Scientific Computing from a Library Point-of-View

Matthew Knepley

Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center

Department of Mathematics Széchenyi István University Győr, Hungary November 20, 2012

design/analysis of algorithms for simulation & data analysis

design/analysis of algorithms for simulation & data analysis

design/analysis of algorithms for simulation & data analysis

design/analysis of algorithms for simulation & data analysis

Outline

2 Mathematics

Győr '12

The best way to create robust, efficient and scalable, maintainable scientific codes,

is to use libraries.

M. Knepley (UC)

Győr '12 5 / 35

The best way to create robust, efficient and scalable. maintainable scientific codes. is to use libraries.

Gvőr '12

The best way to create robust, efficient and scalable, maintainable scientific codes,

is to use libraries.

M. Knepley (UC)

Gvőr '12

The best way to create robust, efficient and scalable. maintainable scientific codes, is to use libraries.

Gvőr '12

Hides Hardware Details

MPI does for this for machines and networks

Hide Implementation Complexity PETSc does for this Matrices and Krylov Solvers

Accumulates Best Practices

• PETSc defaults to classical Gram-Schmidt orthogonalization with selective reorthogonalization

Hides Hardware Details

MPI does for this for machines and networks

Hide Implementation Complexity PETSc does for this Matrices and Krylov Solvers

Accumulates Best Practices

• PETSc defaults to classical Gram-Schmidt orthogonalization with selective reorthogonalization

Hides Hardware Details

MPI does for this for machines and networks

• Hide Implementation Complexity

PETSc does for this Matrices and Krylov Solvers

Accumulates Best Practices

• PETSc defaults to classical Gram-Schmidt orthogonalization with selective reorthogonalization

Improvement without code changes

• PETSc time integration library has expanded rapidly, e.g. IMEX

Extensiblity

- Q: Why is it not just good enough to make a fantastic working code?
- A: Extensibility Users need the ability to change your approach to fit their problem.
- PETSc now does Multigrid+Block Solvers
- PETSc now does Isogeometric Analysis

・ 同 ト ・ ヨ ト ・ ヨ

Improvement without code changes

• PETSc time integration library has expanded rapidly, e.g. IMEX

- Q: Why is it not just good enough to make a fantastic working code?
- A: Extensibility Users need the ability to change your approach to fit their problem.
- PETSc now does Multigrid+Block Solvers
- PETSc now does Isogeometric Analysis

Improvement without code changes

• PETSc time integration library has expanded rapidly, e.g. IMEX

- Q: Why is it not just good enough to make a fantastic working code?
- A: Extensibility Users need the ability to change your approach to fit their problem.
- PETSc now does Multigrid+Block Solvers
- PETSc now does Isogeometric Analysis

Improvement without code changes

• PETSc time integration library has expanded rapidly, e.g. IMEX

- Q: Why is it not just good enough to make a fantastic working code?
- A: Extensibility Users need the ability to change your approach to fit their problem.
- PETSc now does Multigrid+Block Solvers
- PETSc now does Isogeometric Analysis

Improvement without code changes

• PETSc time integration library has expanded rapidly, e.g. IMEX

- Q: Why is it not just good enough to make a fantastic working code?
- A: Extensibility Users need the ability to change your approach to fit their problem.
- PETSc now does Multigrid+Block Solvers
- PETSc now does Isogeometric Analysis

Improvement without code changes

• PETSc time integration library has expanded rapidly, e.g. IMEX

- Q: Why is it not just good enough to make a fantastic working code?
- A: Extensibility Users need the ability to change your approach to fit their problem.
- PETSc now does Multigrid+Block Solvers
- PETSc now does Isogeometric Analysis

Early Numerical Libraries

 71 Handbook for Automatic Computation: Linear Algebra, J. H. Wilkinson and C. Reinch
 73 EISPACK, Brian Smith et.al.

79 BLAS, Lawson, Hanson, Kincaid and Krogh

- 90 LAPACK, many contributors
- 91 PETSc, Gropp and Smith

All of these packages had their genesis at Argonne National Laboratory/MCS

Gvőr '12

In the next 10 years, every machine will

A (10) F (10)

In the next 10 years, every machine will at least have multicores, 2–16 cores,

In the next 10 years, every machine will at least have multicores, 2–16 cores,

Intel Nehalem Beckton

AMD Interlagos

In the next 10 years, every machine will probably have manycores, 100–1000 cores.

