Software Design for PDEs on GPUs

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

High Performance Computing and Emerging Architectures
Institute for Mathematics and Its Applications
Minneapolis, January 10, 2011

/\ RUSH UNIVERSITY
\II MEDICAL CENTER
M. Knepley (UC) PDE on GPU IMA *10 1/57

Collaborators

Chicago Automated Scientific Computing Group:

@ Prof. Ridgway Scott

o Dept. of Computer Science, University of Chicago
o Dept. of Mathematics, University of Chicago

@ Peter Brune, (biological DFT)
o Dept. of Computer Science, University of Chicago

@ Dr. Andy Terrel, (Rheagen)
o Dept. of Computer Science and TACC, University of Texas at Austin

M. Knepley (UC) PDE on GPU IMA *10 2/57

http://www.cs.uchicago.edu/~ridg
http://www.cs.uchicago.edu/~brune
http://andy.terrel.us/Professional/index.html

Collaborators

The PetFMM team:

@ Prof. Lorena Barba
o Dept. of Mechanical Engineering, Boston University

@ Dr. Felipe Cruz, developer of GPU extension
o Nagasaki Advanced Computing Center, Nagasaki University

@ Dr. Rio Yokota, developer of 3D extension
o Dept. of Mechanical Engineering, Boston University

M. Knepley (UC) PDE on GPU IMA *10 3/57

http://bitbucket.org/petfmm/petfmm-dev
http://barbagroup.bu.edu/Barba_group/Home.html
http://www.bu.edu/pasi/courses/gpu-computing-and-programming/
http://www.maths.bris.ac.uk/~maxry/

Collaborators

The PyLith Team:

@ Dr. Brad Aagaard (PyLith)
e United States Geological Survey, Menlo Park, CA

@ Dr. Charles Williams (PyLith)
o GNS Science, Wellington, NZ

M. Knepley (UC) PDE on GPU IMA *10 4/57

http://www.geodynamics.org/cig/software/pylith
http://profile.usgs.gov/baagaard
http://w3.geodynamics.org/cig/Members/willic3

To be widely accepted,

M. Knepley (UC) PDE on GPU IMA *10 5/57

To be widely accepted,

GPU computing must be
transparent to the user,

PDE on GPU

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
Infrastructure.

M. Knepley (UC) PDE on GPU IMA *10 5/57

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

M. Knepley (UC) PDE on GPU IMA *10 6/57

Lessons from Clusters and MPPs

Failure
e Parallelizing Compilers
e Automatic program decomposition

Success
e MPI (Library Approach)
e PETSc (Parallel Linear Algebra)
e User provides only the mathematical description

M. Knepley (UC) PDE on GPU IMA *10

6/57

PETSc-GPU
Outline

@ PETSc-GPU

M. Knepley (UC) PDE on GPU IMA *10 7/57

PETSc-GPU
Thrust

Thrust is a CUDA library of parallel algorithms

@ Interface similar to C++ Standard Template Library

@ Containers (vector) on both host and device

@ Algorithms: sort, reduce, scan

@ Freely available, part of PETSc configure (-with-thrust-dir)

@ Included as part of CUDA 4.0 installation

M. Knepley (UC) PDE on GPU IMA *10 8/57

http://code.google.com/p/thrust/

PETSc-GPU
Cusp

Cusp is a CUDA library for
sparse linear algebra and graph computations

@ Builds on data structures in Thrust
@ Provides sparse matrices in several formats (CSR, Hybrid)
@ Includes some preliminary preconditioners (Jacobi, SA-AMG)

@ Freely available, part of PETSc configure (-with-cusp—-dir)

M. Knepley (UC) PDE on GPU IMA *10 9/57

http://code.google.com/p/cusp-library/

VECCUDA

Strategy: Define a new Vec implementation

@ Uses Thrust for data storage and operations on GPU
@ Supports full PETSc Vec interface

