FEM automation of non-Newtonian fluids

Andy R Terrel

Texas Advanced Computing Center Univesity of Texas at Austin

European Seminar on Coupled Problems June 28 – July 2, 2010

ESCO 2010

1 / 27

- L. Ridgway Scott, Computer Science, University of Chicago
- Matthew G. Knepley, Computation Institute, University of Chicago
- Garth N. Wells, Mechanical Engineering, Cambridge University
- Robert C. Kirby, Mathematics, Texas Tech University

Software

- The FEniCS Project
- PETSc

- **3** Automated Solvers
- Polynomial Solvers

.∃ >

The Rheology Drugstore

- Rivlin Ericksen Order Fluids
- Oldroyd-B, Maxwell, PTT, Giesekus, Grmela
- Jeffreys
- Bingham
- Burger

∃ ▶ ∢

Mathematics Puzzle

Andy R Terrel (TACC)

≪ 置 ▶ 置 ∽ Q ⊂
 ESCO 2010 5 / 27

- Automate writing non Newtonian fluid simulations.
- Test stability of automated simulations.
- Automatically rewritten to improve robustness.

Outline

- 2 FEM Automation
- 3 Automated Solvers
- Polynomial Solvers

→ ∃ →

Basic equations

$$\nabla \cdot \boldsymbol{u} = \boldsymbol{0}, \tag{1}$$

$$\nabla \cdot \boldsymbol{T} = \boldsymbol{f} \tag{2}$$

$$\boldsymbol{T} \equiv \boldsymbol{I}\boldsymbol{p} + 2\eta \boldsymbol{D} + \boldsymbol{\tau},\tag{3}$$

$$\boldsymbol{D} \equiv \frac{1}{2} (\nabla \boldsymbol{u} + \nabla \boldsymbol{u}^{T})$$
(4)

• • • • • • • •

.∃ >

Oldroyd-B type models

- Models polymers as Maxwell solids.
- Characterized by a relaxation time λ .
- $\lambda \to \infty$ corresponds to Hookean elastic solid
- $\lambda \rightarrow 0$ corresponds to Newtonian fluid (au = 0, $\eta_p = 0$).

$$\lambda \, \overline{\boldsymbol{\tau}}^{\nabla} + \boldsymbol{\tau} - 2\eta_{\boldsymbol{\rho}} \boldsymbol{D} + \boldsymbol{g}(\boldsymbol{\tau}) = \boldsymbol{0}, \tag{5}$$

$$\stackrel{\nabla}{\tau} \equiv \frac{\partial \boldsymbol{\tau}}{\partial t} + \boldsymbol{u} \cdot \nabla \boldsymbol{\tau} - (\nabla \boldsymbol{u})^{T} \cdot \boldsymbol{\tau} - \boldsymbol{\tau} \cdot \nabla \boldsymbol{u}, \tag{6}$$

Describes Oldroyd-B, UC Maxwell, Phan-Than Tanner, Giesekus models.

Fluid model

Addressing hyperbolicity

[Kawahara Takeuchi 1977]

Andy R Terrel (TACC)

FEMAuto

ESCO 2010 10 / 27

< 市利

< ∃ > <

Addressing hyperbolicity

Option 1: Change the discretization

- Use Hermite elements [MarchalCrochet1986]
- Use Discontinuous Galerkin methods [FortinFortin1989]

Option 2: Stabilize the model

- Use a streamline/symmetric/regularized Galerkin approach. [GiraultScott2002, Amara et al 2005]
- Use SUPG on both velocity and stress. [BrookesHughes1982, MarchalCrochet1987]
- Streamline only the convected stress (SU). [MarchalCrochet1987]

Addressing hyperbolicity

Option 1: Change the discretization

- Use Hermite elements [MarchalCrochet1986]
- Use Discontinuous Galerkin methods [FortinFortin1989]

Option 2: Stabilize the model

- Use a streamline/symmetric/regularized Galerkin approach. [GiraultScott2002, Amara et al 2005]
- Use SUPG on both velocity and stress. [BrookesHughes1982, MarchalCrochet1987]
- Streamline only the convected stress (SU). [MarchalCrochet1987]

Fluid model

Preserving incompressibility

Fig. 2. Newtonian solution of the stick-slip problem along the x = 1 line. (a) velocity, velocity-pressure formulation. (b), (c) velocity and shear-stress, MIX1 formulation.

Preserving incompressibility

Early versions of coupling of stress with pressure and velocity violated incompressibility condition.