- E 🕨

In the next 10 years, every machine will probably have manycores, 100–1000 cores.

Intel MIC

M. Knepley (UC)

Outline

- E - N

Strategy: Define a new Vec implementation

- Uses Thrust for data storage and operations on GPU
- Supports full PETSc Vec interface
- Inherits PETSc scalar type
- Can be activated at runtime, -vec_type cuda
- PETSc provides memory coherence mechanism

Also define new Mat implementations

- Uses Cusp for data storage and operations on GPU
- Supports full PETSc Mat interface, some ops on CPU
- Can be activated at runtime, -mat_type aijcuda
- Notice that parallel matvec necessitates off-GPU data transfer

Gvőr '12

Solvers come for Free

Preliminary Implementation of PETSc Using GPU, Minden, Smith, Knepley, 2010

- All linear algebra types work with solvers
- Entire solve can take place on the GPU
 - Only communicate scalars back to CPU
- GPU communication cost could be amortized over several solves
- Preconditioners are a problem
 - Cusp has a promising AMG

Gvőr '12

Example PFLOTRAN

Flow Solver $32 \times 32 \times 32$ grid

Routine	Time (s)	MFlops	MFlops/s
CPU			
KSPSolve	8.3167	4370	526
MatMult	1.5031	769	512
GPU			
KSPSolve	1.6382	4500	2745
MatMult	0.3554	830	2337

P. Lichtner, G. Hammond, R. Mills, B. Phillip

Győr '12 13 / 35

Example Driven Cavity Velocity-Vorticity with Multigrid

```
ex50 -da vec type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100
                                  # Set grid size
-pc_type none -pc_mq_levels 1
                                  # Setup solver
-preload off -cuda_synchronize
                                  # Setup run
-log summary
```

イロト イ団ト イヨト イヨト

Outline

-∢ ∃ ▶

Győr '12

Interface Maturity

Some parts of PDE computation are less mature

Linear Algebra

- One universal interface
 - BLAS, PETSc, Trilinos, FLAME, Elemental
- Entire problem can be phrased in the interface
 - Ax = b
- Standalone component

- Many Interfaces
 - FEniCS, FreeFEM++, DUNE, dealll, Fluent
- Problem definition requires general code
 - Physics, boundary conditions
- Crucial interaction with other simulation components
 - Discretization, mesh/geometry,

Interface Maturity

Some parts of PDE computation are less mature

Linear Algebra

- One universal interface
 - BLAS, PETSc, Trilinos, FLAME, Elemental
- Entire problem can be phrased in the interface
 - Ax = b
- Standalone component

- Many Interfaces
 - FEniCS, FreeFEM++, DUNE, dealII, Fluent
- Problem definition requires general code
 - Physics, boundary conditions
- Crucial interaction with other simulation components
 - Discretization, mesh/geometry,

Some parts of PDE computation are less mature

Linear Algebra

- One universal interface
 - BLAS, PETSc, Trilinos, FLAME, Elemental
- Entire problem can be phrased in the interface
 - Ax = b
- Standalone component

- Many Interfaces
 - FEniCS, FreeFEM++, DUNE, deallI, Fluent
- Problem definition requires general code
 - Physics, boundary conditions
- Crucial interaction with other simulation components
 - Discretization, mesh/geometry,

Interface Maturity

Some parts of PDE computation are less mature

Linear Algebra

- One universal interface
 - BLAS, PETSc, Trilinos, FLAME, Elemental
- Entire problem can be phrased in the interface
 - Ax = b
- Standalone component

- Many Interfaces
 - FEniCS, FreeFEM++, DUNE, deallI, Fluent
- Problem definition requires general code
 - Physics, boundary conditions
- Crucial interaction with other simulation components
 - Discretization, mesh/geometry,
FEM Integration

FEM Integration Model Proposed by Jed Brown

J

We consider weak forms dependent only on fields and gradients,

$$\int_{\Omega} \phi \cdot f_0(u, \nabla u) + \nabla \phi : \vec{f}_1(u, \nabla u) = 0.$$
(1)

A D M A A A M M

Discretizing we have

$$\sum_{e} \mathcal{E}_{e}^{T} \left[B^{T} W^{q} f_{0}(u^{q}, \nabla u^{q}) + \sum_{k} D_{k}^{T} W^{q} \vec{f}_{1}^{k}(u^{q}, \nabla u^{q}) \right] = 0 \qquad (2)$$

