Refactoring Finite Element Computation

Matthew Knepley

Mathematics and Computer Science Division
Argonne National Laboratory

Cl Talk
University of Chicago
March 20, 2008

ARGONNE

NATIONAL LABORATORY

M. Knepley (ANL) Refactoring Cl°08 1/56

Necessity Of Simulation

Experiment are ...

Expensive Difficult

Impossible Dangerous

M. Knepley (ANL) Refactoring 2/56

What is the Way Forward?

How do we move Scientific Computing forward?

@ Performance
e Bandwidth on multicore chips
@ Experimentation
@ Solvers (solved)
o Elements
o Models
@ Coupling
o How does this interact with the discretization. . .
@ or solver?

M. Knepley (ANL) Refactoring Cl°08 3/56

Synergy

Outline

0 Synergy

M. Knepley (ANL) Refactoring Cl’08 4/56

Synergy
Problems

The biggest problem in scientific computing is programmability:
@ Lack of usable implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

@ Meshes
@ Discretizations

M. Knepley (ANL) Refactoring Cl°08 5/56

Synergy
Problems

The biggest problem in scientific computing is programmability:
@ Lack of widespread implementations of modern algorithms

e Unstructured Multigrid
o Fast Multipole Method

@ Lack of comparison among classes of algorithms

@ Meshes
@ Discretizations

We should reorient thinking from
@ characterizing the solution (FEM)
e “what is the convergence rate (in h) of this finite element?”
to
@ characterizing the computation (FErari)
e “how many digits of accuracy per flop for this finite element?”

M. Knepley (ANL) Refactoring Cl’08 5/56

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages

M. Knepley (ANL) Refactoring Cl°08 6/56

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems
Distributed Computing

Programming Languages

M. Knepley (ANL) Refactoring Cl°08 6/56

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems
Distributed Computing Datamining

Programming Languages

M. Knepley (ANL) Refactoring Cl°08 6/56

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Distributed Computing Datamining

Programming Languages
Code Generation

M. Knepley (ANL) Refactoring Cl°08 6/56

Synergy
Future Compilers

| think compilers are victims of their own success (ala Rob Pike)

@ Efforts to modularize compilers retain the same primtives

e compiling on the fly (JIT)
o Low Level Virtual Machine

@ Raise the level of abstraction

e Fenics Form Compiler (variational form compiler)
e Mython (Domain Specific Language generator)

M. Knepley (ANL) Refactoring Cl°08 7/56

http://llvm.org

Synergy
Representation Hierarchy

Divide the work into levels:
@ Model

@ Algorithm

@ Implementation

M. Knepley (ANL) Refactoring Cl°08 8/56

http://www.spiral.net

Synergy
Representation Hierarchy

Divide the work into levels: Spiral Project:

@ Model @ Discrete Fourier Transform (DSP)
@ Algorithm @ Fast Fourier Transform (SPL)
@ Implementation @ C Implementation (SPL Compiler)

M. Knepley (ANL) Refactoring Cl°08 8/56

http://www.spiral.net

Synergy
Representation Hierarchy

Divide the work into levels: FLAME Project:

@ Model @ Abstract LA (PME/Invariants)
@ Algorithm @ Basic LA (FLAME/FLASH)
@ Implementation @ Scheduling (SuperMatrix)

M. Knepley (ANL) Refactoring Cl°08 8/56

http://www.cs.utexas.edu/users/flame

Synergy
Representation Hierarchy

Divide the work into levels: FEniCS Project:
@ Model @ Navier-Stokes (FFC)
@ Algorithm @ Finite Element (FIAT)
@ Implementation @ Integration/Assembly (FErari)

M. Knepley (ANL) Refactoring Cl°08 8/56

http://www.fenics.org

Synergy
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

M. Knepley (ANL) Refactoring Cl°08 8/56

Synergy
Representation Hierarchy

Divide the work into levels: Treecodes:
@ Model @ Kernels with decay (Coulomb)
@ Algorithm @ Treecodes (PetFMM)
@ Implementation @ Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (ANL) Refactoring Cl°08 8/56

Optimizing Linear Operator Construction
Outline

e Optimizing Linear Operator Construction
@ Problem Statement
@ Plan of Attack
@ Results
@ Mixed Integer Linear Programming

M. Knepley (ANL) Refactoring Cl°08 9/56

Optimizing Linear Operator Construction Problem Statement

Outline

9 Optimizing Linear Operator Construction
@ Problem Statement

M. Knepley (ANL) Refactoring Cl°08 10/56

Optimizing Linear Operator Construction Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 V6i(%) - Voy(x)dx (1)
= - 32;(()() (X)dx @)
= Jp 22020 ‘93; |J|dx 3)
= ol [20O gy @
= G&Y(T)K& (5)

Coefficients are also put into the geometric part.

