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Short Introduction to FMM

FMM Applications for Geoscience

FMM can accelerate both integral and boundary element methods for:
Laplace
Stokes
Elasticity

Advantages
Mesh-free
O(N) time
GPU and distributed parallelism
Memory is greatly reduced in 3D for BEM
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Short Introduction to FMM

FMM Applications for Geoscience

Constant coefficient versions can precondition full equations:
Work by Dave May at ETH

Solve Stokes
Scale identity by viscosity magnitude

Advantages over MG
No grids have to be created
No iterative problems
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Short Introduction to FMM

Stokes Flow
Vorticity Formulation

In vorticity form, the Stokes equation conserves vorticity

∂ω

∂t
+ u · ∇ω =

Dω
Dt

= 0

and we can recover the velocity using the Biot-Savart law

u(x , t) =

∫
(∇×G)(x − x ′)ω(x ′, t)dx ′

=

∫
K(x − x ′)ω(x ′, t)dx ′ = (K ∗ ω)(x , t)

where G is the Green function for the Poisson equation.
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Short Introduction to FMM

Stokes Flow
RBF Expansion

We expand the vorticity

ω(x , t) ≈ ωσ(x , t) =
N∑
i

γiζσ(x , xi)

in a basis of radial functions

ζσ(x , y) =
1

2πσ2 exp
(
−|x − y |2

2σ2

)
resulting in the following kernel

Kσ(x) =
1

2π|x |2
(−x2, x1)

(
1− exp

(
−|x |

2

2σ2

))
.
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Short Introduction to FMM

Stokes Flow
N-body Formulation

Thus the velocity evaluation is an N-body summation:

uσ(x , t) =
N∑

j=1

γj Kσ(x − xj).
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Short Introduction to FMM

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

K (xi , xj)q(xj) (1)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques
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Short Introduction to FMM

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method

http://barbagroup.bu.edu/Barba_group/PetFMM.html

Leverages PETSc
Same open source license
Uses Sieve for parallelism

Extensible design in C++
Templated over the kernel
Templated over traversal for evaluation

MPI implementation
Novel parallel strategy for anisotropic/sparse particle distributions
PetFMM–A dynamically load-balancing parallel fast multipole library
86% efficient strong scaling on 64 procs

Example application using the Vortex Method for fluids
(coming soon) GPU implementation
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Short Introduction to FMM

PetFMM CPU Performance
Strong Scaling
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Short Introduction to FMM

PetFMM CPU Performance
Strong Scaling
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Short Introduction to FMM Spatial Decomposition

Spatial Decomposition

Pairs of boxes are divided into near and far :

Neighbors are treated as very near.
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Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level
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Multicore Interfaces
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Multicore Interfaces

Greengard & Gropp Analysis

For a shared memory machine,

T = a
N
P

+ b log4 P + c
N

BP
+ d

NB
P

+ e(N,P) (2)

1 Initialize multipole expansions, finest local expansions, final sum
2 Reduction bottleneck
3 Translation and Multipole-to-Local
4 Direct interaction
5 Low order terms

A Parallel Version of the Fast Multipole Method,
L. Greengard and W.D. Gropp, Comp. Math. Appl., 20(7), 1990.
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Multicore Interfaces GPU Programming
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Multicore Interfaces GPU Programming

GPU vs. CPU

A GPU looks like a big CPU with no virtual memory:
Many more hardware threads encourage concurrency
Makes bandwidth limitations even more acute
Shared memory is really a user-managed cache
Texture memory is also a specialized cache
User also manages a very small code segment
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Multicore Interfaces GPU Programming

GPU vs. CPU

Power usage can be very different:

Platform TF KW GB/s Price ($) GF/$ GF/W
IBM BG/P 14 40.00 57.0* 1,800,000 0.008 0.35
IBM BlueGene 280 5000 ??? 350,000,000 0.0008 0.55
NVIDIA C1060 1 0.19 102.0 1,475 0.680 5.35
ATI 9250 1 0.12 63.5 840 1.220 8.33

Table: Comparison of Supercomputing Hardware.
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Multicore Interfaces GPU Programming

GPU programming in General

What design ideas are useful?

