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Library Developers

Biggest Changes

Multi-language programming is necessary,
for at least the near future

Interfaces will have to be fluid as hardware
changes rapidly.
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Library Developers Multiple Languages

Build System

Hardware detection during configure more difficult
Need a community solution

New language (CUDA, Cell Broadband Engine)
Necessitates new compiler
Source and library segregation
Interaction issues with other languages/compilers/libraries
There are some libraries (TBB)

Still not clear how to multiplex over different approaches
OpenCL is far from mature, and future is uncertain
#define is not enough to cope with different underlying builds

PETSc Configure System:
http://petsc.cs.iit.edu/petsc/BuildSystem
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Library Developers Multiple Languages

Interaction with MPI

There are several possible models:
One process controls a single GPU

No extra work
One process controls several GPUs

Need allocation strategy for kernels (multiple queues)
Several processes control one GPU

Need standard locking mechanism
Several processes control several GPUs

Just a combination of above, harder to optimize
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Library Developers Multiple Languages

Interaction with MPI

Do not anticipate GPU-to-GPU communication:
At least not in the short term
Requires hardware and/or OS changes

Partitioning will become more involved:
Multilevel

MPI Processes
Multicore Threads

Weighted
Different processing speeds
Different memory bandwidth
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Library Developers Multiple Languages

Performance and Memory Logging

On CPU can use standard packages
gprof, TAU, PAPI
PETSc defines an extensible logging system (stages)

For kernel, count manually
Might use source analysis on kernel
Hardware counters need better interface

Need better modeling
Very large number of interacting threads
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http://www.cs.utah.edu/dept/old/texinfo/as/gprof_toc.html
http://www.cs.uoregon.edu/research/tau
http://icl.cs.utk.edu/papi
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/docs/manualpages/Profiling/PetscLogStagePush.html


Library Developers Multiple Languages

Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
computation
memory usage
communication
bandwidth
achievable concurrency

This allows us to
verify the implementation
predict scaling behavior
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Library Developers Changing Interfaces

Robustness

In the face of rapid interface change, we need:

Version control
I recommend Mercurial, but Git is acceptable

Unit testing
I recommend CppUnit, but it is not parallel
Also need model-based performance tests

Regression testing
I recommend Buildbot
Performance regression is also important

Vigorous email support
Every day, many developers
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Library Developers Changing Interfaces

Robustness

In the face of rapid interface change, we need:

Version control methodology
I recommend Mercurial, but Git is acceptable

Dev Master Release 3.0
clone

Barry Clone

pu
sh

/pu
ll

Matt Clone

pu
sh

/p
ul

l

Sieve Work

pu
sh

/p
ul

l

Satish Clone

push/pull

Bugfix Clone

pu
sh

/p
ul

l

push
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Library Developers Changing Interfaces

Test Methodology

I see the testing proceeding in three phases:
1 Python kernel development with PyCUDA

Rapid prototyping
Easy development of benchmarking tools (petsc4py)

2 Transfer of kernels to C++ test harness
Replicate Python harness in C++, or
Use wrappers?

3 Integration into test applications
Regression tests
New support API
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Developer–User Interaction

What Will Change?

More control will pass from user to library/compiler

Kernels will be generated by the library
Ex Autogenerated FEM integration

Partitioning will be controlled by the library
Ex Partition for MPI and then for GPU

Communication will be managed by the library
Ex Marshalling to GPU

Assembly will be controlled by the algorithm
Ex Substructuring (PCFieldSplit)
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Developer–User Interaction API Changes

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)
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Developer–User Interaction API Changes

Hierarchical Interface

We encode topological structure as a
(nested) set of restrictions.

Hierarchy is encoded by a DAG (Sieve)

PETSc handles mappings and parallelism

Allows separation of
analytic from topological code
topological from algebraic code

Mesh Algorithms for PDE with Sieve I: Mesh Distribution,
Knepley and Karpeev, Sci. Prog., 17(3), 2009.
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Developer–User Interaction API Changes

DMDA Vectors

The DMDA object contains only layout (topology) information
All field data is contained in PETSc Vecs

Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector(DM da, Vec *gvec)

Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values
DMCreateLocalVector(DM da, Vec *lvec)
includes ghost and boundary values!
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Developer–User Interaction API Changes

Ghost Values

To evaluate a local function f (x), each process requires
its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring
processes

Local Node
Ghost Node
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Developer–User Interaction API Changes

DMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering
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Developer–User Interaction API Changes

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering
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Developer–User Interaction API Changes

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf )(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)
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Developer–User Interaction API Changes

