Software Design for PDEs on GPUs

Matthew Knepley

Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center

High Performance Computing and Emerging Architectures Institute for Mathematics and Its Applications Minneapolis, January 10, 2011

PDE on GPU

Chicago Automated Scientific Computing Group:

- Prof. Ridgway Scott
 - Dept. of Computer Science, University of Chicago
 - Dept. of Mathematics, University of Chicago
- Peter Brune, (biological DFT)
 - Dept. of Computer Science, University of Chicago
- Dr. Andy Terrel, (Rheagen)
 - Dept. of Computer Science and TACC, University of Texas at Austin

The PetFMM team:

- Prof. Lorena Barba
 - Dept. of Mechanical Engineering, Boston University
- Dr. Felipe Cruz, developer of GPU extension
 - Nagasaki Advanced Computing Center, Nagasaki University
- Dr. Rio Yokota, developer of 3D extension
 - Dept. of Mechanical Engineering, Boston University

The PyLith Team:

- Dr. Brad Aagaard (PyLith)
 - United States Geological Survey, Menlo Park, CA
- Dr. Charles Williams (PyLith)
 - GNS Science, Wellington, NZ

To be widely accepted, GPU computing must be transparent to the user,

and reuse existing infrastructure.

To be widely accepted, GPU computing must be transparent to the user,

and reuse existing infrastructure.

To be widely accepted, GPU computing must be transparent to the user,

and reuse existing infrastructure.

Lessons from Clusters and MPPs

Failure

- Parallelizing Compilers
- Automatic program decomposition

Success

- MPI (Library Approach)
- PETSc (Parallel Linear Algebra)
- User provides only the mathematical description

Lessons from Clusters and MPPs

Failure

- Parallelizing Compilers
- Automatic program decomposition

Success

- MPI (Library Approach)
- PETSc (Parallel Linear Algebra)
- User provides only the mathematical description

Outline

2 FEM-GPU

M. Knepley (UC)

PDE on GPU

≣▶ ≣ •୨৭৫ IMA'10 7/57

イロト イポト イヨト イヨ

Thrust is a CUDA library of parallel algorithms

- Interface similar to C++ Standard Template Library
- Containers (vector) on both host and device
- Algorithms: sort, reduce, scan
- Freely available, part of PETSc configure (-with-thrust-dir)
- Included as part of CUDA 4.0 installation

Cusp is a CUDA library for sparse linear algebra and graph computations

- Builds on data structures in Thrust
- Provides sparse matrices in several formats (CSR, Hybrid)
- Includes some preliminary preconditioners (Jacobi, SA-AMG)
- Freely available, part of PETSc configure (-with-cusp-dir)

Strategy: Define a new Vec implementation

- Uses Thrust for data storage and operations on GPU
- Supports full PETSc Vec interface
- Inherits PETSc scalar type
- Can be activated at runtime, -vec_type cuda
- PETSc provides memory coherence mechanism

PETSc Objects now hold a coherence flag

PETSC_CUDA_UNALLOCATED	No allocation on the GPU
PETSC_CUDA_GPU	Values on GPU are current
PETSC_CUDA_CPU	Values on CPU are current
PETSC_CUDA_BOTH	Values on both are current

Table: Flags used to indicate the memory state of a PETSc CUDA Vec object.

Also define new Mat implementations

- Uses Cusp for data storage and operations on GPU
- Supports full PETSc Mat interface, some ops on CPU
- Can be activated at runtime, -mat_type aijcuda
- Notice that parallel matvec necessitates off-GPU data transfer

Solvers come for Free

Preliminary Implementation of PETSc Using GPU, Minden, Smith, Knepley, 2010

- All linear algebra types work with solvers
- Entire solve can take place on the GPU
 - Only communicate scalars back to CPU
- GPU communication cost could be amortized over several solves
- Preconditioners are a problem
 - Cusp has a promising AMG

Installation

PETSc only needs

Turn on CUDA --with-cuda # Specify the CUDA compiler --with-cudac='nvcc -m64' # Indicate the location of packages # --download-* will also work soon --with-thrust-dir=/PETSc3/multicore/thrust --with-cusp-dir=/PETSc3/multicore/cusp # Can also use double precision --with-precision=single

- 3 →

Example Driven Cavity Velocity-Vorticity with Multigrid

```
ex50 -da_vec_type seqcusp
  -da_mat_type aijcusp -mat_no_inode # Setup types
  -da_grid_x 100 -da_grid_y 100 # Set grid size
  -pc_type none -pc_mg_levels 1 # Setup solver
  -preload off -cuda_synchronize # Setup run
  -log_summary
```