M. Knepley (ANL) Refactoring Cl°08 11/56

Optimizing Linear Operator Construction Problem Statement

Element Matrix Formation

@ Element matrix K is now made up of small tensors
@ Contract all tensor elements with each the geometry tensor G(7)

3 0 0 -1 1 1 -4 -4 0 4 0 0
0 0 0 O 0 0 0 O 0 0 0 0
0 O 0 0 0 0 0 0 0 0 0 O
-1 0 0 3 1 1 0 0 4 0 -4 -4
1 0 0o 1 3 3 -4 0 0 0 0 -4
1 0 0 1 3 3 -4 0 0 O 0 -4
-4 0 0 O -4 -4 8 4 0 -4 0 4
-4 0 0 0 0 O 4 8 -4 -8 4 0
0 0 0 4 0 0 0 -4 8 4 -8 -4
4 0 0 O 0 O -4 -8 4 8 -4 0
0 0 0 -4 0 O 0 4 -8 -4 8 4
0 O 0 -4 -4 -4 4 0 -4 0 4 8

M. Knepley (ANL) Refactoring Cl°08 12/56

Optimizing Linear Operator Construction Problem Statement

Element Matrix Computation

@ Element matrix K can be precomputed

e FFC
o SyFi

@ Can be extended to nonlinearities and curved geometry

@ Many redundancies among tensor elements of K
e Could try to optimize the tensor contraction. ..

M. Knepley (ANL) Refactoring Cl°08 13/56

http://www.fenics.org/wiki/SyFi
http://www.fenics.org/wiki/FFC

Optimizing Linear Operator Construction Problem Statement

Abstract Problem

Given vectors v; € R™, minimize flops(v'g) for arbitrary g € R

@ The set v; is not at all random
@ Not a traditional compiler optimization

@ How to formulate as an optimization problem?

M. Knepley (ANL) Refactoring Cl°08 14/56

Optimizing Linear Operator Construction Plan of Attack

Outline

9 Optimizing Linear Operator Construction

@ Plan of Attack

M. Knepley (ANL) Refactoring Cl°08 15/56

Optimizing Linear Operator Construction Plan of Attack

Complexity Reducing Relations

If v/ g is known, is flops(v] g) < 2m —1?

We can use binary relations among the vectors:
@ Equality
o If v; = v;, then flops(v/ g) = 0
@ Colinearity
o If v = av;, then flops(v/ g) = 1
@ Hamming distance
o If disty(v;, v;) = k, then flops(v] g) = 2k

M. Knepley (ANL) Refactoring Cl°08 16/56

Optimizing Linear Operator Construction Plan of Attack

Algorithm for Binary Relations

@ Construct a weighted graph on v;
o The weight w(i,j) is flops(v]g) given v/ g
e With the above relations, the graph is symmetric

@ Find a minimum spanning tree
e Use Prim or Kruskal for worst case O(n? log n)

@ Traverse the MST, using the appropriate calculation for each edge
e Roots require a full dot product

M. Knepley (ANL) Refactoring Cl°08 17/56

Optimizing Linear Operator Construction Plan of Attack

Coplanarity

@ Ternary relation
o If vk = av; + Bv;, then flops(v/ g) = 3
e Does not fit our undirected graph paradigm

@ SVD for vector triples is expensive
e Use a randomized projection into a few R3s

@ Use a hypergraph?
o MST algorithm available

@ Appeal to geometry?
@ Incidence structures

M. Knepley (ANL) Refactoring Cl°08 18/56

Optimizing Linear Operator Construction Results

Outline

9 Optimizing Linear Operator Construction

@ Results

M. Knepley (ANL) Refactoring Cl°08 19/56

Optimizing Linear Operator Construction Results

FErari

Finite Element rearragement to automaically reduce instructions
@ Open source implementation http://www.fenics.org/wiki/FErari
@ Build tensor blocks K ., as vectors using FIAT

