Finite Element Implementation

Matthew Knepley

Mathematics and Computer Science Division Argonne National Laboratory

Institute for Computational Engineering and Sciences Seminar University of Texas at Austin July 17, 2008

ICES

Outline

- 2 Operator Assembly
- 3 Mesh Distribution
- 4 Further Work

ICES

Problems

The biggest problem in scientific computing is programmability:

- Lack of usable implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"
 - to
 - characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

< 回 > < 三 > < 三 >

Problems

The biggest problem in scientific computing is programmability:

- Lack of widespread implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"

to

- characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

.

We have to bridge the gap with Systems to enable Scientific Computing

ICES

We have to bridge the gap with Systems to enable Scientific Computing

M. Knepley (ANL)

ICES 8 / 78

We have to bridge the gap with Systems to enable Scientific Computing

ICES

We have to bridge the gap with Systems to enable Scientific Computing

I think compilers are victims of their own success (ala Rob Pike)

- Efforts to modularize compilers retain the same primtives
 - compiling on the fly (JIT)
 - Low Level Virtual Machine
- Raise the level of abstraction
 - Fenics Form Compiler (variational form compiler)
 - Mython (Domain Specific Language generator)

ICES

Divide the work into levels:

- Model
- Algorithm
- Implementation

< ∃ ►

Divide the work into levels: Spiral Project:

- Model Discrete Fourier Transform (DSP)
- Algorithm
- Implementation •

- Fast Fourier Transform (SPL)
- C Implementation (SPL Compiler)

ICES

Divide the work into levels:

- Model
- Algorithm
- Implementation

FLAME Project:

- Abstract LA (PME/Invariants)
- Basic LA (FLAME/FLASH)
- Scheduling (SuperMatrix)

ICES

Divide the work into levels:

- Model
- Algorithm
- Implementation

FEniCS Project:

- Navier-Stokes (FFC)
- Finite Element (FIAT)
- Integration/Assembly (FErari)

Divide the work into levels:

- Model
- Algorithm
- Implementation

Treecodes:

- Kernels with decay (Coulomb)
- Treecodes (PetFMM)
- Scheduling (PetFMM-GPU)

ICES

Divide the work into levels:

Treecodes:

• Kernels with decay (Coulomb)

ICES

10/78

Algorithm

Model

- Treecodes (PetFMM)
- Implementation
 Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

Outline

Introduction

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

Mesh Distribution

4 Further Work

ICES

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

Form Decomposition

Element integrals are decomposed into <u>analytic</u> and <u>geometric</u> parts:

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(1)

$$= \int_{\mathcal{T}} \frac{\partial \phi_i(\mathbf{x})}{\partial x_{\alpha}} \frac{\partial \phi_j(\mathbf{x})}{\partial x_{\alpha}} d\mathbf{x}$$
(2)

$$= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} |J| d\mathbf{x}$$
(3)

$$= \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} |J| \int_{\mathcal{T}_{ref}} \frac{\partial \phi_i(\xi)}{\partial \xi_{\beta}} \frac{\partial \phi_j(\xi)}{\partial \xi_{\gamma}} d\mathbf{x}$$
(4)
$$= \mathbf{G}^{\beta\gamma}(\mathcal{T}) \mathbf{K}^{ij}_{\beta\gamma}$$
(5)

Coefficients are also put into the geometric part.

→ ∃ →

Element Matrix Formation

- Element matrix K is now made up of small tensors
- Contract all tensor elements with each the geometry tensor $G(\mathcal{T})$

3	0	0	-1	1	1	-4	-4	0	4	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	0	0	3	1	1	0	0	4	0	-4	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
-4	0	0	0	-4	-4	8	4	0	-4	0	4
-4	0	0	0	0	0	4	8	-4	-8	4	0
0	0	0	4	0	0	0	-4	8	4	-8	-4
4	0	0	0	0	0	-4	-8	4	8	-4	0
0	0	0	-4	0	0	0	4	-8	-4	8	4
0	0	0	-4	-4	-4	4	0	-4	0	4	8

ロト (日) (三) (三) (三) (0)

Element Matrix Computation

• Element matrix K can be precomputed

- FFC
- SyFi
- Can be extended to nonlinearities and curved geometry
- Many redundancies among tensor elements of *K*
 - Could try to optimize the tensor contraction...