- *f_n* pointwise physics functions
- *u^q* field at a quad point
- W^q diagonal matrix of quad weights
- *B,D* basis function matrices which reduce over quad points
- \mathcal{E} assembly operator

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input		Automation		Solver Input
domain	==	Triangle/TetGen	==>	Mesh
element	==	FIAT	==>	Tabulation
f _n	==	Generic Evaluation	==>	Residual

User provides point-wise physics functions
 Loops are done in batches, remainder cells handled by CPU
 One batch integration method with compile-time sizes

 CPU, multicore CPU, MIC, GPU, etc.

PETSc ex52 is a single-field example

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input		Automation		Solver Input
domain	==	Triangle/TetGen	==>	Mesh
element	==	FIAT	==>	Tabulation
f _n	==	Generic Evaluation	==>	Residual

User provides point-wise physics functions

Loops are done in batches, remainder cells handled by CPU

- One batch integration method with compile-time sizes
 CPU, multicore CPU, MIC, GPU, etc.
- PETSc ex52 is a single-field example

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input		Automation		Solver Input
domain	==	Triangle/TetGen	==>	Mesh
element	==	FIAT	==>	Tabulation
f _n	==	Generic Evaluation	==>	Residual

User provides point-wise physics functions

• Loops are done in batches, remainder cells handled by CPU

- One batch integration method with compile-time sizes
 CPU, multicore CPU, MIC, GPU, etc.
- PETSc ex52 is a single-field example

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input		Automation		Solver Input
domain	==	Triangle/TetGen	==>	Mesh
element	==	FIAT	==>	Tabulation
f _n	==	Generic Evaluation	==>	Residual

- User provides point-wise physics functions
- Loops are done in batches, remainder cells handled by CPU
- One batch integration method with compile-time sizes
 - CPU, multicore CPU, MIC, GPU, etc.
- PETSc ex52 is a single-field example

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input		Automation		Solver Input
domain	==	Triangle/TetGen	==>	Mesh
element	==	FIAT	==>	Tabulation
f _n	==	Generic Evaluation	==>	Residual

- User provides point-wise physics functions
- Loops are done in batches, remainder cells handled by CPU
- One batch integration method with compile-time sizes
 - CPU, multicore CPU, MIC, GPU, etc.
- PETSc ex52 is a single-field example

2D P₁ Laplacian Performance

2D P₁ Laplacian Performance

2D P₁ Laplacian Performance Configuring PETSc

\$PETSC_DIR/configure

-download-triangle -download-chaco

- -download-scientificpython -download-fiat -download-generator -with-cuda
- -with-cudac='nvcc -m64' -with-cuda-arch=sm_10
- -with-cusp-dir=/PETSc3/multicore/cusp
- -with-thrust-dir=/PETSc3/multicore/thrust
- -with-cuda-only
- -with-precision=single

→ ∃ →

Gvőr '12

2D P₁ Laplacian Performance Configuring PETSc

\$PETSC_DIR/configure

- -download-triangle -download-chaco
- -download-scientificpython -download-fiat -download-generator

-with-cuda

- -with-cudac='nvcc -m64' -with-cuda-arch=sm_10
- -with-cusp-dir=/PETSc3/multicore/cusp
- -with-thrust-dir=/PETSc3/multicore/thrust
- -with-cuda-only

-with-precision=single

.

Gvőr '12

FEM Integration

2D P_1 Laplacian Performance **Configuring PETSc**

\$PETSC DIR/configure

- -download-triangle -download-chaco
- -download-scientificpython -download-fiat -download-generator -with-cuda

2D P₁ Laplacian Performance Configuring PETSc

\$PETSC_DIR/configure

- -download-triangle -download-chaco
- -download-scientificpython -download-fiat -download-generator
- -with-cuda
- -with-cudac='nvcc -m64' -with-cuda-arch=sm_10
- -with-cusp-dir=/PETSc3/multicore/cusp
- -with-thrust-dir=/PETSc3/multicore/thrust
- -with-cuda-only
- -with-precision=single

.

Gvőr '12

2D P₁ Laplacian Performance Configuring PETSc

\$PETSC_DIR/configure

- -download-triangle -download-chaco
- -download-scientificpython -download-fiat -download-generator
- -with-cuda
- -with-cudac='nvcc -m64' -with-cuda-arch=sm_10
- -with-cusp-dir=/PETSc3/multicore/cusp
- -with-thrust-dir=/PETSc3/multicore/thrust
- -with-cuda-only
- -with-precision=single

.