@ Discover dependencies

o Represented as a DAG
e Can also use hypergraph model

@ Use minimal spanning tree to construct computation

M. Knepley (ANL) Refactoring Cl°08

20/56

http://www.fenics.org/wiki/FErari
http://www.fenics.org/wiki/FIAT

Optimizing Linear Operator Construction Results

Preliminary Results

M. Knepley (ANL)

Order | Entries | Base MAPs | FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867
Refactoring Cl’'08

21/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Outline

9 Optimizing Linear Operator Construction

@ Mixed Integer Linear Programming

M. Knepley (ANL) Refactoring Cl°08 22/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Modeling the Problem

@ Objective is cost of dot products (tensor contractions in FEM)
o Set of vectors V with a given arbitrary vector g

@ The original MINLP has a nonconvex, nonlinear objective

@ Reformulate to obtain a MILP using auxiliary binary variables

M. Knepley (ANL) Refactoring Cl°08 23/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Modeling the Problem

Variables

ajj = Basis expansion coefficients
yi = Binary variable indicating membership in the basis
s;j = Binary variable indicating nonzero coefficient
z; = Binary variable linearizes the objective function (equivalent to y;y;)
U = Upper bound on coefficients

Constraints

(6b) : Basis expansion
) : Exclude nonbasis vector from the expansion

Eq. (6d) : Remove offdiagonal coefficients for basis vectors
) : Exclude vanishing coefficients from cost

M. Knepley (ANL) Refactoring Cl°08 23/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Original Formulation

MINLP Model
n
minimize Z yim—-1)+(1—-y) (2 Z yi—1 (6a)
i=1 J=1,j#i
$t V,':ZO(,'/‘V/' i=1,....n
(6b)
—Uy; < aj < Uy ij=1,...,n
(6¢c)
—U(1—y,-)§a,-,-§U(1—y,-) Lj=1,....n i
(6d)
yi€{0,1} i=1,...,n
(6e)

M. Knepley (ANL) Refactoring Cl°08 24/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Original Formulation
Equivalent MILP Model: z,-j =Yy

minimize 2m Z yi+2 Z Z — Zj) — (6a)

i=1 j=1,j#i

st v;:Za,-jvj i=1,...,n (6b)

—Uy; < aj < Uy ihj=1,....n
(6¢)
—U(1—y,-)§oz,-j§U(1—y,-) ihj=1,....n i#j
(6d)

ZijSYia Z//S}’p ZUZyI+.}/j_17 i)j:1)"')n
(6e)

yi € {0,1}, Z,-,-E{O,1} ihj=1,...,n
(6f)

M. Knepley (ANL) Refactoring Cl°08 24/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation

@ Take advantage of sparsity of «;; coefficient
@ Introduce binary variables s; to model existence of «;;

@ Add constraints —Us;; < a;; < Us;;

M. Knepley (ANL) Refactoring Cl°08 25/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation

MINLP Model
n
minimize Z yiCm-1)+(1-y) |2 Z sj— 1 (7a)
=1 =1,
st V= a;y i=1,....,n
(7b)
— Usjj < i < Usjj ij=1,...,n
(7c)
—U(1—y,')§a,-j§U(1—y,-) ihj=1,....n
(7d)
Si <V hj=1,...,n
(7e)
¥i€{0,1}, s;€{0,1} ij=1,...,n

M. Knepley (ANL) Refactoring Cl°08 25/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Sparse Coefficient Formulation
Equivalent MILP Model

minimize 2mZy,+ZZ Z Sj — Zj) — (7a)
i=1 j=1j#i
St V/:Zaij\/j i=1,....n
(7b)
— Usj < aj < Us; ij=1,...,n
(7c)
—U(1—y)<a; <U1 —-Vy) ihj=1,....n i #]j
(7d)
Zi <y, zj<sj Zzj=yi+sj—1, i,j=1,...,n
(7e)

yi€{0,1}, z;€{0,1}, s;<c{0,1} ihj=1,...,n

M. Knepley (ANL) Refactoring Cl°08 25/56

Results

Optimizing Linear Operator Construction

Mixed Integer Linear Programming

Initial Formulation

@ Initial formulation only had sparsity in the «;;
@ MINTO was not able to produce some optimal solutions
o Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element | Flops | Flops LPs CPU | Flops LPs CPU
Py 2D 42 42 33 0.10 34 187 0.43
P> 2D 147 147 2577 37.12 67 6030501 36000
Py 3D 170 166 79 0.49 146 727 3.97
P> 3D 935 | 935 25283 36000 | 829 33200 36000