Given vectors $v_i \in \mathbb{R}^m$, minimize $flops(v^Tg)$ for arbitrary $g \in \mathbb{R}^m$

- The set *v_i* is not at all random
- Not a traditional compiler optimization
- How to formulate as an optimization problem?

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

→ ∃ →

ICES

Complexity Reducing Relations

If
$$v_i^T g$$
 is known, is $flops(v_i^T g) < 2m - 1$?

We can use binary relations among the vectors:

Equality

• If
$$v_j = v_i$$
, then $flops(v_j^T g) = 0$

Colinearity

• If
$$v_j = \alpha v_i$$
, then $flops(v_i^T g) = 1$

- Hamming distance
 - If $dist_H(v_j, v_i) = k$, then $flops(v_j^T g) = 2k$

ICES

Algorithm for Binary Relations

Construct a weighted graph on v_i

- The weight w(i, j) is $flops(v_i^T g)$ given $v_i^T g$
- With the above relations, the graph is symmetric
- Find a minimum spanning tree
 - Use Prim or Kruskal for worst case $O(n^2 \log n)$
- Traverse the MST, using the appropriate calculation for each edge
 - Roots require a full dot product

Coplanarity

Ternary relation

- If $v_k = \alpha v_i + \beta v_j$, then $flops(v_k^T g) = 3$
- Does not fit our undirected graph paradigm

• SVD for vector triples is expensive

- Use a randomized projection into a few \mathbb{R}^3s
- Use a hypergraph?
 - MST algorithm available
- Appeal to geometry?
 - Incidence structures

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

- A 🖻 🕨

Finite Element rearragement to automaically reduce instructions

- Open source implementation http://www.fenics.org/wiki/FErari
- Build tensor blocks $K_{m,m'}^{ij}$ as vectors using FIAT
- Discover dependencies
 - Represented as a DAG
 - Can also use hypergraph model
- Use minimal spanning tree to construct computation

Results

Preliminary Results

Order	Entries	Base MAPs	FErari MAPs
1	6	24	7
2	21	84	15
3	55	220	45
4	120	480	176
5	231	924	443
6	406	1624	867

イロト イヨト イヨト イヨ

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

- 3 >

ICES

Modeling the Problem

- Objective is cost of dot products (tensor contractions in FEM)
 Set of vectors V with a given arbitrary vector g
- The original MINLP has a nonconvex, nonlinear objective
- Reformulate to obtain a MILP using auxiliary binary variables

Modeling the Problem

Variables

- $\alpha_{ij} =$ Basis expansion coefficients
- y_i = Binary variable indicating membership in the basis
- s_{ij} = Binary variable indicating nonzero coefficient α_{ij}
- z_{ij} = Binary variable linearizes the objective function (equivalent to $y_i y_j$)
- U =Upper bound on coefficients

Constraints

- Eq. (6b) : Basis expansion
- Eq. (6c) : Exclude nonbasis vector from the expansion
- Eq. (6d) : Remove offdiagonal coefficients for basis vectors
- Eq. (7c) : Exclude vanishing coefficients from cost

く 同 ト く ヨ ト く ヨ ト

Original Formulation

MINLP Model

minimize
$$\sum_{i=1}^{n} \left\{ y_i(2m-1) + (1-y_i) \left(2 \sum_{j=1, j \neq i}^{n} y_j - 1 \right) \right\}$$
(6a)
subject to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ $i = 1, \dots, n$
(6b)

$$-Uy_j \le \alpha_{ij} \le Uy_j \qquad \qquad i, j = 1, \dots, n$$
(6c)

$$-U(1-y_i) \le \alpha_{ij} \le U(1-y_i) \qquad \qquad i,j = 1,\ldots,n,$$
(6d)