FEM Integration

2D P_1 Laplacian Performance **Configuring PETSc**

\$PETSC DIR/configure

- -download-triangle -download-chaco
- -download-scientificpython -download-fiat -download-generator -with-cuda

-with-cuda-only

FEM Integration

2D P_1 Laplacian Performance **Configuring PETSc**

\$PETSC DIR/configure

- -download-triangle -download-chaco
- -download-scientificpython -download-fiat -download-generator -with-cuda

- -with-precision=single

Gvőr '12

2D P₁ Laplacian Performance Running the example

\$PETSC_DIR/src/benchmarks/benchmarkExample.py

- --daemon --num 52 DMComplex
- --events IntegBatchCPU IntegBatchGPU IntegGPUOnly
- --refine 0.0625 0.00625 0.000625 0.0000625 0.00003125 0.000015625 0.0000078125 0.00000390625
- --order=1 --blockExp 4

CPU='dm_view show_residual=0 compute_function batch'

GPU='dm_view show_residual=0 compute_function batch gpu gpu_batches=8'

- E 🕨

Gvőr '12

Computational Science

FEM Integration

2D P₁ Rate-of-Strain Performance

Reaches 100 GF/s by 100K elements

イロト イ理ト イヨト イヨト

2D P₁ Rate-of-Strain Performance

\$PETSC_DIR/src/benchmarks/benchmarkExample.py

- --daemon --num 52 DMComplex
- --events IntegBatchCPU IntegBatchGPU IntegGPUOnly
- --refine 0.0625 0.00625 0.000625 0.0000625 0.00003125 0.000015625 0.0000078125 0.00000390625
- --operator=elasticity --order=1 --blockExp 4

CPU='dm_view op_type=elasticity show_residual=0 compute_function batch'

GPU='dm_view op_type=elasticity show_residual=0 compute_function batch gpu gpu_batches=8'

General Strategy

- Vectorize
- Overdecompose
- Cover memory latency with computation
 - Multiple cycles of writes in the kernel
- User must relinquish control of the layout

Finite Element Integration on GPUs, ACM TOMS,

Andy Terrel and Matthew Knepley.

Finite Element Integration with Quadrature on the GPU, to SISC, Robert Kirby, Matthew Knepley, Andreas Klöckner, and Andy Terrel.

Outline

Győr '12

Mathematics

Composable System for Scalable Preconditioners Stokes and KKT

The saddle-point matrix is a canonical form for handling constraints:

- Incompressibility
- Contact

(b)

- Multi-constituent phase-field models
- Optimal control
- PDE constrained optimization

10 8 kg yr

Gvőr '12

27/35

200 km

There are *many* approaches for saddle-point problems:

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

There are *many* approaches for saddle-point problems:

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

There are *many* approaches for saddle-point problems:

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

Gvőr '12

28/35

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

a Gauss-Siedel iteration between blocks of (\mathbf{u}, p) and T, and a full Schur complement factorization for \mathbf{u} and p.

There are *many* approaches for saddle-point problems:

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

an upper triangular Schur complement factorization for \mathbf{u} and p, and geometric multigrid for the \mathbf{u} block.

There are *many* approaches for saddle-point problems:

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

algebraic multigrid for the full (\mathbf{u}, p) system, using a block triangular Gauss-Siedel smoother on each level, and use identity for the (p, p) block.

Approach for efficient, robust, scalable linear solvers

Need solvers to be:

- Composable: separately developed solvers may be easily combined, by non-experts, to form a more powerful solver
- Nested: outer solvers call inner solvers
- Hierarchical: outer solvers may iterate over all variables for a global problem, while nested inner solvers handle smaller subsets of physics, smaller physical subdomains, or coarser meshes
- Extensible: users can easily customize/extend

Composable Linear Solvers for Multiphysics, Brown, Knepley, May, McInnes, Smith, IPDPS, 2012.

< ロ > < 同 > < 回 > < 回 >

Gvőr '12

The common block preconditioners for Stokes require only options:

The Stokes System $\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix}$

Gvőr '12

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type additive
- -fieldsplit_0_pc_type ml
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

Gvőr '12

30/35

Cohouet & Chabard, Some fast 3D finite element solvers for the generalized Stokes problem, 1988.