M. Knepley (ANL)

Refactoring

Cl’'08

26/56

Optimizing Linear Operator Construction Mixed Integer Linear Programming

Results

Formulation with Sparse Basis

@ We can also take account of the sparsity in the basis vectors
@ Count only the flops for nonzero entries
e Significantly decreases the flop count

Sparse Coefficient | Sparse Basis
Elements Flops Flops
P; 2D 34 12
P; 3D 146 26

M. Knepley (ANL) Refactoring Cl°08 26/56

Other Thrusts

Outline

e Other Thrusts

M. Knepley (ANL) Refactoring Cl’08 27/56

Other Thrusts
Sieve

Sieve is an interface for
@ general topologies
@ functions over these topologies (bundles)
@ traversals

One relation handles all hierarchy
@ Vast reduction in complexity
e Dimension independent code
o A single communication routine to optimize
@ Expansion of capabilities

Partitioning and distribution

Hybrid meshes

Complicated structures and embedded boundaries
Unstructured multigrid

M. Knepley (ANL) Refactoring Cl°08 28/56

Other Thrusts
FIAT

Finite Element Integrator And Tabulator by Rob Kirby
http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)

@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)

M. Knepley (ANL) Refactoring Cl°08 29/56

http://fenicsproject.org/about/components.html

Other Thrusts
FIAT

Finite Element Integrator And Tabulator by Rob Kirby
http://fenicsproject.org/

FIAT understands
@ Reference element shapes (line, triangle, tetrahedron)
@ Quadrature rules
@ Polynomial spaces
@ Functionals over polynomials (dual spaces)
@ Derivatives
Can build arbitrary elements by specifying the Ciarlet triple (K, P, P’)

FIAT is part of the FEniCS project

M. Knepley (ANL) Refactoring Cl°08 29/56

http://fenicsproject.org/about/components.html

Other Thrusts

Example: Discontinuous Galerkin Poisson

Poisson

—Au=f on Q=10,1] x [0,1]
Using a discontinuous Galerkin formulation (interior penalty method).

@ Define our Form and compile (FIAT + FFC)
@ Define our Simulation (DOLFIN)

o Define our mesh
o Assemble and solve
e Post process (visualize, error, ...)

M. Knepley (ANL) Refactoring Cl°08 30/56

Other Thrusts

Example: Discontinuous Galerkin Poisson

Defining the form

element = FiniteElement ("Discontinuous Lagrange",
"triangle", 1)

n = FacetNormal ("triangle")
h = MeshSize ("triangle")
alpha = 4.0; gamma = 8.0
a = dot (grad(v), grad(u))xdx
- dot (avg(grad(v)), Jump(u, n))*dS
- dot (jJump (v, n), avg(grad(u)))*dsS
+ alpha/h (' +’)*dot (Jump (v, n), Jump(u, n))=*ds
- dot (grad(v), mult(u, n))=*xds
- dot (mult (v, n), grad(u))=*ds + gamma/hxvxuxds

see ffc/src/demo/PoissonDG. form, and compile with
$ ffc PoissonDG. form

M. Knepley (ANL) Refactoring Cl°08 31/56

Other Thrusts

Example: Discontinuous Galerkin Poisson

Writing the Simulation: Assemble and solve

// Create user defined functions
Source f (mesh); Flux g(mesh);
FacetNormal n (mesh);

AvgMeshSize h (mesh);

// Define PDE
PoissonBilinearForm a;
PoissonLinearForm L(f, 9);
LinearPDE pde (a, L, mesh, bc);
// Solve PDE

Function u;

pde.solve (u) ;

M. Knepley (ANL) Refactoring Cl°08 32/56

Other Thrusts

Example: Discontinuous Galerkin Poisson

Simulate!