イロト イポト イヨト イヨ

 $y_i \in \{0, 1\}$

Original Formulation

Equivalent MILP Model: $z_{ii} = y_i \cdot y_i$ minimize $2m \sum_{i=1}^{n} y_i + 2 \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} (y_j - z_{ij}) - n$ (6a) subject to $v_i = \sum \alpha_{ij} v_j$ i = 1, ..., n(6b) $i, j = 1, \ldots, n$ $-Uy_i \leq \alpha_{ii} \leq Uy_i$ (6c) $i, j = 1, \ldots, n, i \neq j$ $-U(1-y_i) \leq \alpha_{ii} \leq U(1-y_i)$ (6d) $z_{ii} \leq y_i, \quad z_{ii} \leq y_i, \quad z_{ii} \geq y_i + y_i - 1, \qquad i, j = 1, \dots, n$ (6e) $y_i \in \{0, 1\}, \quad z_{ii} \in \{0, 1\}$ $i, j = 1, \dots, n$ ICES 26/78

Sparse Coefficient Formulation

- Take advantage of sparsity of α_{ij} coefficient
- Introduce binary variables s_{ij} to model existence of α_{ij}
- Add constraints $-Us_{ij} \le \alpha_{ij} \le Us_{ij}$

ICES

Sparse Coefficient Formulation

MINLP Model

minir

mize
$$\sum_{i=1}^{n} \left\{ y_i(2m-1) + (1-y_i) \left(2 \sum_{j=1, j \neq i}^{n} s_{ij} - 1 \right) \right\}$$
(7a)
t to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ $i = 1, \dots, n$

subject

$$V_{i} = \sum_{j=1}^{i} \alpha_{ij} v_{j} \qquad (7b)$$

$$- Us_{ij} \le \alpha_{ij} \le Us_{ij} \qquad (i, j = 1, ..., n)$$

$$(7c)$$

$$- U(1 - y_{i}) \le \alpha_{ij} \le U(1 - y_{i}) \qquad (i, j = 1, ..., n)$$

$$(7d)$$

$$s_{ij} \le y_{j} \qquad (i, j = 1, ..., n)$$

$$(7e)$$

$$y_i \in \{0, 1\}, \quad s_{ij} \in \{0, 1\}$$

Sparse Coefficient Formulation

Equivalent MILP Model

ICES
Results

Initial Formulation

- Initial formulation only had sparsity in the α_{ij}
- MINTO was not able to produce some optimal solutions
 - Report results after 36000 seconds

	Default	MILP			Sparse Coef. MILP		
Element	Flops	Flops	LPs	CPU	Flops	LPs	CPU
<i>P</i> ₁ 2D	42	42	33	0.10	34	187	0.43
P ₂ 2D	147	147	2577	37.12	67	6030501	36000
P ₁ 3D	170	166	79	0.49	146	727	3.97
P ₂ 3D	935	935	25283	36000	829	33200	36000

- 3 >

Formulation with Sparse Basis

- We can also take account of the sparsity in the basis vectors
- Count only the flops for nonzero entries
 - Significantly decreases the flop count

	Sparse Coefficient	Sparse Basis
Elements	Flops	Flops
<i>P</i> ₁ 2D	34	12
P ₁ 3D	146	26

Outline

Introduction

2 Operator Assembly

3 Mesh Distribution

- Sieve
- Distribution
- Interfaces
- More on Assembly

Further Work

ICES

29/78

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- More on Assembly

イロト イポト イヨト イヨ

Sieve is an interface for

- general topologies
- functions over these topologies (bundles)
- traversals

One relation handles all hierarchy

- Vast reduction in complexity
 - Dimension independent code
 - A single communication routine to optimize
- Expansion of capabilities
 - Partitioning and distribution
 - Hybrid meshes
 - Complicated structures and embedded boundaries
 - Unstructured multigrid

Doublet Mesh

Doublet Mesh

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

→ ∃ →

Doublet Mesh

• $cone(0) = \{2, 3, 4\}$

•
$$support(7) = \{2, 3\}$$

M. Knepley (ANL)

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$
- $star(7) = \{7, 2, 3, 0\}$

M. Knepley (ANL)

Doublet Mesh

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

Doublet Mesh

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

M. Knepley (ANL)

FEM

The Mesh Dual

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

.

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 47 ▶

.