@ Inherits PETSc scalar type

@ Can be activated at runtime, —vec_type cuda

@ PETSc provides memory coherence mechanism

M. Knepley (UC) PDE on GPU IMA *10 10/57

http://code.google.com/p/thrust/

PETSc-GPU

Memory Coherence

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED
PETSC_CUDA_GPU
PETSC_CUDA_CPU
PETSC_CUDA_BOTH

No allocation on the GPU

Values on GPU are current
Values on CPU are current
Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

M. Knepley (UC) PDE on GPU

IMA’10

11/57

MATAIJCUDA

Also define new Mat implementations

@ Uses Cusp for data storage and operations on GPU
@ Supports full PETSc Mat interface, some ops on CPU
@ Can be activated at runtime, -mat_type aijcuda

@ Notice that parallel matvec necessitates off-GPU data transfer

M. Knepley (UC) PDE on GPU IMA *10 12/57

http://code.google.com/p/cusp-library/

PETSc-GPU
Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,
Minden, Smith, Knepley, 2010

@ All linear algebra types work with solvers
@ Entire solve can take place on the GPU
e Only communicate scalars back to CPU
@ GPU communication cost could be amortized over several solves

@ Preconditioners are a problem
@ Cusp has a promising AMG

M. Knepley (UC) PDE on GPU IMA *10 13/57

http://www.mcs.anl.gov/uploads/cels/papers/P1787.pdf

PETSc-GPU

Installation

PETSc only needs

Turn on CUDA

--with-cuda

Specify the CUDA compiler
—-with-cudac='nvcc,_,—m64’

Indicate the location of packages

——download-+ will also work soon
——with-thrust-dir=/PETSc3/multicore/thrust
--with-cusp-dir=/PETSc3/multicore/cusp

Can also use double precision
--with-precision=single

M. Knepley (UC) PDE on GPU IMA *10 14/57

PETSc-GPU

Example

Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
—-da_mat_type aijcusp -mat_no_inode
-da_grid_x 100 -da_grid_y 100
—-pc_type none -pc_mg_levels 1
-preload off -cuda_synchronize
-log_summary

Setup types
Set grid size
Setup solver
Setup run

M. Knepley (UC) PDE on GPU IMA *10 15/57

FEM-GPU
Outline

@ FEM-GPU
@ Analytic Flexibility
@ Computational Flexibility
@ Efficiency

M. Knepley (UC) PDE on GPU IMA *10 16/57

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA *10 17/57

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA *10 17/57

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility

e Computational Flexibility

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA *10 17/57

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

e Analytic Flexibility
e Computational Flexibility

e Efficiency

http://www.bitbucket.org/aterrel/flamefem

M. Knepley (UC) PDE on GPU IMA *10 17/57

http://www.bitbucket.org/aterrel/flamefem

FEM-GPU Analytic Flexibility

Outline

© FEM-GPU
@ Analytic Flexibility

M. Knepley (UC) PDE on GPU IMA *10 18/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)

M. Knepley (UC) PDE on GPU IMA *10 19/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Laplacian

/T Vi(X) - Vey(x)dx (1)

element = FiniteElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(grad(v), grad(u))=dx

M. Knepley (UC) PDE on GPU IMA *10 19/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @

M. Knepley (UC) PDE on GPU IMA *10 20/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Linear Elasticity

: | (930 +9T600) : (Vi + Vi) ax @

element = VectorElement(’Lagrange’, tetrahedron, 1)

v = TestFunction(element)
u = TrialFunction (element)
a = inner(sym(grad(v)), sym(grad(u)))=dx

M. Knepley (UC) PDE on GPU IMA *10 20/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

2 /7- <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

M. Knepley (UC) PDE on GPU IMA *10 21/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

M. Knepley (UC) PDE on GPU IMA *10 21/57

FEM-GPU Analytic Flexibility

Analytic Flexibility

Full Elasticity

1/7_ <V<;_§,-(x) + VRE,-(X)) O (VQ_S}(X) + V(EJ(X)> ax (3)

element = VectorElement(’Lagrange’, tetrahedron, 1)
cElement = TensorElement(’Lagrange’, tetrahedron, 1,
(dim, dim, dim, dim))