Outline

1 PETSc-GPU

2 F

- FEM-GPU
- Analytic Flexibility
- Computational Flexibility
- Efficiency

FMM-GPU

< 47 ▶

- 3 →

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

M. Knep	ley (UC)
---------	-------	-----

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

M. Knep	ley (UC)
---------	-------	-----

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility

Efficiency

M. Kneple	ey (UC)
-----------	---------

Low Order FEM on GPUs

- Analytic Flexibility
- Computational Flexibility
- Efficiency

Outline

Analytic Flexibility

- Computational Flexibility
- Efficiency

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Analytic Flexibility

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$

```
element = FiniteElement('Lagrange', tetrahedron, 1)
v = TestFunction(element)
u = TrialFunction(element)
a = inner(grad(v), grad(u))*dx
```

イロト イ団ト イヨト イヨ

1)

Analytic Flexibility

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(1)

• • • • • • • • • • • • •

```
element = FiniteElement('Lagrange', tetrahedron, 1)
v = TestFunction(element)
u = TrialFunction(element)
a = inner(grad(v), grad(u))*dx
```

Analytic Flexibility Linear Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^{\mathcal{T}} \vec{\phi}_i(\mathbf{x}) \right) : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(2)

element = VectorElement('Lagrange', tetrahedron, 1)

- v = TestFunction(element)
- u = TrialFunction(element)
- a = inner(sym(grad(v)), sym(grad(u))) * dx

イロト イ団ト イヨト イヨ

Analytic Flexibility Linear Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(2)

element = VectorElement('Lagrange', tetrahedron, 1)

- v = TestFunction(element)
- u = TrialFunction(element)
- a = inner(sym(grad(v)), sym(grad(u))) * dx

• • • • • • • • • • • • •

Analytic Flexibility Full Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(3)

Currently broken in FEniCS release

M. Knepley	/ (UC)
------------	--------

Analytic Flexibility Full Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(3)

element = VectorElement ('Lagrange', tetrahedron, 1) cElement = TensorElement ('Lagrange', tetrahedron, 1,	
(dim, dim, dim, dim))	
v = TestFunction(element)	
u = TrialFunction(element)	
C = Coefficient(cElement)	
i, j, k, $l = indices(4)$	
a = sym(grad(v))[i, j] * C[i, j, k, l] * sym(grad(u))[k, l] * discussional discussion density of the sym(grad(u))[k, l] * discussion density of the sym(grad(u))[k,	х

Currently broken in FEniCS release

M. Knepley (UC)

イロン イ理 とくほとく ほ

Analytic Flexibility Full Elasticity

$$\frac{1}{4} \int_{\mathcal{T}} \left(\nabla \vec{\phi}_i(\mathbf{x}) + \nabla^T \vec{\phi}_i(\mathbf{x}) \right) : C : \left(\nabla \vec{\phi}_j(\mathbf{x}) + \nabla \vec{\phi}_j(\mathbf{x}) \right) d\mathbf{x}$$
(3)

element	= VectorElement('Lagrange', tetrahedron, 1)
CLIEMent	= rensorchement(cayrange , tetraneoron , r,
	(dim, dim, dim, dim))
v = TestF	unction (element)
u = Triall	⁻ unction(element)
C = Coeff	iicient (cElement)
i, j, k,	I = indices(4)
a = sym(g	rad(v))[i,j]*C[i,j,k,l]*sym(grad(u))[k,l]*dx

Currently broken in FEniCS release

M. Knep	ley (UC
---------	-------	----

• • • • • • • • • • • •

Outline

Analytic Flexibility

Computational Flexibility

Efficiency

Form Decomposition

Element integrals are decomposed into <u>analytic</u> and <u>geometric</u> parts:

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(4)

$$= \int_{\mathcal{T}} \frac{\partial \phi_i(\mathbf{x})}{\partial x_{\alpha}} \frac{\partial \phi_j(\mathbf{x})}{\partial x_{\alpha}} d\mathbf{x}$$
(5)

$$= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} |J| d\mathbf{x}$$
(6)

$$= \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} |J| \int_{\mathcal{T}_{ref}} \frac{\partial \phi_i(\xi)}{\partial \xi_{\beta}} \frac{\partial \phi_j(\xi)}{\partial \xi_{\gamma}} d\mathbf{x}$$
(7)
$$= \mathbf{G}^{\beta \gamma}(\mathcal{T}) \mathbf{K}^{ij}_{\beta \gamma}$$
(8)

Coefficients are also put into the geometric part.