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

Doublet Section

• Section interface

- $restrict(0) = \{ f_0 \}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

ICES

34/78

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

< 口 > < 同

Restriction

Localization

- Restrict to patches (here an edge closure)
- Compute locally

< A

Delta

• Delta

- Restrict further to the overlap
- Overlap now carries twice the data

M. Knepl	ey (ANL)
----------	------	------

ICES 35 / 78

* 王

Fusion

- Merge/reconcile data on the overlap
 - Addition (FEM)
 - Replacement (FD)
 - Coordinate transform (Sphere)
 - Linear transform (MG)

< A

ICES

35/78

Update

• Update

- Update local patch data
- Completion = restrict \longrightarrow fuse \longrightarrow update, <u>in parallel</u>

2

• • • • • • • • • • • • •

- FEM accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

FEM accumulating integrals on shared faces

- distributing mesh entities after partition
- accumlating matvec for a partially assembled matrix

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

- distributing mesh entities after partition
- accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumilating matvec for a partially assembled matrix

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- More on Assembly

イロト イポト イヨト イヨ

ICES

37 / 78

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

∃ >

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

∃ >

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone() s!
- 3rd party packages construct a vertex partition
- For FEM, partition dual graph vertices
- For FVM, construct hyperpgraph dual with faces as vertices
- Assign closure (v) and star (v) to same partition

Doublet Mesh Distribution

イロト イポト イヨト イヨ

Doublet Mesh Distribution

Doublet Mesh Distribution

イロト イヨト イヨト イヨ

2D Example

A simple triangular mesh

M. Knepley (ANL)

2D Example

Sieve for the mesh

2D Example

Local sieve on process 0

イロト イヨト イヨト イヨト

2D Example

Partition Overlap

M. Knepley (ANL)

2D Example

Partition Section

2D Example

Updated Sieve Overlap

M. Knepley (ANL)

ICES 41/78

2D Example

Cone Section

2D Example

Distributed Sieve

2D Example

Coordinate Section

2D Example

Distributed Coordinate Section

2D Example

Distributed Mesh

3D Example

A simple hexahedral mesh

M. Knepley (ANL)

।CES 42/78

3D Example

Sieve for the mesh

Its complicated!

M. Knepley (ANL)

3D Example

Sieve for the mesh

Its complicated!

M. Knepley (ANL)

3D Example

Partition Overlap

M. Knepley (ANL)

3D Example

Partition Section

3D Example

Distributed Mesh

Notice cells are ghosted

M. Knepley (ANL)

ICES

42/78

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- More on Assembly

イロト イポト イヨト イヨ

Sieve Overview

• Hierarchy is the centerpiece

- Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 Rich enough for FEM
- Single operation, completion, for parallelism
 - Enforces consistency of the relation

Sieve Overview

• Hierarchy is the centerpiece

- Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 Rich enough for FEM
- Single operation, completion, for parallelism
 Enforces consistency of the relation

ICES

44 / 78

Sieve Overview

- Hierarchy is the centerpiece
 - Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 - Rich enough for FEM
- Single operation, completion, for parallelism
 - Enforces consistency of the relation

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

・ 何 ト ・ ヨ ト ・ ヨ

- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

.

- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD Software interfaces do not adequately reflect this

- PETSc DA is too specialized
 - Basically 1D methods applied to Cartesian products
- PETSc Index Sets and VecScatters are too fine
 - User "does everything", no abstraction
- PETSc Linear Algebra (Vec & Mat) is too coarse
 - No access to the underlying connectivity structure

Unstructured Interface (before)

Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

.

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, covering, on sieve points

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

ICES

48 / 78
Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)
- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - · can be more easily optimized

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM

• Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology
- data layout

.

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Hierarchy Abstractions

• Generalize to a set of linear spaces

- Sieve provides topology, can also model Mat
- Section generalizes Vec
- Spaces interact through an Overlap (just a Sieve)
- Basic operations
 - Restriction to finer subspaces, restrict ()/update()
 - Assembly to the subdomain, complete()
- Allow reuse of geometric and multilevel algorithms

