
Software Design for PDEs on GPUs

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

High Performance Computing and Emerging Architectures
Institute for Mathematics and Its Applications

Minneapolis, January 10, 2011

M. Knepley (UC) PDE on GPU IMA ’10 1 / 57



Collaborators

Chicago Automated Scientific Computing Group:
Prof. Ridgway Scott

Dept. of Computer Science, University of Chicago
Dept. of Mathematics, University of Chicago

Peter Brune, (biological DFT)
Dept. of Computer Science, University of Chicago

Dr. Andy Terrel, (Rheagen)
Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley (UC) PDE on GPU IMA ’10 2 / 57

http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html


Collaborators

The PetFMM team:
Prof. Lorena Barba

Dept. of Mechanical Engineering, Boston University

Dr. Felipe Cruz, developer of GPU extension
Nagasaki Advanced Computing Center, Nagasaki University

Dr. Rio Yokota, developer of 3D extension
Dept. of Mechanical Engineering, Boston University

M. Knepley (UC) PDE on GPU IMA ’10 3 / 57

http://bitbucket.org/petfmm/petfmm-dev
http://barbagroup.bu.edu/Barba_group/Home.html
http://www.bu.edu/pasi/courses/gpu-computing-and-programming/
http://www.maths.bris.ac.uk/~maxry/


Collaborators

The PyLith Team:
Dr. Brad Aagaard (PyLith)

United States Geological Survey, Menlo Park, CA

Dr. Charles Williams (PyLith)
GNS Science, Wellington, NZ

M. Knepley (UC) PDE on GPU IMA ’10 4 / 57

http://www.geodynamics.org/cig/software/pylith
http://profile.usgs.gov/baagaard
http://w3.geodynamics.org/cig/Members/willic3


Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) PDE on GPU IMA ’10 5 / 57



Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) PDE on GPU IMA ’10 5 / 57



Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) PDE on GPU IMA ’10 5 / 57



Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description

M. Knepley (UC) PDE on GPU IMA ’10 6 / 57



Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description

M. Knepley (UC) PDE on GPU IMA ’10 6 / 57



PETSc-GPU

Outline

1 PETSc-GPU

2 FEM-GPU

3 FMM-GPU

M. Knepley (UC) PDE on GPU IMA ’10 7 / 57



PETSc-GPU

Thrust

Thrust is a CUDA library of parallel algorithms

Interface similar to C++ Standard Template Library

Containers (vector) on both host and device

Algorithms: sort, reduce, scan

Freely available, part of PETSc configure (-with-thrust-dir)

Included as part of CUDA 4.0 installation

M. Knepley (UC) PDE on GPU IMA ’10 8 / 57

http://code.google.com/p/thrust/


PETSc-GPU

Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

Builds on data structures in Thrust

Provides sparse matrices in several formats (CSR, Hybrid)

Includes some preliminary preconditioners (Jacobi, SA-AMG)

Freely available, part of PETSc configure (-with-cusp-dir)

M. Knepley (UC) PDE on GPU IMA ’10 9 / 57

http://code.google.com/p/cusp-library/


PETSc-GPU

VECCUDA

Strategy: Define a new Vec implementation

Uses Thrust for data storage and operations on GPU

Supports full PETSc Vec interface

Inherits PETSc scalar type

Can be activated at runtime, -vec_type cuda

PETSc provides memory coherence mechanism

M. Knepley (UC) PDE on GPU IMA ’10 10 / 57

http://code.google.com/p/thrust/


PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED No allocation on the GPU
PETSC_CUDA_GPU Values on GPU are current
PETSC_CUDA_CPU Values on CPU are current
PETSC_CUDA_BOTH Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

M. Knepley (UC) PDE on GPU IMA ’10 11 / 57



PETSc-GPU

MATAIJCUDA

Also define new Mat implementations

Uses Cusp for data storage and operations on GPU

Supports full PETSc Mat interface, some ops on CPU

Can be activated at runtime, -mat_type aijcuda

Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) PDE on GPU IMA ’10 12 / 57

http://code.google.com/p/cusp-library/


PETSc-GPU

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,

Minden, Smith, Knepley, 2010

All linear algebra types work with solvers

Entire solve can take place on the GPU
Only communicate scalars back to CPU

GPU communication cost could be amortized over several solves

Preconditioners are a problem
Cusp has a promising AMG

M. Knepley (UC) PDE on GPU IMA ’10 13 / 57

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf


PETSc-GPU

Installation

PETSc only needs
# Turn on CUDA
--with-cuda
# Specify the CUDA compiler
--with-cudac=’nvcc -m64’
# Indicate the location of packages
# --download-* will also work soon
--with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp
# Can also use double precision
--with-precision=single