TestFunction (element)

TrialFunction (element)

Coefficient (cElement)

, J, k, I = indices(4)

= sym(grad(v))[i,j]+C[i,j,k,I]+=sym(grad(u))[k,|]+dx

v
u
C
i
a

Currently broken in FEnIiCS release

M. Knepley (UC) PDE on GPU IMA *10 21/57

FEM-GPU Computational Flexibility

Outline

© FEM-GPU

@ Computational Flexibility

M. Knepley (UC) PDE on GPU IMA *10 22/57

FEM-GPU Computational Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

J7 Véi(x) - Vj(x)dx (4)
= - 32;(*) dg;j(x)dx (5)
= JnatBa ‘93; |J|dx 6)
= et [, 20 7O gy @
= G&Y(T)K& (8)

Coefficients are also put into the geometric part.

M. Knepley (UC) PDE on GPU IMA *10 23/57

FEM-GPU Computational Flexibility

Form Decomposition

Additional fields give rise to multilinear forms.

J7 9i(%) - (6k(X)Vg;(x)) dA 9)
B8
= ol (60075) oA (10
— 60392 250 yja (1)
B
= S| [y, 00(€)07(6) e oA (12)
= G (T)KE (13)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (UC) PDE on GPU IMA *10 24/57

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

FEM-GPU Computational Flexibility

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

J7 Véi(x) - Voj(x)dA (14)
= 7 e e dA (15)
= oo 5 83@&“|J|dA (16)
= I fr, o 2L W“‘%f (17)
= BN S, k25 0 20 (18)
= G (T)K (19)

A different space could also be used for Jacobians

M. Knepley (UC) PDE on GPU IMA *10 25/57

FEM-GPU Computational Flexibility

Weak Form Processing

from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir

parameters = ffc.default_parameters()
parameters[' representation’] = ’tensor’
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)

a_K ir[2][0]['AK’][0][0]
a G ir[2][0]['AK"][0][1]
= a_K.AO0.astype (numpy. float32)

=aG

O X

M. Knepley (UC) PDE on GPU

IMA’10

26/57

FEM-GPU Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
e Element Batch Size

o Number of Concurrent Elements
e Loop unrolling
e Interleaving stores with computation

M. Knepley (UC) PDE on GPU IMA *10 27/57

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU IMA *10 28/57

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

. thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU IMA *10 28/57

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU IMA *10 28/57

FEM-GPU Computational Flexibility

Computational Flexibility

Basic Contraction

G K

thread 0
I~
{ ~
Dt
‘70 75

Figure: Tensor Contraction G*(T)K?,

M. Knepley (UC) PDE on GPU IMA *10 28/57

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

thread 0

Go
G‘I . | l/,‘;\

75

G3. >

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) PDE on GPU IMA *10 29/57

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) PDE on GPU IMA *10 29/57

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

G B
G1 . ’&@'z’é e |+

e

Go q
R

G3 . w

Figure: Tensor Contraction G*(T)K,

thy

M. Knepley (UC) PDE on GPU IMA *10 29/57

FEM-GPU Computational Flexibility

Computational Flexibility

Element Batch Size

Figure: Tensor Contraction G*(T)K,

M. Knepley (UC) PDE on GPU IMA *10 29/57

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

thread

)

M. Knepley (UC) PDE on GPU IMA *10 30/57

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

Al
GO .ﬁreadS » thredd 2T 61
1 1

M. Knepley (UC) PDE on GPU IMA *10 30/57

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

M. Knepley (UC) PDE on GPU IMA *10 30/57

FEM-GPU Computational Flexibility

Computational Flexibility

Concurrent Elements

GO ihréad 15 Wiftead G1

M. Knepley (UC) PDE on GPU IMA *10 30/57

FEM-GPU Computational Flexibility

Computational Flexibility

Loop Unrolling

/+ G K contraction: unroll = full =/
E[0] += G[0] « K[O];
E[0] += G[1] = K[1];
E[0] += G[2] « K[2];
E[0] += G[3] = K[3];
E[0] += G[4] « K[4];
E[0] += G[5] « K[5];
E[0] += G[6] « K[6];
E[0] += G[7] « K[7];
E[0] += G[8] « K[8];

