Roundtable: What is Wrong with Automatic Mathematical Modeling

Matthew G Knepley

Mathematics and Computer Science Division Argonne National Laboratory

March 5, 2007 Workshop on Automating the Development of Scientific Computing Software LSU, Baton Rouge, LA

FEniCS'08 LSU 1 / 11

- Can we establish good interfaces for all levels of the hierarchy?
- Do we need language extensions for more sophisticated problems?
- What information is required from each component?
- Is inter-language programming effective?
- Can we develop a general framework for boundary conditions?

Outline

- 2 Language Issues
- Boundary Conditions

- 一司

Interface Hierarchy

Coupling

- Semi-implicit
- Dynamic generation of Jacobian blocks
- Domain decomposition
 - Parallelism
 - BDDC, FETI
 - Assembly

Interfaces

Necessary Information

- Discretization (FIAT)
 - $\# \text{ of } dof/dimension}$
 - Jet tabulation
 - Action of dual basis
 - Dof kind
- Functions (Section)
 - restrict/update
 - complete
- Topology (Sieve)
 - cone/support
 - closure/star
 - meet/join

- Equations (FFC)
 - Unknowns
 - Tensors
 - Knowns
 - Interpolants
 - Arbitrary functions
 - Arithmetic, Matrix arithmetic
 - Derivatives
 - div, grad, curl
 - exterior derivative/coderivative
 - Domain
 - Link mesh to equation
 - Boundary conditions
 - Operator for Dirichlet condition?
 - jump, avg

Outline

- 2 Language Issues
- Boundary Conditions

Language Extensions

Optimization

• min, s.t.

Sensitivity

Control

Inter-language Programming

I am now convinced that this causes more problems than it solves:

- Debugging
- Build systems
- Passing complex structures (objects)
- Top-level control

Outline

Interfaces

- 2 Language Issues
- 3 Boundary Conditions

Dirichlet Values

- Topological boundary is marked during generation
- Cells bordering boundary are marked using markBoundaryCells()
- To set values:
 - Loop over boundary cells
 - 2 Loop over the element closure
 - **③** For each boundary point *i*, apply the functional N_i to the function *g*
- The functionals are generated with the quadrature information
- Section allocation applies Dirichlet conditions automatically
 - Values are stored in the Section
 - restrict() behaves normally, update() ignores constraints

Boundary Condition Implementation

- \bullet Associate a transform ${\mathcal T}$ to each sieve point
 - Could extend to the cell closure
- \bullet Constrained points also have a rotation ${\cal C}$
 - Rotates to frame in which constrained dof are last
 - Easy to mix fields on a point
 - Applies for all values (get rotated equations)
- update() ignores constrained values
 - restrict() always retrieves all data