Mathematics

Stokes example

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type multiplic
- -fieldsplit_0_pc_type hypre
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type jacobi
- -fieldsplit_1_ksp_type preonly

Elman, Multigrid and Krylov subspace methods for the discrete Stokes equations, 1994.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

イロン イ理 とくほ とくほ とう

-pc_fieldsplit_schur_factorization_type diag

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

Olshanskii, Peters, and Reusken, <u>Uniform preconditioners for a parameter dependent saddle point</u> problem with application to generalized Stokes interface equations, 2006.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

イロト イ団ト イヨト イヨト

-pc_fieldsplit_schur_factorization_type lower

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type none
- -fieldsplit_1_ksp_type minres

イロト イ団ト イヨト イヨト

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

The common block preconditioners for Stokes require only options:

- -pc_type fieldsplit
- -pc_field_split_type schur
- -fieldsplit_0_pc_type gamg
- -fieldsplit_0_ksp_type preonly
- -fieldsplit_1_pc_type lsc
- -fieldsplit_1_ksp_type minres

-pc_fieldsplit_schur_factorization_type upper

May and Moresi, <u>Preconditioned iterative methods for Stokes flow problems arising in</u> computational geodynamics, 2008.

Kay, Loghin and Wathen, <u>A Preconditioner for the Steady-State N-S Equations</u>, 2002. Elman, Howle, Shadid, Shuttleworth, and Tuminaro, <u>Block preconditioners based on approximate</u> commutators, 2006.

The common block preconditioners for Stokes require only options:

-pc_type fieldsplit

-pc_field_split_type schur

-pc_fieldsplit_schur_factorization_type full

.

Programming with Options

ex55: Allen-Cahn problem in 2D

- constant mobility
- triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65 -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition user -mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly -mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd -mg_levels_fieldsplit_0_ksp_type preonly -mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5 -mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin -snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11 -mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ - 三 - の へ ()
ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
 -da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Gvőr '12

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
 -da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

イロト イ団ト イヨト イヨト

Gvőr '12

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

```
./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
  -da_grid_x 65 -da_grid_y 65
```

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

イロト イ団ト イヨト イヨト

Gvőr '12

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

```
./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
  -da_grid_x 65 -da_grid_y 65
```

Use the Galerkin process to compute the coarse grid operators

```
-pc_mg_galerkin
```

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

イロト イ押ト イヨト イヨト

Gvőr '12

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

・ロト ・四ト ・ヨト ・ヨト

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

イロン イ理 とくさ とくさ とうしょう

Gvőr '12

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point -mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_type schur -mg_levels_pc_fieldsplit_factorization_type full -mg_levels_pc_fieldsplit_schur_precondition diag

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

Schur complement action: Use only the lower diagonal part of A00

```
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
```

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

Gvőr '12

• analysis (discretization)

topology (mesh)

• algebra (solver)

so that **non-experts** can produce powerful simulations with modern algorithms.

Jed Brown discusses this interplay in the context of multilevel solvers

- analysis (discretization)
- topology (mesh)
- algebra (solver)

so that non-experts can produce powerful simulations with modern algorithms.

Jed Brown discusses this interplay in the context of multilevel solvers

- analysis (discretization)
- topology (mesh)
- algebra (solver)

so that non-experts can produce powerful simulations with modern algorithms.

Jed Brown discusses this interplay in the context of multilevel solvers

- analysis (discretization)
- topology (mesh)
- algebra (solver)

so that non-experts can produce powerful simulations with modern algorithms.

Jed Brown discusses this interplay in the context of multilevel solvers

Main Points

Libraries encapsulate the Mathematics
 Users will give up more Control

Multiphysics demands Composable Solvers
Each piece will have to be Optimal

Main Points

Libraries encapsulate the Mathematics Users will give up more Control

Multiphysics demands Composable Solvers Each piece will have to be Optimal

Gvőr '12

- Libraries encapsulate the Mathematics
 - Users will give up more Control
- Multiphysics demands Composable Solvers
 - Each piece will have to be Optimal

- Libraries encapsulate the Mathematics
 - Users will give up more Control
- Multiphysics demands Composable Solvers
 Each piece will have to be Optimal

Change alone is unchanging — Heraclitus, 544–483 BC

Gvőr '12