M. Knepley (UC) PDE on GPU IMA ’10 14 / 57



PETSc-GPU

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary

M. Knepley (UC) PDE on GPU IMA ’10 15 / 57



FEM-GPU

Outline

1 PETSc-GPU

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

3 FMM-GPU

M. Knepley (UC) PDE on GPU IMA ’10 16 / 57



FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA ’10 17 / 57

http://www.bitbucket.org/aterrel/flamefem


FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA ’10 17 / 57

http://www.bitbucket.org/aterrel/flamefem


FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA ’10 17 / 57

http://www.bitbucket.org/aterrel/flamefem


FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA ’10 17 / 57

http://www.bitbucket.org/aterrel/flamefem


FEM-GPU Analytic Flexibility

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU IMA ’10 18 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner ( grad ( v ) , grad ( u ) ) * dx

M. Knepley (UC) PDE on GPU IMA ’10 19 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner ( grad ( v ) , grad ( u ) ) * dx

M. Knepley (UC) PDE on GPU IMA ’10 19 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner (sym( grad ( v ) ) , sym( grad ( u ) ) ) * dx

M. Knepley (UC) PDE on GPU IMA ’10 20 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner (sym( grad ( v ) ) , sym( grad ( u ) ) ) * dx

M. Knepley (UC) PDE on GPU IMA ’10 20 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release

M. Knepley (UC) PDE on GPU IMA ’10 21 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release

M. Knepley (UC) PDE on GPU IMA ’10 21 / 57



FEM-GPU Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release

M. Knepley (UC) PDE on GPU IMA ’10 21 / 57



FEM-GPU Computational Flexibility

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU IMA ’10 22 / 57



FEM-GPU Computational Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇ϕi(x) · ∇ϕj(x)dx (4)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dx (5)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dx (6)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂ϕi (ξ)
∂ξβ

∂ϕj (ξ)
∂ξγ

dx (7)

= Gβγ(T )K ij
βγ (8)

Coefficients are also put into the geometric part.

M. Knepley (UC) PDE on GPU IMA ’10 23 / 57



FEM-GPU Computational Flexibility

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T ϕi(x) ·

(
ϕk (x)∇ϕj(x)

)
dA (9)

=
∫
T ϕβ

i (x)
(
ϕα

k (x)
∂ϕβ

j (x)
∂xα

)
dA (10)

=
∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ξγ
∂xα

∂ϕβ
j (ξ)

∂ξγ
|J|dA (11)

=
∂ξγ
∂xα |J|

∫
Tref

ϕβ
i (ξ)ϕ

α
k (ξ)

∂ϕβ
j (ξ)

∂ξγ
dA (12)

= Gαγ(T )K ijk
αγ (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (UC) PDE on GPU IMA ’10 24 / 57

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf


FEM-GPU Computational Flexibility

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇ϕi(x) · ∇ϕj(x)dA (14)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dA (15)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dA (16)

= |J|
∫
Tref

ϕkJβα
k

∂ϕi (ξ)
∂ξβ

ϕlJ
γα
l

∂ϕj (ξ)
∂ξγ

dA (17)

= Jβα
k Jγα

l |J|
∫
Tref

ϕk
∂ϕi (ξ)
∂ξβ

ϕl
∂ϕj (ξ)
∂ξγ

dA (18)

= Gβγ
kl (T )K ijkl

βγ (19)

A different space could also be used for Jacobians

M. Knepley (UC) PDE on GPU IMA ’10 25 / 57



FEM-GPU Computational Flexibility

Weak Form Processing

from f f c . ana l ys i s impor t analyze_forms
from f f c . compi ler impor t compute_ir

parameters = f f c . defau l t_parameters ( )
parameters [ ’ r ep resen ta t i on ’ ] = ’ tensor ’
ana l ys i s = analyze_forms ( [ a , L ] , { } , parameters )
i r = compute_ir ( ana lys is , parameters )

a_K = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 0 ]
a_G = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 1 ]

