
GPUs in Computational Science

Matthew Knepley1 and Felipe Cruz2

1Computation Institute
University of Chicago

2Nagasaki Advnaced Computing Center
Nagasaki University

International Workshop on GPU Solutions to
Multiscale Problems in Science and Engineering

Harbin, China, July 27, 2010

M. Knepley GPU 7/27/10 1 / 21

Collaborators

The PetFMM team:

Prof. Lorena Barba
Dept. of Mechanical Engineering, Boston University

Dr. Felipe Cruz, developer of GPU extension
Nagasaki Advanced Computing Center, Nagasaki University

Dr. Rio Yokota, developer of 3D extension
Dept. of Mechanical Engineering, Boston University

M. Knepley GPU 7/27/10 2 / 21

http://bitbucket.org/petfmm/petfmm-dev
http://barbagroup.bu.edu/Barba_group/Home.html
http://www.bu.edu/pasi/courses/gpu-computing-and-programming/
http://www.maths.bris.ac.uk/~maxry/

Collaborators

Chicago Automated Scientific Computing Group:

Prof. Ridgway Scott
Dept. of Computer Science, University of Chicago
Dept. of Mathematics, University of Chicago

Peter Brune, (biological DFT)
Dept. of Computer Science, University of Chicago

Dr. Andy Terrel, (Rheagen)
Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley GPU 7/27/10 3 / 21

http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html

Complementary Work

Outline

1 Complementary Work

2 What is FMM?

3 What Changes on a GPU?

M. Knepley GPU 7/27/10 4 / 21

Complementary Work

FMM Work

Queue-based hybrid execution
OpenMP for multicore processors

CUDA for GPUs

Adaptive hybrid Treecode-FMM
Treecode competitive only for very low accuracy

Very high flop rates for treecode M2P operation

Parallel FMM
Provably scalable formulation

Complete reuse of serial code

M. Knepley GPU 7/27/10 5 / 21

Complementary Work

Other Work

Classical DFT in Biology
Excellent speedup over CPU

Enabled 3D simulations of calcium ion channels

PetRBF: radial basis functions on the GPU
10-20x speedup over CPU

Combined with PetFMM for full vortex fluid method code

FEM: Autogenerated optimized kernels
Autogenerate code for hundreds of elements, and generic weak
forms using FEniCS

Achieve 25% of peak for 3D P1 elements (10x over CPU)

M. Knepley GPU 7/27/10 6 / 21

What is FMM?

Outline

1 Complementary Work

2 What is FMM?

3 What Changes on a GPU?

M. Knepley GPU 7/27/10 7 / 21

What is FMM?

FMM Applications

FMM can accelerate both integral and boundary element methods for:
Laplace
Stokes
Elasticity

Advantages
Mesh-free
O(N) time
Distributed and multicore (GPU) parallelism
Small memory bandwidth requirement

M. Knepley GPU 7/27/10 8 / 21

What is FMM?

FMM Applications

FMM can accelerate both integral and boundary element methods for:
Laplace
Stokes
Elasticity

Advantages
Mesh-free
O(N) time
Distributed and multicore (GPU) parallelism
Small memory bandwidth requirement

M. Knepley GPU 7/27/10 8 / 21

What is FMM?

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

K (xi , xj)q(xj) (1)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques

M. Knepley GPU 7/27/10 9 / 21

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

What is FMM?

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

qj

|xi − xj |
(1)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques

M. Knepley GPU 7/27/10 9 / 21

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

What is FMM?

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method

http://barbagroup.bu.edu/Barba_group/PetFMM.html

Leverages PETSc
Same open source license
Uses Sieve for parallelism

Extensible design in C++
Templated over the kernel
Templated over traversal for evaluation

MPI implementation
Novel parallel strategy for anisotropic/sparse particle distributions
PetFMM–A dynamically load-balancing parallel fast multipole library
86% efficient strong scaling on 64 procs

Example application using the Vortex Method for fluids
(coming soon) GPU implementation

M. Knepley GPU 7/27/10 10 / 21

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

What is FMM?

Spatial Decomposition

Pairs of boxes are divided into near and far :

Neighbors are treated as very near.

M. Knepley GPU 7/27/10 11 / 21

What is FMM?