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx ) {
f o r ( j = in fo−>ys ; j < in fo−>ys+ in fo−>ym; ++ j ) {

f o r ( i = in fo−>xs ; i < in fo−>xs+ in fo−>xm; ++ i ) {
u = x [ j ] [ i ] ;
i f ( i ==0 | | j ==0 | | i == M | | j == N) {

f [ j ] [ i ] = 2 . 0 * ( hydhx+hxdhy ) * u ; cont inue ;
}
u_xx = ( 2 . 0 * u − x [ j ] [ i −1] − x [ j ] [ i + 1 ] ) * hydhx ;
u_yy = ( 2 . 0 * u − x [ j −1][ i ] − x [ j + 1 ] [ i ] ) * hxdhy ;
f [ j ] [ i ] = u_xx + u_yy − hx * hy * lambda * exp ( u ) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c
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Developer–User Interaction API Changes

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac )(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

M. Knepley (UC) GPU NAIS 24 / 42



Developer–User Interaction API Changes

Bratu Jacobian Evaluation

JacLocal (DMDALocalInfo * in fo , PetscScalar * * x , Mat jac , vo id * c tx ) {
f o r ( j = in fo−>ys ; j < in fo−>ys + in fo−>ym; j ++) {

f o r ( i = in fo−>xs ; i < in fo−>xs + in fo−>xm; i ++) {
row . j = j ; row . i = i ;
i f ( i == 0 | | j == 0 | | i == mx−1 | | j == my−1) {

v [ 0 ] = 1 . 0 ;
Mat SetVa luesStenc i l ( jac ,1 ,& row ,1 ,& row , v , INSERT_VALUES ) ;

} e lse {
v [ 0 ] = −(hx / hy ) ; co l [ 0 ] . j = j −1; co l [ 0 ] . i = i ;
v [ 1 ] = −(hy / hx ) ; co l [ 1 ] . j = j ; co l [ 1 ] . i = i −1;
v [ 2 ] = 2 . 0 * ( hy / hx+hx / hy )

− hx * hy * lambda * PetscExpScalar ( x [ j ] [ i ] ) ;
v [ 3 ] = −(hy / hx ) ; co l [ 3 ] . j = j ; co l [ 3 ] . i = i +1;
v [ 4 ] = −(hx / hy ) ; co l [ 4 ] . j = j +1; co l [ 4 ] . i = i ;
Mat SetVa luesStenc i l ( jac ,1 ,& row ,5 , col , v , INSERT_VALUES ) ;

} } } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c
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Developer–User Interaction API Changes

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)
Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().
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Developer–User Interaction API Changes

Mesh Interfaces

Global
Vec

Unique storage
Global numbering
For solver interaction
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Developer–User Interaction API Changes

Mesh Interfaces

Local
Section

Redundant storage
For accumulation, more general fusion interface
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Developer–User Interaction API Changes

Mesh Interfaces

Cell
Accesses as raw double [] from restrict()

Use update() to get back to local storage
Redundant storage
For user interaction

M. Knepley (UC) GPU NAIS 27 / 42



Developer–User Interaction API Changes

Mesh Interfaces

Cell
Accesses as raw double [] from restrict()

Use update() to get back to local storage
Redundant storage
For user interaction

M. Knepley (UC) GPU NAIS 27 / 42



Developer–User Interaction API Changes

GPU Interaction

Analytic routines become GPU kernels.

Kernels can be
FD Stencils
FEM and FV Integrals
Domain Cells for Integral Equations

Storage can be reached by appropriate restrict() call
Usually includes the closure
Building block for marshalling
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Developer–User Interaction API Changes

GPU programming in General

What design ideas are useful?

How do we customize them for GPUs?

Can we show an example?
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Developer–User Interaction API Changes

Reorder for Locality

Exploits “nearby” operations to aggregate computation
Can be temporal or spatial

Usually exploits a cache

Difficult to predict/model on a modern processor
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Developer–User Interaction API Changes

Reorder for Locality
GPU Differences

We have to manage our “cache” explicitly
The NVIDIA 1060C shared memory is only 16K for 32 threads

We must also manange “main memory” explicitly
Need to move data to/from GPU

Must be aware of limited precision when reordering

Can be readily modeled

Need tools for automatic data movement (marshalling)
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Developer–User Interaction API Changes

Reorder for Locality
Example

Data-Aware Work Queue
A work queue manages many small tasks

Dependencies are tracked with a DAG
Queue should manage a single computational phase (supertask)

Nodes also manage an input and output data segment
Specific classes can have known sizes
Can hold main memory locations for segments

Framework manages marshalling:
Allocates contiguous data segments
Calculates segment offsets for tasks
Marshalls (moves) data
Passes offsets to supertask execution
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Developer–User Interaction API Changes