M. Knep	ley (UC)
---------	-------	-----

Form Decomposition

=

Additional fields give rise to multilinear forms.

$$\int_{\mathcal{T}} \phi_i(\mathbf{x}) \cdot \left(\phi_k(\mathbf{x}) \nabla \phi_j(\mathbf{x}) \right) \, dA \tag{9}$$

$$= \int_{\mathcal{T}} \phi_i^{\beta}(\mathbf{x}) \left(\phi_k^{\alpha}(\mathbf{x}) \frac{\partial \phi_j^{\beta}(\mathbf{x})}{\partial x_{\alpha}} \right) dA$$
(10)

$$= \int_{\mathcal{T}_{ref}} \phi_i^{\beta}(\xi) \phi_k^{\alpha}(\xi) \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_j^{\beta}(\xi)}{\partial \xi_{\gamma}} |J| dA$$
(11)

$$= \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} |J| \int_{\mathcal{T}_{ref}} \phi_{i}^{\beta}(\xi) \phi_{k}^{\alpha}(\xi) \frac{\partial \phi_{i}^{\beta}(\xi)}{\partial \xi_{\gamma}} dA$$
(12)

$$\boldsymbol{G}^{\alpha\gamma}(\mathcal{T})\boldsymbol{K}^{\boldsymbol{\prime}\boldsymbol{\prime}\boldsymbol{\kappa}}_{\alpha\gamma} \tag{13}$$

The index calculus is fully developed by Kirby and Logg in A Compiler for Variational Forms.

	<		-≣≯	< ≣ >	2	200
M. Knepley (UC)	PDE on GPU			IMA '10		24 / 57

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) dA \tag{14}$$

$$= \int_{\mathcal{T}} \frac{\partial \phi_i(\mathbf{x})}{\partial x_{\alpha}} \frac{\partial \phi_j(\mathbf{x})}{\partial x_{\alpha}} dA$$
(15)

$$= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} |J| dA$$
(16)

$$= |J| \int_{\mathcal{T}_{ref}} \phi_k J_k^{\beta \alpha} \frac{\partial \phi_i(\xi)}{\partial \xi_\beta} \phi_l J_l^{\gamma \alpha} \frac{\partial \phi_j(\xi)}{\partial \xi_\gamma} dA$$
(17)

$$= J_{k}^{\beta\alpha} J_{l}^{\gamma\alpha} |J| \int_{\mathcal{T}_{ref}} \phi_{k} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \phi_{l} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} dA$$
(18)
$$= G_{kl}^{\beta\gamma}(\mathcal{T}) \mathcal{K}_{\beta\gamma}^{ijkl}$$
(19)

• • • • • • • • • • • •

M. Knepley (UC)

=

IMA '10 25 / 57

Weak Form Processing

```
from ffc.analysis import analyze_forms
from ffc.compiler import compute_ir
parameters = ffc.default_parameters()
parameters['representation'] = 'tensor'
analysis = analyze_forms([a,L], {}, parameters)
ir = compute_ir(analysis, parameters)
a_K = ir[2][0]['AK'][0][0]
a_G = ir[2][0]['AK'][0][1]
K = a_K.A0.astype(numpy.float32)
G = a G
```
We generate different computations on the fly,

and can change

- Element Batch Size
- Number of Concurrent Elements
- Loop unrolling
- Interleaving stores with computation

Computational Flexibility

Computational Flexibility Basic Contraction

28 / 57

Computational Flexibility

Computational Flexibility Basic Contraction

28 / 57

Computational Flexibility

28 / 57

Computational Flexibility Basic Contraction

Computational Flexibility

28/57

Computational Flexibility Basic Contraction

Computational Flexibility

Computational Flexibility

Computational Flexibility

Computational Flexibility

Computational Flexibility

Computational Flexibility Concurrent Elements

IMA '10

Computational Flexibility

Computational Flexibility Concurrent Elements

Computational Flexibility

Computational Flexibility Concurrent Elements

Computational Flexibility

Computational Flexibility Concurrent Elements

Computational Flexibility

Computational Flexibility

/* GK contra	ac	tion: unro	=	full	*/
E[0] += G[0]	*	K[0];			
E[0] += G[1]	*	K[1];			
E[0] += G[2]	*	K[2];			
E[0] += G[3]	*	K[3];			
E[0] += G[4]	*	K[4];			
E[0] += G[5]	*	K[5];			
E[0] += G[6]	*	K[6];			
E[0] += G[7]	*	K[7];			
E[0] += G[8]	*	K[8];			