ICES

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- More on Assembly

イロト イポト イヨト イヨ

ICES

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  coords = mesh->restrict(coordinates, c);
  v0, J, invJ, detJ = computeGeometry(coords);
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
  <Update output vector>
```

ABAABA B SQQ

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  inputVec = mesh->restrict(U, c);
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    realCoords = J*refCoords[q] + v0;
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                          ABAABA B SQQ
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      elemVec[f] += basis[q,f] *rhsFunc(realCoords);
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                            ABARABA B SOGO
    M. Kneplev (ANL)
                           FFM
                                                      52/78
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      for (d = 0; d < \dim; ++d)
        for(e) testDerReal[d] += invJ[e,d]*basisDer[q,
      for (q = 0; q < numBasisFuncs; ++q) {
        for (d = 0; d < \dim; ++d)
          for(e) basisDerReal[d] += invJ[e,d]*basisDer
          elemMat[f,g] += testDerReal[d] * basisDerReal[
        elemVec[f] += elemMat[f,g]*inputVec[g];
                                           ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      elemVec[f] += basis[q, f] *lambda*exp(inputVec[f])
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                            ABARABA B SOGO
    M. Kneplev (ANL)
                           FEM
                                                      52/78
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  mesh->updateAdd(F, c, elemVec);
}
<Aggregate updates>
                                          ABAABA B SQQ
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

```
M. Knepley (ANL)
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
Distribution<Mesh>::completeSection (mesh, F); > = oac
```

M. Knepley (ANL)

ICES

Boundary Conditions

Dirichlet conditions may be expressed as

$$u|_{\Gamma}=g$$

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

$$\nabla u \cdot \hat{n}|_{\Gamma} = h$$

and implemented by explicit integration along the boundary

• The user provides a weak form.

Dirichlet Values

- Topological boundary is marked during generation
- Cells bordering boundary are marked using markBoundaryCells()
- To set values:
 - Loop over boundary cells
 - 2 Loop over the element closure
 - So For each boundary point *i*, apply the functional N_i to the function *g*
- The functionals are generated with the quadrature information
- Section allocation applies Dirichlet conditions automatically
 - Values are stored in the Section
 - restrict() behaves normally, update() ignores constraints

Dual Basis Application

We would like the action of a dual basis vector (functional)

$$<\mathcal{N}_i,f>=\int_{\mathrm{ref}}N_i(x)f(x)dV$$

• Projection onto \mathcal{P}

• Code is generated from FIAT specification

- Python code generation package inside PETSc
- Common interface for all elements

Outline

- 1 Introduction
- 2 Operator Assembly
- 3 Mesh Distribution

- FEM
- UMG
- PyLith

イロト イポト イヨト イヨ

ICES

FEM

Outline

• PyLith

イロト イヨト イヨト イヨト

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

$$a((au, w), (\sigma, u)) = L((au, w)) \qquad orall (au, w) \in V$$

where

$$a((\tau, w), (\sigma, u)) = \int_{\Omega} \tau \sigma - \nabla \cdot \tau u + w \nabla \cdot u \, dx$$
$$L((\tau, w)) = \int_{\Omega} wf \, dx$$

- 3 >

ICES

```
shape = "triangle"
BDM1 = FiniteElement("Brezzi-Douglas-Marini",shape,1)
DG0 = FiniteElement("Discontinuous Lagrange",shape,0)
element = BDM1 + DG0
(tau, w) = TestFunctions(element)
(sigma, u) = TrialFunctions(element)
a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx
f = Function(DG0)
L = w*f*dx
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

ICES

FEM

Here is a discontinuous Galerkin formulation of the Poisson equation:

$$a(v, u) = L(v) \qquad \forall v \in V$$

where

FFC

$$\begin{aligned} a(v,u) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx \\ &+ \sum_{S} \int_{S} -\langle \nabla v \rangle \cdot [[u]]_{n} - [[v]]_{n} \cdot \langle \nabla u \rangle - (\alpha/h) v u \, dS \\ &+ \int_{\partial \Omega} -\nabla v \cdot [[u]]_{n} - [[v]]_{n} \cdot \nabla u - (\gamma/h) v u \, ds \\ L(v) &= \int_{\Omega} v f \, dx \end{aligned}$$

ICES

- DG1 = FiniteElement("Discontinuous Lagrange", shape, 1)
- = TestFunctions (DG1)
- u = TrialFunctions(DG1)
- = Function (DG1)
- = Function (DG1) α
- n = FacetNormal("triangle")
- = MeshSize("triangle") h
- a = dot(grad(v), grad(u)) * dx
 - dot(avg(grad(v)), jump(u, n)) * dS
 - dot(jump(v, n), avg(grad(u))) * dS
 - + $alpha/h \cdot dot(jump(v, n) + jump(u, n)) \cdot dS$
 - $dot(grad(v), jump(u, n)) \cdot ds$
 - dot(jump(v, n), grad(u))*ds
 - + gamma/h * v * u * ds
- L = v * f * dx + v * g * ds