M. Knepley (ANL) Refactoring Cl°08 33/56

Conclusions

Outline

e Conclusions

M. Knepley (ANL) Refactoring Cl’08 34/56

Conclusions
Conclusions

Better mathematical abstractions
bring concrete benefits

@ Vast reduction in complexity

e Declarative, rather than imperative, specification
e Dimension independent code

@ Opportunites for optimization

e Higher level operations missed by traditional compilers
e Single communication routine to optimize

@ Expansion of capabilities

o Easy model definition
o Arbitrary elements
o Complex geometries and embedded boundaries

M. Knepley (ANL) Refactoring Cl°08 35/56

Outline

e Sieve

M. Knepley (ANL) Refactoring Cl’08 36/56

Sieve

Hierarchy Abstractions

@ Generalize to a set of linear spaces

@ Sieve provides topology, can also model Mat
@ Section generalizes vec
e Spaces interact through an Overlap (justa Sieve)

@ Basic operations

o Restriction to finer subspaces, restrict () /update ()
@ Assembly to the subdomain, complete ()

@ Allow reuse of geometric and multilevel algorithms

M. Knepley (ANL) Refactoring Cl°08 37/56

Sieve

Unstructured Interface (before)

@ Explicit references to element type

o getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)

M. Knepley (ANL) Refactoring Cl°08 38/56

Sieve

Unstructured Interface (before)

@ Explicit references to element type
o getVertices(edgelD), getVertices(facelD)
e getAdjacency(edgelD, VERTEX)
o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure
o Awkward nested loops to handle different dimensions

M. Knepley (ANL) Refactoring Cl°08 38/56

Sieve

Unstructured Interface (before)

@ Explicit references to element type

o getVertices(edgelD), getVertices(facelD)

e getAdjacency(edgelD, VERTEX)

o getAdjacency(edgelD, dim = 0)
@ No interface for transitive closure

o Awkward nested loops to handle different dimensions
@ Have to recode for meshes with different

e dimension
e shapes

M. Knepley (ANL) Refactoring Cl°08 38/56

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

M. Knepley (ANL) Refactoring Cl°08 39/56

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element
e Covering can be thought of as adjacency
o Relation can be expressed in a DAG (Hasse Diagram)

M. Knepley (ANL) Refactoring Cl°08 39/56

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

@ Abstract to a relation, covering, on sieve points

e Points can represent any mesh element

e Covering can be thought of as adjacency

o Relation can be expressed in a DAG (Hasse Diagram)
@ Simple query set:

e provides a general API for geometric algorithms

@ leads to simpler implementations

e can be more easily optimized

M. Knepley (ANL) Refactoring Cl°08 39/56

Sieve

Unstructured Interface (after)

@ NO explicit references to element type

@ A point may be any mesh element
o getCone(point): adjacent (d-1)-elements
o getSupport(point): adjacent (d+1)-elements

M. Knepley (ANL) Refactoring Cl°08 40/56

Sieve

Unstructured Interface (after)

@ NO explicit references to element type

@ A point may be any mesh element
o getCone(point): adjacent (d-1)-elements
o getSupport(point): adjacent (d+1)-elements

@ Transitive closure
o closure(cell): The computational unit for FEM

M. Knepley (ANL) Refactoring Cl’08 40/56

Sieve

Unstructured Interface (after)

@ NO explicit references to element type

@ A point may be any mesh element

e getCone(point): adjacent (d-1)-elements

o getSupport(point): adjacent (d+1)-elements
@ Transitive closure

o closure(cell): The computational unit for FEM
@ Algorithms independent of mesh

e dimension
shape (even hybrid)
global topology
data layout

M. Knepley (ANL) Refactoring Cl’08 40/56

Doublet Mesh

@ Incidence/covering arrows

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,3,4}

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Mesh

@ Incidence/covering arrows
@ cone(0) ={2,83,4}
@ support(7) = {2,3}

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,8,4,7,8,9}

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Mesh

@ Incidence/covering arrows
@ closure(0) ={0,2,8,4,7,8,9}
@ star(7) ={7,2,3,0}

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Mesh

@ Incidence/covering arrows
@ meet(0,1) = {4}
@ join(8,9) = {4}

M. Knepley (ANL) Refactoring Cl°08 41/56

Doublet Section

@ Section interface

M. Knepley (ANL) Refactoring Cl°08 42/56

Doublet Section

@ Section interface
e restrict(0) = {fv}

M. Knepley (ANL) Refactoring Cl°08 42/56

Doublet Section

@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}

M. Knepley (ANL) Refactoring Cl°08 42/56

Doublet Section

@ Section interface

e restrict(0) = {fv}
e restrict(2) = {w}
e restrict(6) = {ep, e1}

M. Knepley (ANL) Refactoring Cl°08 42/56

Doublet Section

@ Topological traversals: follow connectivity

M. Knepley (ANL) Refactoring Cl°08 42/56

Doublet Section

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fhepeie2e3e465VpViVa}

M. Knepley (ANL) Refactoring Cl°08 42/56

Doublet Section

@ Topological traversals: follow connectivity
o restrictClosure(0) = {fhepeie2e3e465VpViVa}
o restrictStar(7) = {vpepeies6esy }

