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Multicore Parallelism

Code Generation

Big Idea: Code Generation

Compile time examples
Dense linear algebra
Digital Signal Processing
FEM Accumulation/Assembly
Model coupling

Runtime support
Inspector-Executor
PGAS
Libraries, if written correctly, can be oblivious
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Multicore Parallelism

Spiral

Spiral Team, http://www.spiral.net
Uses an intermediate language, SPL, and then generates C
Works by circumscribing the algorithmic domain
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Multicore Parallelism

FLAME & FLASH
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Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

Algorithm-by-blocks on four T10 processors
CUBLAS sgemm on a single T10 processor

MKL sgemm on Intel Xeon QuadCore (4 cores)

Robert van de Geijn, http://www.cs.utexas.edu/users/flame
FLAME is an Algorithm-By-Blocks interface
FLASH/SuperMatrix is a runtime system
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Multicore Parallelism

Conclusions

Circumscribe algorithmic domain

Specialize to algorithm/hardware with code generation

Runtime decisions informed by high level information
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Multiprocessor Parallelism

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap
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Multiprocessor Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)
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Multiprocessor Parallelism

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . . )

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation
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Multiprocessor Parallelism

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix
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Multiprocessor Parallelism

Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD
Software interfaces do not adequately reflect this

PETSc DA is too specialized
Basically 1D methods applied to Cartesian products

PETSc Index Sets and VecScatters are too fine
User “does everything”, no abstraction

PETSc Linear Algebra (Vec & Mat) is too coarse
No access to the underlying connectivity structure

M. Knepley (ANL) Parallelism CSRI ’08 15 / 28



Multiprocessor Parallelism

Conclusions

Have concise, abstract, flexible interface for hierarchy

Need support for interaction with communication primitives

Specialized networks cannot currently implement sophisticated
tree algorithms
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Conclusion

Conclusions

Multicore performance should be improved with:
Better code generation and runtime tools

Algorithmic specificity

Multiprocess scalability should be improved with:
Explicitly hierarchical interfaces/libraries

Better interaction of algorithms with communication
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Questions and Answers

Question 15

Are there extensions that can be made to MPI so that MPI is more
amenable to writing scalable applications and to building

next-generation libraries and languages?
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Questions and Answers

Answer 15

Hierarchy is the key notion in nearly every optimal algorithm known.
For example, the solvers Multigrid (MG), Fast Multipole Method (FMM),

and FETI are all based upon a hierarchical decomposition of the
problem domain, which is then used to aggregate the effects of local,

usually linear, operations. Use of these algorithms, particularly in large
community codes, has been impeded by the high cost of

implementation. However, they are arguably key to the scalability and
efficiency of application codes on next-generation exascale

architectures. Simple hierarchical extensions to MPI could greatly
ease the implementation process, and result in much faster and more

scalable applications. For instance, a hierarchical relation between
communicators could be directly mapped onto tree algorithms, such as

FMM.
Moreover, modern implementations of MPI must reduce the data
stored per node in order to avoid explosion of local storage for the

implementation. Space efficient implementations of MPI would make
use of these same hierarchical structures. Exposing these relations to

the user will make them more aware of the cost certain operations
would impose, such as global operations over the communicator.

Finally, it might be possible to extend the hierarchy interface to
accomodate lower level extensions as well. For instance, the

programmer could interact with threads in a hybrid MPI+Thread
models through a lightweight “child communicator” and operations,

such as dynamic task scheduling, would be confined to this
communicator.
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Questions and Answers

Question 23

HPC is small compared to the commercial software market. What are
commercial leaders like Microsoft and Google doing to prepare for an

era of multicore/manycore parallelism, and how will this affect the
scientific HPC world?
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Questions and Answers

Answer 23

The most significant development in the commercial software market
for HPC is the recent practicality of outsourced computation. The

enabling technology for this development is exactly the same as that
which enabled the huge growth in portable numerical libraries over the

past two decades, namely abstraction of a large set of community
problems to a common algorithmic domain. With a common

algorithmic language, users can encode individual problems which can
then be run by any computation service.

The best known example of this paradigm in the Google MapReduce
implementation. However, other large players now offer much the
same service to any computing customer, for instance Yahoo with

Hadoop and Amazon with EC2. Outsourced computing greatly
expands the notion of computing facilities, today embodied by the

national centers for computation such as NERSC. This also opens the
door to centralized storage of and computation on large scientific data
sets. In essence, bringing computing to the data, rather than data to

the computing.
There is a great opportunity to expose the commonality between HPC

and business computations. For example, Rich Vuduc and
collaborators have shown that FMM, a scalable HPC solver, and k-NN,

used extensively in analysis of commercial data, have a common
structure which they term “generalized MapReduce”.
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Questions and Answers

Question 29

Will hierarchical problem decomposition (I call it fractal or self-similar
computing) get around the billion thread programming problem
(nobody is smart enough to develop billion thread codes that do

anything significant)?
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Questions and Answers

Answer 29

Yes, hierarchy is the key to better, more scalable algorithms. However,
without sufficient computation to occupy each thread, we will not make
efficient use of the machine. Migration to algorithms which have better
balance between computation and communication/memory bandwidth
will likely entail refactoring current applications and production of high
quality middleware encapsulating both the dependency structure for

computations and the task scheduling and dispatch procedure.
Machine hierarchies will also play a role in managing exascale
execution. We believe that specialized networks will be a key

component of scalable performance for these algorithms. For example,
the reduction network on BG/L allows Krylov methods to continue

scaling to thousands of processors while utilizing many dot products.
Extension of these networks to support scans with matrix operations

would enable an even wider array of scalable algorithms, such as FMM
or MG.
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Questions and Answers

A New Standard?

MPI provides a good interface for data parallel algorithms. However,
the extensions to task parallelism are confusing, incomplete, and

sometimes slow. OpenMP does provide an interface for task
parallelism. However, it does not abstract the main operations and
relegates much of the user control to environment variables, rather

than an API. Moreover, basic operations are absent. For example, we
would like the system to accept a computation DAG from the

application and use this to schedule taks dynamically at runtime. Thus,
we might consider an effort to produce a standard, similar to MPI,

which encapsulated task parallel algorithms.
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