Finite Element Assembly on Arbitrary Meshes

Matthew Knepley

Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center

Department of Applied Mathematics and Computational Science King Abdullah University of Science and Technology Apr 5, 2010

Outline

- 2 Mesh Distribution
- 3 Unifying Paradigm
- 4 Finite Element Assembly

イロト イヨト イヨト

KAUST

2/89

Collaborators

Automated FEM

- Andy Terrel (UT Austin)
- Ridgway Scott (UChicago)
- Rob Kirby (Texas Tech)
- Sieve
 - Dmitry Karpeev (ANL)
 - Peter Brune (UChicago)
 - Anders Logg (Simula)
- PyLith
 - Brad Aagaard (USGS)
 - Charles Williams (NZ)

Outline

Introduction

2

Mesh Distribution

- Sieve
- Section
- Completion
- Distribution
- Interfaces

3 Unifying Paradigm

4 Finite Element Assembly

Main Point

Rethinking meshes

produces a simple FEM interface

and good code reuse.

M. Knepley (UC)

KAUST

6/89

Main Point

Rethinking meshes produces a simple FEM interface

and good code reuse.

Main Point

Rethinking meshes produces a simple FEM interface

and good code reuse.

KAUST

6/89

Problems

The biggest problem in scientific computing is programmability:

- Lack of usable implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"
 - to
 - characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

< 回 ト < 三 ト < 三

Problems

The biggest problem in scientific computing is programmability:

- Lack of widespread implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"

to

- characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

- **→ → →**

Outline

Mesh Distribution

- Sieve
- Section
- Completion
- Distribution
- Interfaces

イロト イポト イヨト イヨ

Sieve is an interface for

- general topologies
- functions over these topologies (bundles)
- traversals

One relation handles all hierarchy

- Vast reduction in complexity
 - Dimension independent code
 - A single communication routine to optimize
- Expansion of capabilities
 - Partitioning and distribution
 - Hybrid meshes
 - Complicated structures and embedded boundaries
 - Unstructured multigrid

Mesh Databases

"Most"

- Sp
- StiCc
- Toplog
 - Sir
 - Sir
 - Ca

^aLawler, Kalé

イロト イヨト イヨト イヨト

Mesh Databases

- Sp
- Sti
- Co
- Toplog
 - Sii
 - Sir
 - Ca

а

^aAagaard, Knepley, Williams

- 3 >

Doublet Mesh

M. Knepley (UC)

KAUST 11/89

Doublet Mesh

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

A . - 3 >

Doublet Mesh

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

M. Knepley (UC)

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$

Image: A matrix

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$
- $star(7) = \{7, 2, 3, 0\}$

M. Knepley (UC)

Doublet Mesh

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

• $ioin(8,9) = \{4\}$ M. Knepley (UC)

KAUST 11/89

A . - 3 >

Doublet Mesh

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

M. Knepley (UC)

KAUST

11/89

Sieve Definition

Definition

A Sieve consists of points, and arrows. Each arrow connects a point to another which it covers.

cone(p)	sequence of points which cover a given point <u>p</u>	
closure(p)	transitive closure of cone	
support(p)	sequence of points which are covered by a given point p	
star(p)	transitive closure of support	
meet(p,q)	minimal separator of closure(p) and closure(q)	
join(p,q)	minimal separator of star(p) and star(q)	

- E 🕨 - (E

FEM

The Mesh Dual

Outline

- Sieve
- Section
- Completion
- Distribution
- Interfaces

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 47 ▶

.

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

Doublet Section

• Section interface

- $restrict(0) = \{ f_0 \}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

Doublet Section

• Section interface

- $restrict(0) = \{ f_0 \}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Image: A matrix

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

KAUST 15 / 89

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Section Definition

Definition

Section is a mapping from sieve points to a vector of values.

restrict	return all the values on given subdomain
update	inject subdomain values into global section
completion	operation to enforce coherence over sieve