K = a_K . A0 . astype (numpy . f l o a t 3 2 )
G = a_G

M. Knepley (UC) PDE on GPU IMA ’10 26 / 57



FEM-GPU Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
Element Batch Size

Number of Concurrent Elements

Loop unrolling

Interleaving stores with computation

M. Knepley (UC) PDE on GPU IMA ’10 27 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 28 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 28 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 28 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Basic Contraction

G K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 28 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K
thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 29 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

thread 0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 29 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

th
re

ad
0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 29 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K

th
re

ad
0

thread 5

thread 15

Figure: Tensor Contraction Gβγ(T )K ij
βγ

M. Knepley (UC) PDE on GPU IMA ’10 29 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
thread 0

thread 5

thread 15

thread 16

thread 21

th
re

ad
31

Figure: Tensor Contraction Gβγ(T )K ij
βγM. Knepley (UC) PDE on GPU IMA ’10 30 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K

thread 0

thread 5

thread 15

thread 16
thread 21

th
re

ad
31

Figure: Tensor Contraction Gβγ(T )K ij
βγM. Knepley (UC) PDE on GPU IMA ’10 30 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
th

re
ad

0

thread 5

thread 15

thread 16
thread 21

thread 31

Figure: Tensor Contraction Gβγ(T )K ij
βγM. Knepley (UC) PDE on GPU IMA ’10 30 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Concurrent Elements

G0
0

G0
1

G0
2

G0
3

G1
0

G1
1

G1
2

G1
3

K
th

re
ad

0

thread 5

thread 15

thread 16
thread 21

thread 31

Figure: Tensor Contraction Gβγ(T )K ij
βγM. Knepley (UC) PDE on GPU IMA ’10 30 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = f u l l * /
E [ 0 ] += G[ 0 ] * K [ 0 ] ;
E [ 0 ] += G[ 1 ] * K [ 1 ] ;
E [ 0 ] += G[ 2 ] * K [ 2 ] ;
E [ 0 ] += G[ 3 ] * K [ 3 ] ;
E [ 0 ] += G[ 4 ] * K [ 4 ] ;
E [ 0 ] += G[ 5 ] * K [ 5 ] ;
E [ 0 ] += G[ 6 ] * K [ 6 ] ;
E [ 0 ] += G[ 7 ] * K [ 7 ] ;
E [ 0 ] += G[ 8 ] * K [ 8 ] ;

M. Knepley (UC) PDE on GPU IMA ’10 31 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r ( i n t b = 0; b < 1; ++b ) {

const i n t n = b * 1 ;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E [ b ] += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}

}

M. Knepley (UC) PDE on GPU IMA ’10 32 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Interleaving stores

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r ( i n t b = 0; b < 4; ++b ) {

const i n t n = b * 1 ;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E [ b ] += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}

}
/ * Store c o n t r a c t i o n r e s u l t s * /
elemMat [ Eo f f se t + idx +0] = E [ 0 ] ;
elemMat [ Eo f f se t + idx +16] = E [ 1 ] ;
elemMat [ Eo f f se t + idx +32] = E [ 2 ] ;
elemMat [ Eo f f se t + idx +48] = E [ 3 ] ;

M. Knepley (UC) PDE on GPU IMA ’10 33 / 57



FEM-GPU Computational Flexibility

Computational Flexibility
Interleaving stores

n = 0;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}
/ * Store c o n t r a c t i o n r e s u l t * /
elemMat [ Eo f f se t + idx +0] = E;
n = 1; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +16] = E;
n = 2; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +32] = E;
n = 3; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +48] = E;

M. Knepley (UC) PDE on GPU IMA ’10 34 / 57



FEM-GPU Efficiency

Outline

2 FEM-GPU
Analytic Flexibility
Computational Flexibility
Efficiency

M. Knepley (UC) PDE on GPU IMA ’10 35 / 57



FEM-GPU Efficiency

Performance
Peak Performance

M. Knepley (UC) PDE on GPU IMA ’10 36 / 57



FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P1 Laplacian Integration

Model Price ($) GF/s MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

∗ Jed Brown Optimization Engine

M. Knepley (UC) PDE on GPU IMA ’10 37 / 57



FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P1 Laplacian Integration

Model Price ($) GF/s MF/s$
GTX285 390 90 231
Core 2 Duo 300 12∗ 40

∗ Jed Brown Optimization Engine

M. Knepley (UC) PDE on GPU IMA ’10 37 / 57



FEM-GPU Efficiency

Performance
Influence of Element Batch Sizes

M. Knepley (UC) PDE on GPU IMA ’10 38 / 57



FEM-GPU Efficiency

Explaining performance

Increase shared memory and work/thread until you top out
Occupancies go down or level out as performance goes up