・ロト ・ 日 ト ・ ヨ ト ・

Computational Flexibility

```
/* G K contraction: unroll = none */
for(int b = 0; b < 1; ++b) {
    const int n = b*1;
    for(int alpha = 0; alpha < 3; ++alpha) {
        for(int beta = 0; beta < 3; ++beta) {
            E[b] += G[n*9+alpha*3+beta] * K[alpha*3+beta];
        }
}</pre>
```

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Computational Flexibility Interleaving stores

```
/* G K contraction: unroll = none */
for(int b = 0; b < 4; ++b) {
    const int n = b*1;
    for(int alpha = 0; alpha < 3; ++alpha) {
        for(int beta = 0; beta < 3; ++beta) {
            E[b] += G[n*9+alpha*3+beta] * K[alpha*3+beta];
        }
    }
}
/* Store contraction results */
elemMat[Eoffset+idx+0] = E[0];
elemMat[Eoffset+idx+16] = E[1];
elemMat[Eoffset+idx+32] = E[2];
elemMat[Eoffset+idx+48] = E[3];</pre>
```

Computational Flexibility Interleaving stores

```
n = 0;
for(int alpha = 0; alpha < 3; ++alpha) {
    for(int beta = 0; beta < 3; ++beta) {
        E += G[n*9+alpha*3+beta] * K[alpha*3+beta];
    }
}
/* Store contraction result */
elemMat[Eoffset+idx+0] = E;
n = 1; E = 0.0; /* contract */
elemMat[Eoffset+idx+16] = E;
n = 2; E = 0.0; /* contract */
elemMat[Eoffset+idx+32] = E;
n = 3; E = 0.0; /* contract */
elemMat[Eoffset+idx+48] = E;
```

Outline

- Analytic Flexibility
- Computational Flexibility
- Efficiency

Performance Peak Performance

Price-Performance Comparison of CPU and GPU 3D P₁ Laplacian Integration

Model	Price (\$)	GF/s	MF/s\$
GTX285	390	90	231
Core 2 Duo	300	2	6.6

Price-Performance Comparison of CPU and GPU 3D P₁ Laplacian Integration

Model	Price (\$)	GF/s	MF/s\$
GTX285	390	90	231
Core 2 Duo	300	12*	40

* Jed Brown Optimization Engine

Efficiency

Performance Influence of Element Batch Sizes

Explaining performance

- Increase shared memory and work/thread until you top out
 - Occupancies go down or level out as performance goes up
- Does not work without interleaved stores
 - Scheduler can switch to kernels who are computing
 - Larger number of smaller computations makes better fit
- Should I worry about detailed explanations for performance?
 - Sensible decompositions, coupled with exploration
 - FLAME methodology

Components of our performance evaluation system:

Efficiency

FFM-GPU

- Generate set of kernels using:
 - Loop slicing, store reordering, etc.
 - Loop invariants ala FLAME
 - High level constructs ala Rheagen and FEniCS
- Store results and metadata in HDF5 using PyTables
 - Thousands of tests for this talk
- Interrogate and plot with Matplotlib
- Eventually couple to build system
 - FFTW, Spiral, FLAME

Why Should You Try This?

Structured code generation,

can allow easy integration of novel hardware

and reconcile user physics with system traversals.

Why Should You Try This?

Structured code generation,

can allow easy integration of novel hardware

and reconcile user physics with system traversals.

Why Should You Try This?

Structured code generation,

can allow easy integration of novel hardware

and reconcile user physics with system traversals.

Outline

1 PETSc-GPU

2 FEM-GPU

3 FMM-GPU

- Quick FMM Intro
- Differences on the GPU

イロト イヨト イヨト イ

Outline

イロト イポト イヨト イヨ

FMM Applications

FMM can accelerate both integral and boundary element methods for:

- Laplace
- Stokes
- Elasticity

- 3 →

FMM Applications

FMM can accelerate both integral and boundary element methods for:

- Laplace
- Stokes
- Elasticity
- Advantages
 - Mesh-free
 - *O*(*N*) time
 - Distributed and multicore (GPU) parallelism
 - Small memory bandwidth requirement

Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j K(x_i, x_j) q(x_j)$$
(20)