M. Knepley (ANL) Refactoring Cl°08 42/56

Global and Local

Local (analytical) Global (topological)

M. Knepley (ANL) Refactoring Cl°08 43/56

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

M. Knepley (ANL) Refactoring Cl°08 43/56

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation

o FEM integrals
o FV fluxes

@ Boundary conditions

@ Largely dim dependent
(e.g. quadrature)

M. Knepley (ANL) Refactoring Cl°08 43/56

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies

M. Knepley (ANL) Refactoring Cl°08 43/56

Global and Local

Local (analytical) Global (topological)
@ Discretization/Approximation @ Data management
o FEM integrals e Sections (local pieces)
o FV fluxes e Completions (assembly)
@ Boundary conditions @ Boundary definition
@ Largely dim dependent @ Multiple meshes
(e.g. quadrature) e Mesh hierarchies

@ Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL) Refactoring Cl°08 43/56

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);

for(c = cells->begin(); c != cells->end(); ++c) {
coords = mesh->restrict (coordinates, c);
v0, J, invd, detJ = computeGeometry (coords);

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight [g]x*detdJ;

}

<Update output vector>

Refactoring

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

inputVec = mesh->restrict (U, c);
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}

<Update output vector>

}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
realCoords JxrefCoords[qg] + VvO;
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>

<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}

<Update output vector>
}
<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
elemVec[f] += basis[qg, f]*rhsFunc(realCoords);
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(qg = 0; g < numQuadPoints; ++qg) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
for(d = 0; d < dim; ++d)
for (e) testDerReal[d] += invJ[e,d]x*basisDer|[q,
for(g = 0; g < numBasisFuncs; ++g) {
for(d = 0; d < dim; ++d)
for (e) basisDerReal[d] += invJ[e,d]*basisDer
elemMat [f,g] += testDerReal [d]xbasisDerReal |
elemVec[f] += elemMat[f,g]xinputVeclg]l;

M. KnepleyA (ANL) B Refactoring

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
elemVec[f] += basis[qg, f]*lambda*exp (inputVec[£f])
elemVec[f] »= weight[g]=*detdJ;

}

<Update output vector>

}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
mesh->updateAdd (F, c, elemVec);

}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

<Aggregate updates>

M. Knepley (ANL) Refactoring Cl°08 44/56

Sieve
Integration

cells = mesh->heightStratum(0);
for (c cells—->begin(); c != cells->end(); ++c) {
<Compute cell geometry>

<Retrieve values from input vector>
for(g = 0; g < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; £ < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] »= weight[g]=x*detdJ;

}
<Update output vector>
}

Distribution<Mesh>::completeSection (mesh, F);

M. Knepley (ANL) Refactoring Cl°08 44/56

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain
accuracy

@ Coarsening preserves accuracy in MG without user intervention

CURAASNN
RSN

[N
K

M. Knepley (ANL) Refactoring Cl°08 45/56

Reentrant Problems

@ Reentrant corners need nonnuiform refinement to maintain

accuracy
@ Coarsening preserves accuracy in MG without user intervention

Reentrant Corner Error

B.1 e N
Unrefined Pacman —+——
Refined Pacman ——
a.08 -
& B.86 | .
C
a
[
oooB,94 - -
_
B.02 -
148 1886 19886 198Baa le+dG

M. Knepley (ANL) Refactoring Cl°08 45/56

Reentrant Problems

Exact Solution for reentrant problem: u(x, y) = rgsin(ge)

|

%

M. Knepley (ANL) Refactoring Cl°08 45/56

>
N—r
3
£
L)
o)
e}
—
o
c
4 ©
o B
— K
O N
(o
el O
Dlv.l
= 5
C B
© =
= O
el O
O8N ©
(0N ©
C

(59)

2 .
rasin

y)=

bl

45/56

Refactoring Cl°08

M. Knepley (ANL)

GMG Performance
Linear solver iterates are constant as system size increases:

KSP Iterates on Reentrant Domains
10 —— —— ———

L —
Pacman e

KSP lterates

0 L M| L Ll L M i
1000 10000 100000 le+06

Mesh Size (Vertices)

M. Knepley (ANL) Refactoring Cl°08 46/56

GMG Performance

Work to build the preconditioner is constant as system size increases:

Vertex Comparisons on Reentrant Domains
20 —— — ———

L —
Pacman e

T E—

Comparisons Per Vertex

0 L M| L Ll L M i
1000 10000 100000 le+06

Mesh Size (Vertices)

M. Knepley (ANL) Refactoring Cl°08 46/56

Outline

Q PyLith

M. Knepley (ANL) Refactoring Cl’08 47/56

PyLith

Reverse-slip Benchmark

M. Knepley (ANL) Refactoring Cl°08 48/56

PyLith

Multiple Mesh Types

Triangular Tetrahedral

Displacement (m)
00 02 04 046 08 10

Rectangular Hexahedral

N\
Displacement () Dispiacement (m)
00 02 04 06 08 10 00 02 04 08 08 10
[I n |

M. Knepley (ANL) Refactoring Cl'08 49/56

PyLith
Cohesive Cells

Origina;l Mesh5 Mesh with Coheswe Cell
1

3 7

0 2 4 0 2 6 4
1 33 5 1 3377 5
0 22 4 0 2266 4

Exploded view of meshes

M. Knepley (ANL) Refactoring Cl°08 50/56

PyLith
Cohesive Cells

Cohesive cells are used to enforce slip conditions on
a fault
e Demands complex mesh manipulation
o We allow specification of only fault vertices
o Must “sew” together on output

e Use Lagrange multipliers to enforce constraints
e Forces illuminate physics

o Allow different fault constitutive models
e Simplest is enforced slip
o Rate-and-state friction
o Poroelastic faults are in development

M. Knepley (ANL) Refactoring Cl°08 51/56

Partial Geometries
Partial Geometry

Given a set V and a set of lines L ¢ P(V), (V, L) is a partial geometry
if
@ there is at most one line through each pair of points
@ each line has at least three point

Note that

@ Typical geometries have exactly one line through each pair of
points

@ Encoded by ternary relations, like coplanarity, which satisfy

R(x,y,z) N R(y,z,p) = R(x,y,p) AN R(y,z,p)

@ Generalizes to higher arity relations

M. Knepley (ANL) Refactoring Cl°08 52/56

Partial Geometries
Definitions

@ vertex
@ A point lying in two or more lines
@ closure

e The transitive closure S under R of some S C V
e ze VAIx,ye S>R(x,y,z)=z€ S

@ independent set

o Aset Ssuchthatforany S'c S, S #8S
@ basis

e Anindependent set S such that S = V

M. Knepley (ANL) Refactoring Cl°08 53/56

Partial Geometries
Goal

We want a basis of minimal cost, which now means size.

@ Something like a “minimum spanning hypertree”
@ Closure operation produces a DAG
o Use topological sort to get computation sequence
@ Complexity is unknown
@ Unfortunate example shows bases of differing size
o At odds with matroid theory

M. Knepley (ANL) Refactoring Cl°08 54/56

Partial Geometries
Geometric Reduction

@ Eliminate parallel lines (no vertices)

o Can add any two points on the line to a minimal basis
@ Eliminate single vertex lines

e Can add any non-vertex on the line to a minimal basis
@ Eliminate non-vertices from basis

e Each line has at least two vertices

@ If two vertices are already present, discard point
@ Otherwise, switch with a vertex

o The generated set is the same, and the size has not increased

M. Knepley (ANL) Refactoring Cl°08 55/56

Partial Geometries
Exchange Property

We want to show that all reduced bases are the same size.

@ Remove a vertex p from the basis B
o Now there is a set Ex(p) which is no longer in B

@ Choose g from Ex(p)
@ Reverse the generation path from pto g
o If we generate p, we generate all of Ex(p)

Now
@ We have an easy algorithm for a minimal basis
@ Matroid results apply

M. Knepley (ANL) Refactoring Cl°08 56/56

	Synergy
	Optimizing Linear Operator Construction
	Problem Statement
	Plan of Attack
	Results
	Mixed Integer Linear Programming

	Other Thrusts
	Conclusions
	Sieve
	PyLith
	Partial Geometries