Completion

Outline

- Sieve
- Section
- Completion
- Distribution
- Interfaces

イロト イポト イヨト イヨ

Restriction

Localization

- Restrict to patches (here an edge closure)
- Compute locally

- 3 →

Completion

Delta

• Delta

- Restrict further to the overlap
- Overlap now carries twice the data

M. Knep	ley (UC)
---------	----------

KAUST 18/89

Completion

Fusion

- Merge/reconcile data on the overlap
 - Addition (FEM)
 - Replacement (FD)
 - Coordinate transform (Sphere)
 - Linear transform (MG)

< A

Update

• Update

- Update local patch data
- Completion = restrict \longrightarrow fuse \longrightarrow update, <u>in parallel</u>

M. Knepley (UC)

イロト イヨト イヨト イ
Completion

- A ubiquitous parallel form of *restrict* \longrightarrow *fuse* \longrightarrow *update*
- Operates on Sections
 - Sieves can be "downcast" to Sections
- Based on two operations
 - Data exchange through overlap
 - Fusion of shared data

M. Knepley (UC)

- - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance

FEM accumulating integrals on shared faces

- distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

KAUST

20/89

Section Completion

Completion can be broken into 4 phases:

- 1 restrict() to an overlap section
- Copy () data to the remote overlap section
- Isse() data with existing point data
- update() remote section with fused overlap section data

It is common to combine phases 1 & 2, and also 3 & 4

 Data is moved directly between communication buffers and storage

Section Completion

イロン イ理 とくほとく ほ

Section Completion

Section Completion

イロト イヨト イヨト イヨ

Section Completion

Section Completion

Section Hierarchy

We have a hierarchy of section types of increasing complexity

- GeneralSection
 - An arbitrary number of values for each domain point
 - Constrain arbitrary values
 - Atlas is a UniformSection
- UniformSection
 - A fixed number of values for each domain point
 - Atlas is a ConstantSection
- ConstantSection
 - The same single value for all domain points
 - Only the domain must be completed

KAUST

23/89

Outline

- Sieve
- Section
- Completion
- Distribution
- Interfaces

イロト イポト イヨト イヨ

Section Distribution

Section distribution consists of

- Creation of the local Section
- Distribution of the Atlas (layout Section)
- Completion of the Section

Sieve Distribution

Construct local mesh from partition

- - This distributes the cells
- - This distributes the remaining sieve points

Sieve Distribution

Construct local mesh from partition

- Construct partition overlap
- - This distributes the cells
- - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- Update Overlap with new points
- - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- Update Overlap with new points
- Omplete() the cone section
 - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- Update Overlap with new points
- Omplete() the cone section
 - This distributes the remaining sieve points
- Opdate local Sieves

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

< ∃ ►

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

< ∃ >

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone() s!

- 3rd party packages construct a vertex partition
- For FEM, partition dual graph vertices
- For FVM, construct hyperpgraph dual with faces as vertices
- Assign closure (v) and star (v) to same partition

Doublet Mesh Distribution

Doublet Mesh Distribution

A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Doublet Mesh Distribution

イロン イ理 とくほとく ほ

2D Example

A simple triangular mesh

M. Knepley (UC)

2D Example

Sieve for the mesh

イロト イヨト イヨト イヨ

2D Example

Local sieve on process 0

2D Example

Partition Overlap

M. Knepley (UC)

KAUST 30 / 89

2D Example

Partition Section

2D Example

Updated Sieve Overlap

M. Knepley (UC)

KAUST 30 / 89

2D Example

Cone Section

2D Example

Distributed Sieve

2D Example

Coordinate Section

2D Example

Distributed Coordinate Section

2D Example

Distributed Mesh

3D Example

A simple hexahedral mesh

M. Knepley (UC)

■ ■ 一○ への KAUST 31/89

3D Example

Sieve for the mesh

Its complicated!

M. Knepley (UC)

• • • • • • • • •

3D Example

Sieve for the mesh

Its complicated!