• Accelerates
$$\mathcal{O}(N^2)$$
 to $\mathcal{O}(N)$ time

- The kernel $K(x_i, x_j)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques

Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j \frac{q_j}{|x_i - x_j|}$$
(20)

• Accelerates
$$\mathcal{O}(N^2)$$
 to $\mathcal{O}(N)$ time

- The kernel $K(x_i, x_j)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques

PetFMM

PetFMM is an freely available implementation of the Fast Multipole Method

http://barbagroup.bu.edu/Barba_group/PetFMM.html

- Leverages PETSc
 - Same open source license
 - Uses Sieve for parallelism
- Extensible design in C++
 - Templated over the kernel
 - Templated over traversal for evaluation
- MPI implementation
 - Novel parallel strategy for anisotropic/sparse particle distributions
 - PetFMM–A dynamically load-balancing parallel fast multipole library
 - 86% efficient strong scaling on 64 procs
- Example application using the Vortex Method for fluids
- (coming soon) GPU implementation

< < >> < <</p>

Spatial Decomposition

Pairs of boxes are divided into *near* and *far*:

- E - N

Spatial Decomposition

Pairs of boxes are divided into *near* and *far*:

Neighbors are treated as very near.
Functional Decomposition

イロト イ団ト イヨト イヨ

Outline

Differences on the GPU

M. Knepley (UC)

イロト イポト イヨト イヨ

Multipole-to-Local Transformation

Re-expands a multipole series as a Taylor series

- Up to 85% of time in FMM
 - Tradeoff with direct interaction
- Dense matrix multiplication
 - 2p² rows
- Each interaction list box
 - (6^d 3^d) 2^{dL}
- *d* = 2, *L* = 8
 - 1,769,472 matvecs

- Thread block (TB) transforms one Multipole Expansion (ME) for each Interaction List (IL) box — 27 times
- *p* = 12
- Matrix size is 2304 bytes
- Plenty of work per thread (81 Kflops or 36 flops/byte)
- BUT, 16K shared memory only holds 7 matrices

→ ∃ →

- Thread block (TB) transforms one Multipole Expansion (ME) for each Interaction List (IL) box — 27 times
- *p* = 12
- Matrix size is 2304 bytes
- Plenty of work per thread (81 Kflops or 36 flops/byte)
- BUT, 16K shared memory only holds 7 matrices

→ ∃ →

- Thread block (TB) transforms one Multipole Expansion (ME) for each Interaction List (IL) box — 27 times
- *p* = 12
- Matrix size is 2304 bytes
- Plenty of work per thread (81 Kflops or 36 flops/byte)
- BUT, 16K shared memory only holds 7 matrices

- Thread block (TB) transforms one Multipole Expansion (ME) for each Interaction List (IL) box — 27 times
- *p* = 12
- Matrix size is 2304 bytes
- Plenty of work per thread (81 Kflops or 36 flops/byte)
- BUT, 16K shared memory only holds 7 matrices

- Thread block (TB) transforms one Multipole Expansion (ME) for each Interaction List (IL) box — 27 times
- *p* = 12
- Matrix size is 2304 bytes
- Plenty of work per thread (81 Kflops or 36 flops/byte)
- BUT, 16K shared memory only holds 7 matrices

- Thread block (TB) transforms one Multipole Expansion (ME) for each Interaction List (IL) box — 27 times
- *p* = 12
- Matrix size is 2304 bytes
- Plenty of work per thread (81 Kflops or 36 flops/byte)
- BUT, 16K shared memory only holds 7 matrices

Memory limits concurrency!

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (21)

• Traverse matrix by perdiagonals

Same work

- No memory limit on concurrency
- 8 concurrent TBs per MultiProcessor (MP)
- 27 × 8 = 216 threads, **BUT** max is 512

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {\binom{i+j}{j}} t^{-i-j-1}$$
(21)

- Traverse matrix by perdiagonals
- Same work
- No memory limit on concurrency
- 8 concurrent TBs per MultiProcessor (MP)
- 27 × 8 = 216 threads, **BUT** max is 512

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
(21)

- Traverse matrix by perdiagonals
- Same work
- No memory limit on concurrency
- 8 concurrent TBs per MultiProcessor (MP)
- 27 × 8 = 216 threads, **BUT** max is 512

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
(21)

- Traverse matrix by perdiagonals
- Same work
- No memory limit on concurrency
- 8 concurrent TBs per MultiProcessor (MP)
- 27 × 8 = 216 threads, **BUT** max is 512

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (21)

- Traverse matrix by perdiagonals
- Same work
- No memory limit on concurrency
- 8 concurrent TBs per MultiProcessor (MP)
- $27 \times 8 = 216$ threads, **BUT** max is 512

20 GFlops

5x Speedup of Downward Sweep

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {\binom{i+j}{j}} t^{-i-j-1}$$
(21)

- Traverse matrix by perdiagonals
- Same work
- No memory limit on concurrency
- 8 concurrent TBs per MultiProcessor (MP)
- $27 \times 8 = 216$ threads, **BUT** max is 512

20 GFlops

5x Speedup of Downward Sweep

Algorithm limits concurrency!