Does not work without interleaved stores
Scheduler can switch to kernels who are computing
Larger number of smaller computations makes better fit

Should I worry about detailed explanations for performance?
Sensible decompositions, coupled with exploration
FLAME methodology

M. Knepley (UC) PDE on GPU IMA ’10 39 / 57



FEM-GPU Efficiency

Automated Tuning System

Components of our performance evaluation system:

Generate set of kernels using:
Loop slicing, store reordering, etc.
Loop invariants ala FLAME
High level constructs ala Rheagen and FEniCS

Store results and metadata in HDF5 using PyTables
Thousands of tests for this talk

Interrogate and plot with Matplotlib

Eventually couple to build system
FFTW, Spiral, FLAME

M. Knepley (UC) PDE on GPU IMA ’10 40 / 57

http://flame.utexas.edu
http://www.pytables.org
http://www.matplotlib.org


Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU IMA ’10 41 / 57



Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU IMA ’10 41 / 57



Conclusion

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU IMA ’10 41 / 57



FMM-GPU

Outline

1 PETSc-GPU

2 FEM-GPU

3 FMM-GPU
Quick FMM Intro
Differences on the GPU

M. Knepley (UC) PDE on GPU IMA ’10 42 / 57



FMM-GPU Quick FMM Intro

Outline

3 FMM-GPU
Quick FMM Intro
Differences on the GPU

M. Knepley (UC) PDE on GPU IMA ’10 43 / 57



FMM-GPU Quick FMM Intro

FMM Applications

FMM can accelerate both integral and boundary element methods for:
Laplace
Stokes
Elasticity

Advantages
Mesh-free
O(N) time
Distributed and multicore (GPU) parallelism
Small memory bandwidth requirement

M. Knepley (UC) PDE on GPU IMA ’10 44 / 57



FMM-GPU Quick FMM Intro

FMM Applications

FMM can accelerate both integral and boundary element methods for:
Laplace
Stokes
Elasticity

Advantages
Mesh-free
O(N) time
Distributed and multicore (GPU) parallelism
Small memory bandwidth requirement

M. Knepley (UC) PDE on GPU IMA ’10 44 / 57



FMM-GPU Quick FMM Intro

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

K (xi , xj)q(xj) (20)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques

M. Knepley (UC) PDE on GPU IMA ’10 45 / 57

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178


FMM-GPU Quick FMM Intro

Fast Multipole Method

FMM accelerates the calculation of the function:

Φ(xi) =
∑

j

qj

|xi − xj |
(20)

Accelerates O(N2) to O(N) time

The kernel K (xi , xj) must decay quickly from (xi , xi)

Can be singular on the diagonal (Calderón-Zygmund operator)

Discovered by Leslie Greengard and Vladimir Rohklin in 1987

Very similar to recent wavelet techniques

M. Knepley (UC) PDE on GPU IMA ’10 45 / 57

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178


FMM-GPU Quick FMM Intro

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method

http://barbagroup.bu.edu/Barba_group/PetFMM.html

Leverages PETSc
Same open source license
Uses Sieve for parallelism

Extensible design in C++
Templated over the kernel
Templated over traversal for evaluation

MPI implementation
Novel parallel strategy for anisotropic/sparse particle distributions
PetFMM–A dynamically load-balancing parallel fast multipole library
86% efficient strong scaling on 64 procs

Example application using the Vortex Method for fluids
(coming soon) GPU implementation

M. Knepley (UC) PDE on GPU IMA ’10 46 / 57

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract


FMM-GPU Quick FMM Intro

Spatial Decomposition

Pairs of boxes are divided into near and far :

Neighbors are treated as very near.

M. Knepley (UC) PDE on GPU IMA ’10 47 / 57



FMM-GPU Quick FMM Intro

Spatial Decomposition

Pairs of boxes are divided into near and far :

Neighbors are treated as very near.

M. Knepley (UC) PDE on GPU IMA ’10 47 / 57



FMM-GPU Quick FMM Intro

Functional Decomposition

Downward SweepUpward Sweep

Create Multipole Expansions. Evaluate Local Expansions.