M. Knepley (UC) PDE on GPU IMA *10 31/57

FEM-GPU Computational Flexibility

Computational Flexibility

Loop Unrolling

/= G K contraction: unroll = none «/
for(int b = 0; b < 1; ++b) {
const int n = b+1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n+«9+alpha+3+beta] = K[alpha*3+beta];

M. Knepley (UC) PDE on GPU IMA *10 32/57

FEM-GPU Computational Flexibility

Computational Flexibility

Interleaving stores

/= G K contraction: unroll = none «/
for(int b = 0; b < 4; ++b) {
const int n = bx1;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E[b] += G[n*9+alpha=3+beta] * K[alpha+3+beta];
}
}
}

/+ Store contraction results «/

elemMat[Eoffset+idx+0] = E[0];
elemMat[Eoffset+idx+16] = E[1];
elemMat[Eoffset+idx+32] = E[2];
elemMat[Eoffset+idx+48] = E[3];

M. Knepley (UC) PDE on GPU IMA *10 33/57

FEM-GPU Computational Flexibility

Computational Flexibility

Interleaving stores

n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
for(int beta = 0; beta < 3; ++beta) {
E += G[n+9+alpha*3+beta] = K[alpha«3+beta];
}
}

/= Store contraction result =/
elemMat[Eoffset+idx+0] = E;
n=1; E=0.0; /+ contract «/
elemMat[Eoffset+idx+16] = E;
n=2; E=0.0; /+ contract «/
elemMat[Eoffset+idx+32] = E;
n=3;, E=0.0; /+ contract «/
elemMat[Eoffset+idx+48] = E;

M. Knepley (UC) PDE on GPU

IMA’10

34/57

FEM-GPU Efficiency

Outline

© FEM-GPU

@ Efficiency

M. Knepley (UC) PDE on GPU IMA *10 35/57

FEM-GPU Efficiency

Performance

Peak Performance

GPU Flop Rate for

3D P, Lagrange Laplacian and 2D P, Lagrange Elasticity
120000 . : .

100000

80000 -

60000 -

MFlops/s

40000

20000

— Laplacian bs128 ce2 is
—— Elasticity bs256 ce2 is

o} 50000 100000 150000 200000
Number of Elements

M. Knepley (UC) PDE on GPU IMA *10 36/57

FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

M. Knepley (UC) PDE on GPU IMA *10 37/57

FEM-GPU Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P; Laplacian Integration

Model Price ($) | GF/s | MF/s$
GTX285 390 90 231
Core 2 Duo 300 12* 40

* Jed Brown Optimization Engine

M. Knepley (UC) PDE on GPU IMA *10 37/57

FEM-GPU Efficiency

Performance

Influence of Element Batch Sizes

CPU vs. GPU Flop Rate for 2D P, Lagrange ['Elasticity']

120000
Interleave Stores = 1
100000 Loop Unrolling = full
80000
K
7
& 60000
5
NVIDIA bs64 cel is unroll
40000 — NVIDIA bs64 ce2 is unroll ||
— NVIDIA bs64 ce4 is unroll
— NVIDIA bs128 cel is unroll
— NVIDIA bs128 ce2 is unroll
20000 NVIDIA bs128 ce4 is unroll [|
— NVIDIA bs256 cel is unroll
— NVIDIA bs256 ce2 is unroll
Y — NVIDIA bs256 ce4 is unroll
0 50000 100000 150000 200000

Number of Elements

M. Knepley (UC) PDE on GPU IMA *10 38

FEM-GPU Efficiency

Explaining performance

@ Increase shared memory and work/thread until you top out
@ Occupancies go down or level out as performance goes up

@ Does not work without interleaved stores
@ Scheduler can switch to kernels who are computing
o Larger number of smaller computations makes better fit

@ Should | worry about detailed explanations for performance?