MultiPhysics Paradigm

The PCFieldSplit interface
extracts functions/operators corresponding to each physics

VecScatter and MatGetSubMatrix() for efficiency

assemble functions/operators over all physics
Generalizes LocalToGlobal() mapping

is composable with ANY PETSc solver and preconditioner
This can be done recursively

FieldSplit provides the buildings blocks
for multiphysics preconditioning.
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Developer–User Interaction API Changes

MultiPhysics Paradigm

The PCFieldSplit interface
extracts functions/operators corresponding to each physics

VecScatter and MatGetSubMatrix() for efficiency

assemble functions/operators over all physics
Generalizes LocalToGlobal() mapping

is composable with ANY PETSc solver and preconditioner
This can be done recursively

Notice that this works in exactly the same manner as
multiple resolutions (MG, FMM, Wavelets)

multiple domains (Domain Decomposition)

multiple dimensions (ADI)
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Developer–User Interaction API Changes

Preconditioning

Several varieties of preconditioners can be supported:
Block Jacobi or Block Gauss-Siedel
Schur complement
Block ILU (approximate coupling and Schur complement)
Dave May’s implementation of Elman-Wathen type PCs

which only require actions of individual operator blocks

Notice also that we may have any combination of
“canned” PCs (ILU, AMG)
PCs needing special information (MG, FMM)
custom PCs (physics-based preconditioning, Born approximation)

since we have access to an algebraic interface
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Developer–User Interaction Code Generation

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

User can build arbitrary elements specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project, as is the PETSc Sieve module
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Developer–User Interaction Code Generation

FIAT Integration

The quadrature.fiat file contains:
An element (usually a family and degree) defined by FIAT
A quadrature rule

It is run
automatically by make, or
independently by the user

It can take arguments
-element_family and -element_order, or
make takes variables ELEMENT and ORDER

Then make produces bratu_quadrature.h with:
Quadrature points and weights
Basis function and derivative evaluations at the quadrature points
Integration against dual basis functions over the cell
Local dofs for Section allocation
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Developer–User Interaction Code Generation

FFC

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

a((τ,w), (σ, u)) = L((τ,w)) ∀(τ,w) ∈ V

where

a((τ,w), (σ, u)) =

∫
Ω
τσ −∇ · τu + w∇ · u dx

L((τ,w)) =

∫
Ω

wf dx
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Developer–User Interaction Code Generation

FFC
Mixed Poisson

shape = " t r i a n g l e "

BDM1 = Fin i teE lement ( " Brezzi−Douglas−Mar in i " , shape , 1 )
DG0 = Fin i teE lement ( " Discont inuous Lagrange " , shape , 0 )

element = BDM1 + DG0
( tau , w) = TestFunct ions ( element )
( sigma , u ) = T r i a l F u n c t i o n s ( element )

a = ( dot ( tau , sigma ) − d iv ( tau ) * u + w* d iv ( sigma ) ) * dx

f = Funct ion (DG0)
L = w* f * dx
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Developer–User Interaction Code Generation

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:

a(v ,u) = L(v) ∀v ∈ V

where

a(v ,u) =

∫
Ω
∇u · ∇v dx

+
∑

S

∫
S
− < ∇v > ·[[u]]n − [[v ]]n· < ∇u > −(α/h)vu dS

+

∫
∂Ω
−∇v · [[u]]n − [[v ]]n · ∇u − (γ/h)vu ds

L(v) =

∫
Ω

vf dx
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Developer–User Interaction Code Generation

FFC
DG Poisson

DG1 = Fin i teE lement ( " Discont inuous Lagrange " , shape , 1 )
v = TestFunct ions (DG1)
u = T r i a l F u n c t i o n s (DG1)
f = Funct ion (DG1)
g = Funct ion (DG1)
n = FacetNormal ( " t r i a n g l e " )
h = MeshSize ( " t r i a n g l e " )
a = dot ( grad ( v ) , grad ( u ) ) * dx
− dot ( avg ( grad ( v ) ) , jump ( u , n ) ) * dS
− dot ( jump ( v , n ) , avg ( grad ( u ) ) ) * dS
+ alpha / h* dot ( jump ( v , n ) + jump ( u , n ) ) * dS
− dot ( grad ( v ) , jump ( u , n ) ) * ds
− dot ( jump ( v , n ) , grad ( u ) ) * ds
+ gamma/ h* v *u* ds

L = v * f * dx + v *g* ds
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Conclusions

What Is Most Important?

Multiple Languages will be Necessary
Build systems need the most work

Users will give up more Control
Move toward a hierarchical paradigm

Change alone is unchanging
— Heraclitus, 544–483 BC
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