local (analytical) Global (topological)
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Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions
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Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

@ Largely dim dependent
(e.g. quadrature)
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Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies
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Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies

@ Largely dim independent
(e.g. mesh traversal)
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Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>
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Sieve
Integration

cells = mesh->heightStratum(0);

for(c = cells->begin(); c != cells->end(); ++c) {
coords = mesh->restrict (coordinates, c);
v0, J, invd, detJ = computeGeometry (coords);

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight [g]x*detdJ;

}

<Update output vector>

Refactoring



Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>
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Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
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}
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Sieve
Integration
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for (c cells—->begin(); c != cells->end(); ++c) {
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<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
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}
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Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
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<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>
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Sieve
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
for(d = 0; d < dim; ++d)
for (e) testDerReal[d] += invJ[e,d]x*basisDer|[q,
for(g = 0; g < numBasisFuncs; ++g) {
for(d = 0; d < dim; ++d)
for (e) basisDerReal[d] += invJ[e,d]*basisDer
elemMat [f,g] += testDerReal [d]xbasisDerReal |
elemVec[f] += elemMat[f,g]xinputVeclg]l;
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Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>
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Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
elemVec[f] += basis[qg, f]*lambda*exp (inputVec[£f])
elemVec[f] »= weight[g]=*detdJ;

}

<Update output vector>

}

<Aggregate updates>
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Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
mesh->updateAdd (F, c, elemVec);

}

<Aggregate updates>
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Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}
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Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

Distribution<Mesh>::completeSection (mesh, F);
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Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain
accuracy

@ Coarsening preserves accuracy in MG without user intervention
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Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain

accuracy
@ Coarsening preserves accuracy in MG without user intervention

Reentrant Corner Error
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Reentrant Problems

Exact Solution for reentrant problem: u(x, y) = rgsin(ge)

|

%
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GMG Performance
Linear solver iterates are constant as system size increases:

KSP Iterates on Reentrant Domains
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GMG Performance

Work to build the preconditioner is constant as system size increases:

Vertex Comparisons on Reentrant Domains
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Outline

Q PyLith
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PyLith

Reverse-slip Benchmark
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PyLith

Multiple Mesh Types

Triangular Tetrahedral

Displacement (m)
00 02 04 046 08 10

Rectangular Hexahedral
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PyLith
Cohesive Cells

Origina;l Mesh5 Mesh with Coheswe Cell
1

3 7

0 2 4 0 2 6 4
1 33 5 1 3377 5
0 22 4 0 2266 4

Exploded view of meshes
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PyLith
Cohesive Cells

Cohesive cells are used to enforce slip conditions on
a fault
e Demands complex mesh manipulation
o We allow specification of only fault vertices
o Must “sew” together on output

e Use Lagrange multipliers to enforce constraints
e Forces illuminate physics

o Allow different fault constitutive models
e Simplest is enforced slip
o Rate-and-state friction
o Poroelastic faults are in development
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Partial Geometries
Partial Geometry

Given a set V and a set of lines L ¢ P(V), (V, L) is a partial geometry
if
@ there is at most one line through each pair of points
@ each line has at least three point

Note that

@ Typical geometries have exactly one line through each pair of
points

@ Encoded by ternary relations, like coplanarity, which satisfy

R(x,y,z) N R(y,z,p) = R(x,y,p) AN R(y,z,p)

@ Generalizes to higher arity relations
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Partial Geometries
Definitions

@ vertex
@ A point lying in two or more lines
@ closure

e The transitive closure S under R of some S C V
e ze VAIx,ye S>R(x,y,z)=z€ S

@ independent set

o Aset Ssuchthatforany S'c S, S #8S
@ basis

e Anindependent set S such that S = V
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Partial Geometries
Goal

We want a basis of minimal cost, which now means size.

@ Something like a “minimum spanning hypertree”
@ Closure operation produces a DAG
o Use topological sort to get computation sequence
@ Complexity is unknown
@ Unfortunate example shows bases of differing size
o At odds with matroid theory
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Partial Geometries
Geometric Reduction

@ Eliminate parallel lines (no vertices)

o Can add any two points on the line to a minimal basis
@ Eliminate single vertex lines

e Can add any non-vertex on the line to a minimal basis
@ Eliminate non-vertices from basis

e Each line has at least two vertices

@ If two vertices are already present, discard point
@ Otherwise, switch with a vertex

o The generated set is the same, and the size has not increased
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Partial Geometries
Exchange Property

We want to show that all reduced bases are the same size.

@ Remove a vertex p from the basis B
o Now there is a set Ex(p) which is no longer in B

@ Choose g from Ex(p)
@ Reverse the generation path from pto g
o If we generate p, we generate all of Ex(p)

Now
@ We have an easy algorithm for a minimal basis
@ Matroid results apply
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