Option 1: Change the discretization

• Stress subelement of velocity and pressure [MarchalCrochet1987] Option 2: Change the model

$$\boldsymbol{\Sigma} = \boldsymbol{\tau} - 2\eta \boldsymbol{D} \tag{7}$$

- Elastic and viscous stress splitting [Ranjagopal et al 1990], consider **D** as separate unknown.
- Discrete elastic and viscous stress splitting [GuenetteFortin1995], use projection of *D*

< ∃ > <

Preserving incompressibility

Early versions of coupling of stress with pressure and velocity violated incompressibility condition.

Option 1: Change the discretization

• Stress subelement of velocity and pressure [MarchalCrochet1987] Option 2: Change the model

$$\boldsymbol{\Sigma} = \boldsymbol{\tau} - 2\eta \boldsymbol{D} \tag{7}$$

- Elastic and viscous stress splitting [Ranjagopal et al 1990], consider **D** as separate unknown.
- Discrete elastic and viscous stress splitting [GuenetteFortin1995], use projection of *D*

Each technique requires certain amount of flexibility in both rewriting the governing equations (M) and/or assembling the spatial discretization (S)

	Macro elements	EVSS	DEVSS
DG	S	M+S	M+S
SUPG	M+S	М	М
SU	M+S	М	М

Outline

1 Fluid model

- **2** FEM Automation
 - 3 Automated Solvers

4 Polynomial Solvers

< □ > < ---->

< ∃ >

The FEniCS Project

Started in 2003 as a collaboration between

- Chalmers
- University of Chicago
- Now spans
 - KTH
 - University of Oslo and Simula Research
 - University of Chicago
 - Cambridge University
 - TU Delft
- Focused on Automated Mathematical Modelling
- Allows researchers to easily and rapidly develop simulations

The FEniCS Project

ESCO 2010 14 / 27

The FEniCS Project

Andy R Terrel (TACC)

▶ 《 ≧ ▶ ≧ ∽ ९ ୯ ESCO 2010 14 / 27

Equation input

```
from ufl import *
# Element Definitions
stress = TensorElement(dfamily, cell, order-1)
velocity = VectorElement(family, cell, order)
pressure = FiniteElement(family, cell, order-1)
mixed = MixedElement([velocity,pressure,stress])
```

```
# Test and Trial function definitions
mTest = TestFunction(mixed)
v, q, phi = split(mTest)
mTrial = TrialFunction(mixed)
u, p, sigma = split(mTrial)
```

Equation input

Full bilinear form and residual f = a_con + a_stokes - L_con - L_stokes F = derivative(f, mF, mTest) J = derivative(F, mF, mTrial)

Outline

1 Fluid model

2 FEM Automation

3 Automated Solvers

Polynomial Solvers

< □ > < ---->

< ∃ >

FEniCS as library generator

- Automation is not enough, simulation still requires expert knowledge.
- Libraries give simple interface for this expertise.
- FEniCS-Apps examples
 - Ascot automated stability condition testing
 - CBC.Solve biomedical solvers
 - DiffSim coupled stochastic and deterministic problems
 - Rheagen -non-Newtonian fluid problems
 - DOLFWAVE surface water waves problems
 - FEniCS Plasticity standard plasticity
 - TriTetMesh high quality DOLFIN meshes
 - Unicorn unified continuum mechanics solver

4-1 planar flow example. First begin with a simple description of the fluid.

```
Mesh mesh("../data/planarcontraction.xml.gz");
Inlet inlet; Outlet outlet;
TopWall top_wall; SymmetryLine sym_line;
```

```
Inflow in(mesh); Outflow out(mesh);
NoSlipBC ns_bc(mesh); Constant sym_bc(mesh, 0.0);
```

Array< Function* > vel_bc_funcs(&ns_bc, &sym_bc, &in, &out);
Array< int > vel_comps(-1, 1, -1, -1);

Fluid fluid(mesh, vel_subdomains, vel_bc_funcs, vel_comps);

- * 個 * * 注 * * 注 * - 注

Then pass to generated library.

```
Grade2Solver grade2;
grade2.solve(fluid, zero);
```

```
StokesSolver stokes;
stokes.solve(fluid, zero);
```

```
OldroydBSolver oldroydb;
oldroydb.set("lam", 10);
NewtonSolver& ns = oldroydb.newton_solver();
ns.set("Newton maximum iterations", 20);
oldroydb.solve(fluid, zero);
```


イロト イ団ト イヨト イヨト

Automated Solvers

Journal Bearing Results

イロト イヨト イヨト イ

Journal Bearing Results

Function Space Discretization

Common Function Spaces

Element	Pros	Cons
Enriched $(P_1+B_3) \times P_1$	Cheap	div(u)!=0, very poor error
Stabilized $P_1 imes P_1$	Cheap	div(u)!=0, poor error
Taylor-Hood $P_2 \times P_1$	Cheap	div(u)!=0
Crouziex-Raviert	div(u)=0	low order, poor matrix conditioning
Scott-Vogelius	div(u)=0	high order only