Apply M2L transform matrix-free

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (21)

Additional problems: Not enough parallelism for data movement

- Move 27 LE to global memory per TB
- 27 × 2*p* = 648 floats
- With 32 threads, takes 21 memory transactions

One thread per *element* of the LE

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (22)

Each thread does a dot product

- Cannot use diagonal traversal, more work
- Avoid branching
 - Each row precomputes t⁻ⁱ⁻¹
 - All threads loop to p + 1, only store t^{-i-1}
- Loop unrolling
- No thread synchronization

One thread per *element* of the LE

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (22)

- Each thread does a dot product
- Cannot use diagonal traversal, more work
- Avoid branching
 - Each row precomputes *t*^{-*i*-1}
 - All threads loop to p + 1, only store t^{-i-1}
- Loop unrolling
- No thread synchronization

One thread per *element* of the LE

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (22)

- Each thread does a dot product
- Cannot use diagonal traversal, more work
- Avoid branching
 - Each row precomputes t⁻ⁱ⁻¹
 - All threads loop to p + 1, only store t^{-i-1}
- Loop unrolling
- No thread synchronization

 M2L	ME	=	LE
---------	----	---	----

One thread per *element* of the LE

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (22)

- Each thread does a dot product
- Cannot use diagonal traversal, more work
- Avoid branching
 - Each row precomputes t⁻ⁱ⁻¹
 - All threads loop to p + 1, only store t^{-i-1}
- Loop unrolling
- No thread synchronization

M2L	ME	=	LE
-----	----	---	----

One thread per *element* of the LE

$$m2l_{ij} = -1^{i} {i+j \choose j} t^{-i-j-1}$$
 (22)

- Each thread does a dot product
- Cannot use diagonal traversal, more work
- Avoid branching
 - Each row precomputes t⁻ⁱ⁻¹
 - All threads loop to p + 1, only store t^{-i-1}
- Loop unrolling
- No thread synchronization

300 GFlops

15x Speedup of Downward Sweep

One thread per *element* of the LE

$$m2l_{ij} = -1^{i} {\binom{i+j}{j}} t^{-i-j-1}$$
(22)

- Each thread does a dot product
- Cannot use diagonal traversal, more work
- Avoid branching
 - Each row precomputes t⁻ⁱ⁻¹
 - All threads loop to p + 1, only store t^{-i-1}
- Loop unrolling
- No thread synchronization

Examine memory access

300 GFlops

15x Speedup of

Downward Sweep

Memory Bandwidth

Superior GPU memory bandwidth is due to both

bus width and clock speed.

	CPU	GPU
Bus Width (bits)	64	512
Bus Clock Speed (MHz)	400	1600
Memory Bandwidth (GB/s)	3	102
Latency (cycles)	240	600

Tesla always accesses blocks of 64 or 128 bytes

Coalesce and overlap memory accesses Coalescing is

- a group of 16 threads
- accessing consective addresses
 - 4, 8, or 16 bytes
- in the same block of memory
 - 32, 64, or 128 bytes

Coalesce and overlap memory accesses Memory accesses can be overlapped with computation when

- a TB is waiting for data from main memory
- another TB can be scheduled on the SM
- 512 TB can be active at once on Tesla

Coalesce and overlap memory accesses Note that the theoretical peak (1 TF)

MULT and FMA must execute simultaneously

```
480 GFlops
```

- 346 GOps
- Without this, peak can be closer to 600 GF

25x Speedup of Downward Sweep

Design Principles

M2L required all of these optimization steps:

- Many threads per kernel
- Avoid branching
- Unroll loops
- Coalesce memory accesses
- Overlap main memory access with computation

How Will Algorithms Change?

Massive concurrency is necessary

- Mix of vector and thread paradigms
- Demands new analysis

More attention to memory management

- Blocks will only get larger
- Determinant of performance