イロト イポト イヨト イヨト

UMG

Outline

- UMG
- PyLith

イロト イヨト イヨト イヨト

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a length-scale requirement in order to maintain accuracy:

$$egin{aligned} C_{\mathit{low}} r^{1-\mu} &\leq h \leq C_{\mathit{high}} r^{1-\mu} \ \mu &\leq rac{\pi}{ heta} \end{aligned}$$

Further Work UMG

The Folly of Uniform Refinement

uniform refinement may fail to eliminate error

M. Knepley (ANL)

ICES 65 / 78
Geometric Multigrid

- We allow the user to refine for fidelity
- Coarse grids are created automatically
- Could make use of AMG interpolation schemes

Function Based Coarsening

- (Miller, Talmor, Teng; 1997)
- triangulated planar graphs \equiv disk-packings (Koebe; 1934)
- define a spacing function S() over the vertices
- obvious one: $S(v) = \frac{dist(NN(v),v)}{2}$

Function Based Coarsening

• pick a subset of the vertices such that $\beta(S(v) + S(w)) > dist(v, w)$

LIMG

Further Work

- for all $v, w \in M$, with $\beta > 1$
- dimension independent
- provides guarantees on the size/quality of the resulting meshes

Implementation in Sieve Peter Brune, 2008

- vertex neighbors: $cone(support(v)) \setminus v$
- vertex link: $closure(star(v)) \setminus star(closure(v))$
- connectivity graph induced by limiting sieve depth
- remeshing can be handled as local modifications on the sieve
- meshing operations, such as cone construction easy

Implementation in Sieve Peter Brune, 2008

- vertex neighbors: $cone(support(v)) \setminus v$
- vertex link: $closure(star(v)) \setminus star(closure(v))$
- connectivity graph induced by limiting sieve depth
- remeshing can be handled as local modifications on the sieve
- meshing operations, such as cone construction easy

Implementation in Sieve Peter Brune, 2008

- vertex neighbors: $cone(support(v)) \setminus v$
- vertex link: $closure(star(v)) \setminus star(closure(v))$
- connectivity graph induced by limiting sieve depth
- remeshing can be handled as local modifications on the sieve
- meshing operations, such as cone construction easy

3D Test Problem

- Reentrant corner
- $-\Delta u = f$
- $f(x, y, z) = 3\sin(x + y + z)$
- Exact Solution: $u(x, y, z) = \sin(x + y + z)$

GMG Performance

Linear solver iterates are nearly as system size increases:

KSP Iterates on Reentrant Domains

M. Knepley (ANL)

ICES

71/78

GMG Performance

Coarsening work is nearly constant as system size increases:

Vertex Comparisons on Reentrant Domains

M. Knepley (ANL)

ICES

71/78

Quality Experiments

Table: Hierarchy quality metrics - 2D

\tilde{b} min(h_{μ})	
$\min(h_{\mu})$	
·····(//K)	max. overlap
0.001305	-
0.002094	23
0.002603	14
0.003339	14
0.003339	14
0.007979	13
	$\begin{array}{c} \min(h_{\mathcal{K}}) \\ 0.001305 \\ 0.002094 \\ 0.002603 \\ 0.003339 \\ 0.003339 \\ 0.007979 \end{array}$

• • • • • • • • • • • • •

PyLith

Outline

PyLith

PyLith

Reverse-slip Benchmark

Further Work

PyLith

Multiple Mesh Types

Further Work

PvLith

Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault

- Demand complex mesh manipulation
 - We allow specification of only fault vertices
 - Must "sew" together on output
- Use Lagrange multipliers to enforce constraints
 - Forces illuminate physics
- Allow different fault constitutive models.
 - Simplest is enforced slip
 - Now have fault constitutive models

ICES

77 / 78

Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Declarative, rather than imperative, specification
 - Dimension independent code
- Opportunites for optimization
 - Higher level operations missed by traditional compilers
 - Single communication routine to optimize
- Expansion of capabilities
 - Easy model definition
 - Arbitrary elements
 - Complex geometries and embedded boundaries