Element wise operations

	MIX	MIX/SUPG	MIX/SU
Oldroyd-B	29543	90870	67230
UCM	29495	90794	67154
PTT	53750	91603	60197
	DEVSS	DEVSS/SUPG	DEVSS/SU
Oldroyd-B	29553	90880	58904
UCM	29505	90804	58828
PTT	53750	91603	60197

< A

Table: UCM method data from lid driven cavity

discretization	stabilization	eta	lam	Newton iterations
MIX	SU	100.0	1.0	18
MIX	SUPG	100.0	1.0	Х
MIX	None	100.0	1.0	18
DEVSS	SU	100.0	1.0	20
DEVSS	SUPG	100.0	1.0	Х
DEVSS	None	100.0	1.0	20

Table: Oldroyd-B method data from lid driven cavity

discretization	stabilization	eta	eta_e	lam	Newton iterations
MIX	SU	100.0	0.1	1.0	21
MIX	SUPG	100.0	0.1	1.0	22
MIX	None	100.0	0.1	1.0	Х
DEVSS	SU	100.0	0.1	1.0	Х
DEVSS	SUPG	100.0	0.1	1.0	Х
DEVSS	None	100.0	0.1	1.0	Х

Table: PTT method data from lid driven cavity

discretization	stabilization	eta	eta_e	lam	Newton iterations
MIX	SU	1.0	0.0	1.0	18
MIX	SUPG	1.0	0.0	1.0	Х
MIX	None	1.0	0.0	1.0	18
DEVSS	SU	1.0	0.0	1.0	20
DEVSS	SUPG	1.0	0.0	1.0	Х
DEVSS	None	1.0	0.0	1.0	20

Table: PTT method data from lid driven cavity

discretization	stabilization	eta	eta_e	lam	Newton iterations
MIX	SU	100.0	0.1	0.1	9
MIX	SUPG	100.0	0.1	0.1	Х
MIX	None	100.0	0.1	0.1	7
DEVSS	SU	100.0	0.1	0.1	Х
DEVSS	SUPG	100.0	0.1	0.1	Х
DEVSS	None	100.0	0.1	0.1	Х

Outline

1 Fluid model

- 2 FEM Automation
- 3 Automated Solvers
- Polynomial Solvers

∃ ►

Image: Image:

Polynomial Solvers

Homotopy Continuation Form a homotopy from a trivial start system to the solution

$$\mathcal{H}(x,t) = (1-t)Q(x) + tP(x) \tag{8}$$

Polynomial Solvers

A great opportunity exists for polynomial solvers

- Bézout's theorem track num equations * polynomial order
- Bernshtein theorem track num to volume of mixed space

Our prototype has

- FEM assembly routines for full non-linear tensor
- several small test problems
- connection to several polynomial solvers
 - Sage
 - PHCpack
 - Bertini

Our test cases

- Few linear forms
- $u^2 \Delta(u)$, testing for multiple solutions
- Navier-Stokes, Re 10, 500 dofs (small but exact)

	dofs	mixed volume	solutions found	time
TH P2XP1 5X5	122	1	1	70ms
TH P2XP1 6X6	197	1	1	95ms
TH P2XP1 8X8	401	1	1	930ms

Table: PHC data for stokes problem

	dofs	mixed volume	solutions found	time
P1 4X4	4	16	16	60ms
P1 6X6	16	65536	65536	5318s

Table: PHC data for nonlinear Laplacian problem

	dofs	mixed volume	solutions found	time
TH P2XP1 3X3	116	2 ²⁴	_	-

Table: PHC data for Navier-Stokes problem

Image: Image:

Conclusion

- FEM Automation enables flexiblity in simulation software
- Mathematics \Leftrightarrow Software Abstractions
- Difficultl non Newtonian Fluid simulations

Future Directions

- Full Approximation Schemes using Polynomial Solvers
- Automatic rewriting model equations with stability testing
- Formal derivation of assembly algorithms

References

• FEniCS Documentation:

http://www.fenics.org/wiki/FEniCS_Project

- Project documentation
- Users manuals
- Repositories, bug tracking
- Image gallery

• Publications:

http://www.fenics.org/wiki/Related_presentations_and_publications

• Research and publications that make use of FEniCS

• PETSc Documentation:

http://www.mcs.anl.gov/petsc/docs

- PETSc Users manual
- Manual pages
- Many hyperlinked examples
- FAQ, Troubleshooting info, installation info, etc.
- Publication using PETSc