e Sensible decompositions, coupled with exploration
e FLAME methodology

M. Knepley (UC) PDE on GPU IMA *10 39/57

FEM-GPU Efficiency

Automated Tuning System

Components of our performance evaluation system:

@ Generate set of kernels using:
o Loop slicing, store reordering, etc.
e Loop invariants ala FLAME
e High level constructs ala Rheagen and FEniCS

@ Store results and metadata in HDF5 using PyTables
e Thousands of tests for this talk

@ Interrogate and plot with Matplotlib

@ Eventually couple to build system
e FFTW, Spiral, FLAME

M. Knepley (UC) PDE on GPU IMA *10 40/57

http://flame.utexas.edu
http://www.pytables.org
http://www.matplotlib.org

Conclusion

Why Should You Try This?

Structured code generation,

M. Knepley (UC) PDE on GPU IMA *10 41/57

I B

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

M. Knepley (UC) PDE on GPU IMA *10 41/57

I B

Why Should You Try This?

Structured code generation,

can allow easy integration
of novel hardware

and reconcile user physics
with system traversals.

M. Knepley (UC) PDE on GPU IMA *10 41/57

FMM-GPU
Outline

© Fvm-GPU
@ Quick FMM Intro
@ Differences on the GPU

M. Knepley (UC) PDE on GPU IMA *10 42/57

FMM-GPU Quick FMM Intro

Outline

© Fvm-GPU
@ Quick FMM Intro

M. Knepley (UC) PDE on GPU IMA *10 43/57

FMM-GPU Quick FMM Intro

FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity

M. Knepley (UC) PDE on GPU IMA *10 44/57

FMM-GPU Quick FMM Intro

FMM Applications

FMM can accelerate both integral and boundary element methods for:
@ Laplace
@ Stokes
@ Elasticity
Advantages
@ Mesh-free
@ O(N) time
@ Distributed and multicore (GPU) parallelism
@ Small memory bandwidth requirement

M. Knepley (UC) PDE on GPU IMA *10 44/57

FMM-GPU Quick FMM Intro

Fast Multipole Method

FMM accelerates the calculation of the function:

O(x)) =Y K(x;, %)q(x) (20)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
@ Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) PDE on GPU IMA *10 45/57

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

FMM-GPU Quick FMM Intro

Fast Multipole Method

FMM accelerates the calculation of the function:

o) =3 (20)
J

@ Accelerates O(N?) to O(N) time

@ The kernel K(x;, x;) must decay quickly from (x;, x;)
e Can be singular on the diagonal (Calderén-Zygmund operator)

@ Discovered by Leslie Greengard and Vladimir Rohklin in 1987

@ Very similar to recent wavelet techniques

M. Knepley (UC) PDE on GPU IMA *10 45/57

http://en.wikipedia.org/wiki/Singular_integral#Calder.C3.B3n-Zygmund_kernels
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.9178

FMM-GPU Quick FMM Intro

PetFMM

PetFMM is an freely available implementation of the
Fast Multipole Method
http://barbagroup.bu.edu/Barba_group/PetFMM.html

@ Leverages PETSc

@ Same open source license
o Uses Sieve for parallelism

@ Extensible design in C++

o Templated over the kernel
e Templated over traversal for evaluation

@ MPI implementation

o Novel parallel strategy for anisotropic/sparse particle distributions
o PetFMM-A dynamically load-balancing parallel fast multipole library
@ 86% efficient strong scaling on 64 procs

@ Example application using the Vortex Method for fluids
@ (coming soon) GPU implementation

M. Knepley (UC) PDE on GPU IMA *10 46/57

http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://www.mcs.anl.gov/petsc
http://arxiv.org/abs/0905.2637
http://onlinelibrary.wiley.com/doi/10.1002/nme.2972/abstract

FMM-GPU Quick FMM Intro

Spatial Decomposition

Pairs of boxes are divided into near and far:

M. Knepley (UC) PDE on GPU IMA *10 47/57

FMM-GPU Quick FMM Intro

Spatial Decomposition

Pairs of boxes are divided into near and far:

are treated as very near.