P2M M2M M2L L2L L2P

M. Knepley (UC) PDE on GPU IMA ’10 48 / 57



FMM-GPU Differences on the GPU

Outline

3 FMM-GPU
Quick FMM Intro
Differences on the GPU

M. Knepley (UC) PDE on GPU IMA ’10 49 / 57



FMM-GPU Differences on the GPU

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

Up to 85% of time in FMM
Tradeoff with direct
interaction

Dense matrix multiplication
2p2 rows

Each interaction list box(
6d − 3d

)
2dL

d = 2,L = 8
1,769,472 matvecs

M. Knepley (UC) PDE on GPU IMA ’10 50 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 51 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 51 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 51 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 51 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 51 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 0

One thread per M2L transform
Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times
p = 12
Matrix size is 2304 bytes
Plenty of work per thread (81 Kflops or 36 flops/byte)
BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 51 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27 × 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27 × 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27 × 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27 × 8 = 216 threads, BUT max is 512

M2L ME = LE

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27 × 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Traverse matrix by perdiagonals
Same work
No memory limit on concurrency
8 concurrent TBs per MultiProcessor (MP)
27 × 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 1

Apply M2L transform matrix-free

m2lij = −1i
(

i + j
j

)
t−i−j−1 (21)

Additional problems: Not enough parallelism for data movement
Move 27 LE to global memory per TB
27 × 2p = 648 floats
With 32 threads, takes 21 memory transactions

Algorithm limits concurrency!

M. Knepley (UC) PDE on GPU IMA ’10 52 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (22)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley (UC) PDE on GPU IMA ’10 53 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (22)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley (UC) PDE on GPU IMA ’10 53 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (22)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley (UC) PDE on GPU IMA ’10 53 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (22)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

M2L ME = LE

Examine memory access

M. Knepley (UC) PDE on GPU IMA ’10 53 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (22)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

300 GFlops

15x Speedup of
Downward Sweep

Examine memory access

M. Knepley (UC) PDE on GPU IMA ’10 53 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 2

One thread per element of the LE

m2lij = −1i
(

i + j
j

)
t−i−j−1 (22)

Each thread does a dot product
Cannot use diagonal traversal, more work
Avoid branching

Each row precomputes t−i−1

All threads loop to p + 1, only store t−i−1

Loop unrolling
No thread synchronization

300 GFlops

15x Speedup of
Downward Sweep

Examine memory access
M. Knepley (UC) PDE on GPU IMA ’10 53 / 57



FMM-GPU Differences on the GPU

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU GPU
Bus Width (bits) 64 512
Bus Clock Speed (MHz) 400 1600
Memory Bandwidth (GB/s) 3 102
Latency (cycles) 240 600

Tesla always accesses blocks of 64 or 128 bytes

M. Knepley (UC) PDE on GPU IMA ’10 54 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 3

Coalesce and overlap memory accesses
Coalescing is

a group of 16 threads
accessing consective addresses

4, 8, or 16 bytes
in the same block of memory

32, 64, or 128 bytes

480 GFlops

25x Speedup of
Downward

Sweep

M. Knepley (UC) PDE on GPU IMA ’10 55 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 3

Coalesce and overlap memory accesses
Memory accesses can be overlapped with

computation when
a TB is waiting for data from main memory

another TB can be scheduled on the SM

512 TB can be active at once on Tesla

480 GFlops

25x Speedup of
Downward

Sweep

M. Knepley (UC) PDE on GPU IMA ’10 55 / 57



FMM-GPU Differences on the GPU

GPU M2L
Version 3

Coalesce and overlap memory accesses
Note that the theoretical peak (1 TF)

MULT and FMA must execute simultaneously

346 GOps

Without this, peak can be closer to 600 GF

480 GFlops

25x Speedup of
Downward

Sweep

M. Knepley (UC) PDE on GPU IMA ’10 55 / 57



FMM-GPU Differences on the GPU

Design Principles

M2L required all of these optimization steps:
Many threads per kernel

Avoid branching

Unroll loops

Coalesce memory accesses

Overlap main memory access with computation

M. Knepley (UC) PDE on GPU IMA ’10 56 / 57



Outlook

How Will Algorithms Change?

Massive concurrency is necessary
Mix of vector and thread paradigms
Demands new analysis

More attention to memory management
Blocks will only get larger
Determinant of performance

M. Knepley (UC) PDE on GPU IMA ’10 57 / 57


	PETSc-GPU
	FEM-GPU
	Analytic Flexibility
	Computational Flexibility
	Efficiency

	Conclusion
	FMM-GPU
	Quick FMM Intro
	Differences on the GPU

	Outlook