How do we customize them for GPUs?

Can we show an example?
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks

Usually called modularity
Also called orthogonality or separation of concerns

Allows reduction of complexity
eXtreme programming

Just concerned with functionality
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks
GPU Differences

We now have to worry about code size!
16K total for NVIDIA 1060C board

Instructions can be a significant portion of memory usage

Have to split operations which logically belong together

Also allows aggregation of memory access
Computation can be regrouped

Needs tools to manage many small tasks
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Multicore Interfaces GPU Programming

Break Operations Into Small Chunks
Example

Reduction over a dataset
For instance, computation of finite element integrals

Break into computation and aggregation stages

Model this by:
Maximum flop rate stage
Bandwidth limited stage
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Multicore Interfaces GPU Programming

Reorder for Locality

Exploits “nearby” operations to aggregate computation
Can be temporal or spatial

Usually exploits a cache

Difficult to predict/model on a modern processor
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Multicore Interfaces GPU Programming

Reorder for Locality
GPU Differences

We have to manage our “cache” explicitly
The NVIDIA 1060C shared memory is only 16K for 32 threads

We must also manange “main memory” explicitly
Need to move data to/from GPU

Must be aware of limited precision when reordering

Can be readily modeled

Need tools for automatic data movement (marshalling)
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Multicore Interfaces GPU Programming

Reorder for Locality
Example

Data-Aware Work Queue
A work queue manages many small tasks

Dependencies are tracked with a DAG
Queue should manage a single computational phase (supertask)

Nodes also manage an input and output data segment
Specific classes can have known sizes
Can hold main memory locations for segments

Framework manages marshalling:
Allocates contiguous data segments
Calculates segment offsets for tasks
Marshalls (moves) data
Passes offsets to supertask execution

M. Knepley (UC) GPU GUCAS 27 / 44



Multicore Interfaces PetFMM
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Multicore Interfaces PetFMM

PetFMM-GPU

We break down sweep operations into Tasks

Cell loops are now tiled
Tasks are queued
We can form a DAG since we know the dependence structure
Scheduling is possible

This asynchronous interface can enable
Overlapping direct and multipole calculations
Reorganizing the downward sweep
Adaptive expansions
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Multicore Interfaces PetFMM

GPU Classes

Section
size() returns the number of values
getFiberDimension(cell) returns the number of cell values
restrict/update() retrieves and changes cell values
clone/extract() converts between CPU and GPU objects

Evaluator

initializeExpansions()

upwardSweep()

downwardSweepTransform()

downwardSweepTranslate()

evaluateBlobs()

evaluate()
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Multicore Interfaces PetFMM

GPU Classes

Section
size() returns the number of values
getFiberDimension(cell) returns the number of cell values
restrict/update() retrieves and changes cell values
clone/extract() converts between CPU and GPU objects

Task

Input data size
Output data size
Dependencies (future)

TaskQueue

Manages storage and offsets
evaluate()
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Multicore Interfaces PetFMM

Tasks

Upward Sweep Task

cell block
in cell and child centers, child multipole coeff

out cell multipole coeff
Downward Sweep Transform Task

cell block
in cell and interaction list centers, interaction list multipole coeff

out cell temp local coeff
Downward Sweep Expansion Task

cell block
in cell and parent centers, cell temp local coeff, parent local coeff

out cell local coeff
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Multicore Interfaces PetFMM

Tasks

Upward Sweep Task

cell block
in cell and child centers, child multipole coeff

out cell multipole coeff
Downward Sweep Reduce Task

cell block
in interaction list temp local coefficients

out cell temp local coefficients
Downward Sweep Expansion Task

cell block
in cell and parent centers, cell temp local coeff, parent local coeff

out cell local coeff
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Multicore Interfaces PetFMM

Transform Task

Shifts interaction cell multipole expansion to cell local expansion

Add a task for each interaction cell
All tasks with same origin are merged
Local memory:

2 (p+1) blockSize (Pascal) + 2 p blockSize (LE) + 2 p (ME)
8 terms 4416 bytes

17 terms 9096 bytes
Execution

1 block per ME
Each thread reads a section of ME and the MEcenter
Each thread computes an LE separately
Each thread writes LE to separate global location
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Multicore Interfaces PetFMM

Reduce Task

Add up local expansion contributions from each interaction cell

Add a task for each cell
Local memory:

2*terms (LE)
8 terms 64 bytes

17 terms 136 bytes
Execution

1 block per output LE
Each thread reads a section of input LE
Each thread adds to shared output LE
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Multicore Interfaces PetFMM

GPU Performance

In our C++ code on a CPU, M2L transforms take 85% of the time
This does vary depending on N

New M2L design was implemented using PyCUDA
Port to C++ is underway

We can now achieve 500 GF on the NVIDIA Tesla
Previous best performance we found was 100 GF

We will release PetFMM-GPU in the new year
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Multicore Interfaces PetFMM

CPU vs GPU

Sample run for 250,000 vortex particles in an 8 level tree

Section Time(s)
PyCUDA Laptop C++

Setup 0.55 0.00
InitExpansions 10.74 0.93
UpSweep 0.36 5.02
DownSweepEnqueue 0.09 —
GPUOverhead 2.97 —
DownSweepM2LTrns 2.08 363.21
DownSweepM2LRed 0.45 —
DownSweepL2L 0.36 4.11

Notice that once direct evaluation is moved to the GPU, Python can
easily outperform C++.
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Multicore Implementation
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Multicore Implementation Complexity Analysis
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Multicore Implementation Complexity Analysis

Greengard & Gropp Analysis

For a shared memory machine,

T = a
N
P

+ b log4 P + c
N

BP
+ d

NB
P

+ e(N,P) (3)

1 Initialize multipole expansions, finest local expansions, final sum
2 Reduction bottleneck
3 Translation and Multipole-to-Local
4 Direct interaction
5 Low order terms

A Parallel Version of the Fast Multipole Method,
L. Greengard and W.D. Gropp, Comp. Math. Appl., 20(7), 1990.

M. Knepley (UC) GPU GUCAS 38 / 44



Multicore Implementation Redesign
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Multicore Implementation Redesign

Question

What is the optimal number of particles per cell?

Greengard & Gropp
Minimize time and maximize parallel efficiency
Bopt =

√
c
d ≈ 30

Gumerov & Duraiswami
Follow GG, but also try to consider memory access
Bopt ≈ 91, but instead, they choose 320
Heavily weights the N2 part of the computation

We propose to cover up the bottleneck with direct evaluations

M. Knepley (UC) GPU GUCAS 40 / 44



Multicore Implementation Redesign

Problem
Missing Concurrency

We can balance time in direct evaluation with idle time for small grids.

The direct evaluation takes time d NB
p

Assume a single thread group works on the first L tree levels

Thus, we need

B ≥ b
d

4L+1p
N

(4)

in order to cover the bottleneck. In an upcoming publication, we show
that this bound holds for all modern processors.

M. Knepley (UC) GPU GUCAS 41 / 44



Multicore Implementation Redesign

Problem
Missing Bandwidth

We can restructure the M2L to conserve bandwidth

Matrix-free application of M2L

Reorganize traversal to minimize bandwidth

Old Pull in 27 interaction MEs, transform to LE, reduce

New Pull in cell ME, transform to 27 interaction LEs, partially reduce
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Multicore Implementation Redesign

Matrix-Free M2L

The M2L transformation applies the operator

Mij = −1i t−(i+j+1)
(

i + j
j

)
(5)

Notice that the t exponent is constant along perdiagonals. Thus we
divide by t at each perdiagonal
calculate the Cij by the recurrence along each perdiagonal
carefully formulate complex division (STL fails here)
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Conclusions

What’s Important?

Interface improvements bring concrete benefits

Facilitated code reuse
Serial code was largely reused
Test infrastructure completely reused

Opportunites for performance improvement
Overlapping computations
Better task scheduling

Expansion of capabilities
Could now combine distributed and multicore implementations
Could replace local expansions with cheaper alternatives
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