M. Knepley (UC) PDE on GPU IMA *10 47/57

FMM-GPU Quick FMM Intro

Functional Decomposition

Upward Sweep

(.. QXQJ Create Multipole Expansions. Evaluate Local Expansions. < . >
SN : g
—> P2M —> M2M ----> M2L ----> 120 ---=> L2

M. Knepley (UC) PDE on GPU IMA *10 48/57

FMM-GPU Differences on the GPU

Outline

© Fvm-GPU

@ Differences on the GPU

M. Knepley (UC) PDE on GPU IMA *10 49/57

FMM-GPU Differences on the GPU

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

@ Up to 85% of time in FMM

o Tradeoff with direct
interaction

@ Dense matrix multiplication
e 2p? rows
@ Each interaction list box
o (69— 3d)2d
ed=21.=38
e 1,769,472 matvecs

M. Knepley (UC) PDE on GPU IMA 10 50/57

FMM-GPU Differences on the GPU

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

M. Knepley (UC) PDE on GPU IMA *10

51/57

FMM-GPU Differences on the GPU

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

M. Knepley (UC) PDE on GPU IMA *10

51/57

FMM-GPU Differences on the GPU

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12
@ Matrix size is 2304 bytes

M. Knepley (UC) PDE on GPU IMA *10

51/57

FMM-GPU Differences on the GPU

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12
@ Matrix size is 2304 bytes
@ Plenty of work per thread (81 Kflops or 36 flops/byte)

M. Knepley (UC) PDE on GPU IMA*10

51/57

FMM-GPU Differences on the GPU

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

M. Knepley (UC) PDE on GPU IMA *10

51/57

FMM-GPU Differences on the GPU

GPU M2L

Version 0

One thread per M2L transform

@ Thread block (TB) transforms one Multipole Expansion (ME) for
each Interaction List (IL) box — 27 times

e p=12

@ Matrix size is 2304 bytes

@ Plenty of work per thread (81 Kflops or 36 flops/byte)
@ BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

M. Knepley (UC) PDE on GPU IMA *10

51/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

]11210 — __1f <7 i;-j:) t—-ﬁ_j_:

@ Traverse matrix by perdiagonals

M. Knepley (UC) PDE on GPU

IMA 10

(21)

52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

]11210 — __1f <7 i;-j:) t—-ﬁ_j_:

@ Traverse matrix by perdiagonals
@ Same work

M. Knepley (UC) PDE on GPU

IMA 10

(21)

52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1’(' Jj”) i

@ Traverse matrix by perdiagonals
@ Same work
@ No memory limit on concurrency

M. Knepley (UC) PDE on GPU

IMA’10

(21)

52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1’(' Jj”) i

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)

M. Knepley (UC) PDE on GPU

IMA’10

(21)

52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1'(’ Jj”) i1 21)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

20 GFlops

5x Speedup of
Downward Sweep

M. Knepley (UC) PDE on GPU IMA *10 52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1"<’ Jj”) i1 21)

@ Traverse matrix by perdiagonals

@ Same work

@ No memory limit on concurrency

@ 8 concurrent TBs per MultiProcessor (MP)
@ 27 x 8 = 216 threads, BUT max is 512

Algorithm limits concurrency!

20 GFlops

5x Speedup of
Downward Sweep

M. Knepley (UC) PDE on GPU IMA *10 52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 1

Apply M2L transform matrix-free

m2l; = —1"<’ Jj”) =i 21)

Additional problems: Not enough parallelism for data movement
@ Move 27 LE to global memory per TB
@ 27 x 2p = 648 floats
@ With 32 threads, takes 21 memory transactions

M. Knepley (UC) PDE on GPU IMA *10 52/57

FMM-GPU Differences on the GPU

GPU M2L

Version 2

One thread per element of the LE

m2l; = 1i<l —/H) =i

@ Each thread does a dot product

M2L

M. Knepley (UC) PDE on GPU

IMA’10

53/57

FMM-GPU Differences on the GPU

GPU M2L

Version 2

One thread per element of the LE

m2l; = 1"<' Jj”) it

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

M. Knepley (UC) PDE on GPU

M2L

IMA’10

53/57

FMM-GPU Differences on the GPU

GPU M2L

Version 2

One thread per element of the LE

m2l; = 1"<' Jj”) it

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching
e Each row precomputes ¢t/