Spatial Decomposition

Pairs of boxes are divided into near and far :

Neighbors are treated as very near.

M. Knepley GPU 7/27/10 11 / 21

What is FMM?

Functional Decomposition

Downward SweepUpward Sweep

Create Multipole Expansions. Evaluate Local Expansions.

P2M M2M M2L L2L L2P

M. Knepley GPU 7/27/10 12 / 21

What Changes on a GPU?

Outline

1 Complementary Work

2 What is FMM?

3 What Changes on a GPU?

M. Knepley GPU 7/27/10 13 / 21

What Changes on a GPU?

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

Up to 85% of time in FMM
Tradeoff with direct
interaction

Dense matrix multiplication
2p2 rows

Each interaction list box(
6d − 3d

)
2dL

d = 2,L = 8
1,769,472 matvecs

M. Knepley GPU 7/27/10 14 / 21

What Changes on a GPU?

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley GPU 7/27/10 15 / 21

What Changes on a GPU?

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley GPU 7/27/10 15 / 21

What Changes on a GPU?

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley GPU 7/27/10 15 / 21

What Changes on a GPU?

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley GPU 7/27/10 15 / 21

What Changes on a GPU?

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley GPU 7/27/10 15 / 21

What Changes on a GPU?

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley GPU 7/27/10 15 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27× 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27× 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27× 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27× 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27× 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27× 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (2)

Additional problems: Not enough parallelism for data movement
Move 27 LE to global memory per TB
27× 2p = 648 floats
With 32 threads, takes 21 memory transactions

Algorithm limits concurrency!

M. Knepley GPU 7/27/10 16 / 21

What Changes on a GPU?

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (3)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley GPU 7/27/10 17 / 21

What Changes on a GPU?

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (3)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley GPU 7/27/10 17 / 21

What Changes on a GPU?

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (3)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley GPU 7/27/10 17 / 21

What Changes on a GPU?

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (3)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley GPU 7/27/10 17 / 21

What Changes on a GPU?

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (3)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

300 GFlops

15x Speedup of
Downward Sweep

Examine memory access

M. Knepley GPU 7/27/10 17 / 21

What Changes on a GPU?

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (3)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

300 GFlops

15x Speedup of
Downward Sweep

Examine memory access
M. Knepley GPU 7/27/10 17 / 21

What Changes on a GPU?

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU GPU
Bus Width (bits) 64 512
Bus Clock Speed (MHz) 400 1600
Memory Bandwidth (GB/s) 3 102
Latency (cycles) 240 600

Tesla always accesses blocks of 64 or 128 bytes

M. Knepley GPU 7/27/10 18 / 21

What Changes on a GPU?

GPU M2L
Version 3

Coalesce and overlap memory accesses
Coalescing is

a group of 16 threads
accessing consective addresses

4, 8, or 16 bytes
in the same block of memory

32, 64, or 128 bytes

480 GFlops

25x Speedup of
Downward

Sweep

M. Knepley GPU 7/27/10 19 / 21

What Changes on a GPU?

GPU M2L
Version 3

Coalesce and overlap memory accesses
Memory accesses can be overlapped with

computation when
a TB is waiting for data from main memory

another TB can be scheduled on the SM

512 TB can be active at once on Tesla

480 GFlops

25x Speedup of
Downward

Sweep

M. Knepley GPU 7/27/10 19 / 21

What Changes on a GPU?

GPU M2L
Version 3

Coalesce and overlap memory accesses
Note that the theoretical peak (1 TF)

MULT and FMA must execute simultaneously

346 GOps

Without this, peak can be closer to 600 GF

480 GFlops

25x Speedup of
Downward

Sweep

M. Knepley GPU 7/27/10 19 / 21

What Changes on a GPU?

Design Principles

M2L required all of these optimization steps:
Many threads per kernel

Avoid branching

Unroll loops

Coalesce memory accesses

Overlap main memory access with computation

M. Knepley GPU 7/27/10 20 / 21

What Changes on a GPU?

How Will Algorithms Change?

Massive concurrency is necessary
Mix of vector and thread paradigms
Demands new analysis

More attention to memory management
Blocks will only get larger
Determinant of performance

M. Knepley GPU 7/27/10 21 / 21

	Complementary Work
	What is FMM?
	What Changes on a GPU?