M2L

e All threads loop to p + 1, only store ¢/~

M. Knepley (UC) PDE on GPU

IMA’10

53/57

FMM-GPU Differences on the GPU

GPU M2L
Version 2
One thread per element of the LE
i T —inet
m2l; = —1 < !)t j (22)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching

e Each row precomputes ¢t/ '
e All threads loop to p + 1, only store ¢/~

@ Loop unrolling

M2L =

M. Knepley (UC) PDE on GPU IMA *10 53/57

FMM-GPU Differences on the GPU

GPU M2L
Version 2
One thread per element of the LE
i T —inet
m2l; = —1 < !)t j (22)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching
e Each row precomputes ¢t/ 15x SpeedUp of

e All threads loop to p + 1, only store t——' Downward Sweep
@ Loop unrolling
@ No thread synchronization

300 GFlops

M. Knepley (UC) PDE on GPU IMA *10 53/57

FMM-GPU Differences on the GPU

GPU M2L
Version 2
One thread per element of the LE
i T —inet
m2l; = —1 < !)t j (22)

@ Each thread does a dot product
@ Cannot use diagonal traversal, more work

@ Avoid branching
e Each row precomputes ¢t/ 15x SpeedUp of

e All threads loop to p + 1, only store t——' Downward Sweep
@ Loop unrolling
@ No thread synchronization

Examine memory access

300 GFlops

M. Knepley (UC) PDE on GPU IMA *10 53/57

FMM-GPU Differences on the GPU

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

CPU | GPU
Bus Width (bits) 64 | 512

Bus Clock Speed (MHz) 400 | 1600
Memory Bandwidth (GB/s) 3| 102
Latency (cycles) 240 | 600

Tesla always accesses blocks of 64 or 128 bytes

M. Knepley (UC) PDE on GPU IMA *10 54/57

FMM-GPU Differences on the GPU

GPU M2L

Version 3

Coalesce and Overlap memory accesses
Coalescing is
@ a group of 16 threads
@ accessing consective addresses
@ 4,8, or 16 bytes
@ in the same block of memory
e 32, 64, or 128 bytes

M. Knepley (UC) PDE on GPU IMA *10 55/57

FMM-GPU Differences on the GPU

GPU M2L

Version 3

Coalesce and Overlap memory accesses
Memory accesses can be overlapped with
computation when

@ a TBis waiting for data from main memory
@ another TB can be scheduled on the SM

@ 512 TB can be active at once on Tesla

M. Knepley (UC) PDE on GPU

IMA’10

55/57

FMM-GPU Differences on the GPU

GPU M2L

Version 3

Coalesce and overlap memory accesses
Note that the theoretical peak (1 TF)

@ MULT and FMA must execute simultaneously

480 GFlops
@ 346 GOps
25x Speedup of
@ Without this, peak can be closer to 600 GF SDOVF\),nwarg
Sweep

M. Knepley (UC) PDE on GPU IMA *10 55/57

FMM-GPU Differences on the GPU

Design Principles

M2L required all of these optimization steps:
@ Many threads per kernel

@ Avoid branching
@ Unroll loops
@ Coalesce memory accesses

@ Overlap main memory access with computation

M. Knepley (UC) PDE on GPU IMA *10 56/57

How Will Algorithms Change?

o Massive concurrency is necessary

» Mix of vector and thread paradigms
o Demands new analysis

« More attention to memory management

» Blocks will only get larger
» Determinant of performance

M. Knepley (UC) PDE on GPU IMA *10 57/57

	PETSc-GPU
	FEM-GPU
	Analytic Flexibility
	Computational Flexibility
	Efficiency

	Conclusion
	FMM-GPU
	Quick FMM Intro
	Differences on the GPU

	Outlook