M. Knepley (UC)

• • • • • • • • •

3D Example

Partition Overlap

M. Knepley (UC)

3D Example

Partition Section

3D Example

Distributed Mesh

Notice cells are ghosted

M. Knepley (UC)

Outline

Mesh Distribution

- Sieve
- Section
- Completion
- Distribution
- Interfaces

イロト イポト イヨト イヨ

Sieve Overview

• Hierarchy is the centerpiece

- Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 Rich enough for FEM
- Single operation, completion, for parallelism
 - Enforces consistency of the relation

Sieve Overview

• Hierarchy is the centerpiece

- Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 Rich enough for FEM
- Single operation, completion, for parallelism
 Enforces consistency of the relation

KAUST

33 / 89

Sieve Overview

- Hierarchy is the centerpiece
 - Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 - Rich enough for FEM
- Single operation, completion, for parallelism
 - Enforces consistency of the relation

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

< 🗇 🕨 < 🖻 > <

- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

- **→ → →**

- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

- E 🕨

- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD Software interfaces do not adequately reflect this

- PETSc DA is too specialized
 - Basically 1D methods applied to Cartesian products
- PETSc Index Sets and VecScatters are too fine
 - User "does everything", no abstraction
- PETSc Linear Algebra (Vec & Mat) is too coarse
 - No access to the underlying connectivity structure

KAUST

35/89

Unstructured Interface (before)

Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

★ ∃ →

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - o dimension
 - shapes

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, covering, on sieve points

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

KAUST

37/89

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)
- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - · can be more easily optimized

KAUST

37/89

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM

• Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology
- data layout

- B → - 4 B

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Outline

Introduction

2 Mesh Distribution

Onifying Paradigm

- DA
- Mesh
- DMMG
- PCFieldSplit

4 Finite Element Assembly

< 47 ▶

Hierarchy Abstractions

Generalize to a set of linear spaces

- Sieve provides topology, can also model Mat
- Section generalizes Vec
- Spaces interact through an Overlap (just a Sieve)
- Basic operations
 - Restriction to finer subspaces, restrict ()/update()
 - Assembly to the subdomain, complete()
- Allow reuse of geometric and multilevel algorithms

Outline

- Mesh
- DMMG
- PCFieldSplit

イロト イポト イヨト イヨ

DA

Residual Evaluation

The **DM** interface is based upon *local* callback functions

- FormFunctionLocal()
- FormJacobianLocal()

Callbacks are registered using

- SNESSetDM(), TSSetDM()
- DMSNESSetFunctionLocal(), DMTSSetJacobianLocal()

When PETSc needs to evaluate the nonlinear residual F(x),

- Each process evaluates the local residual
- PETSc assembles the global residual automatically
 - Uses DMLocalToGlobal() method

Ghost Values

To evaluate a local function f(x), each process requires

- its local portion of the vector x
- its ghost values, bordering portions of *x* owned by neighboring processes

M. Knepley (UC)
DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* If)(DMDALocalInfo *info, PetscScalar**x, PetscScalar **r, void *ctx)

info: All layout and numbering information

- x: The current solution (a multidimensional array)
- r: The residual
- ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)

DA

Bratu Residual Evaluation

$$\Delta u + \lambda e^u = \mathbf{0}$$

```
ResLocal(DMDALocalInfo *info, PetscScalar **x, PetscScalar **f, void *ctx)
for(j = info->ys; j < info->ys+info->ym; ++j) {
    for(i = info->xs; i < info->xs+info->xm; ++i) {
        u = x[j][i];
        if (i==0 || j==0 || i == M || j == N) {
            f[j][i] = 2.0*(hydhx+hxdhy)*u; continue;
        }
        u_xx = (2.0*u - x[j][i-1] - x[j][i+1])*hydhx;
        u_yy = (2.0*u - x[j-1][i] - x[j+1][i])*hxdhy;
        f[j][i] = u_xx + u_yy - hx*hy*lambda*exp(u);
}}
```

\$PETSC_DIR/src/snes/examples/tutorials/ex5.c

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac)(DMDALocalInfo *info, PetscScalar**x, Mat J, void *ctx)

info: All layout and numbering information

- x: The current solution
- J: The Jacobian
- ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

DMDA Vectors

- The DMDA object contains only layout (topology) information
 - All field data is contained in PETSc Vecs
- Global vectors are parallel
 - Each process stores a unique local portion
 - DMCreateGlobalVector(DM da, Vec *gvec)
- Local vectors are sequential (and usually temporary)
 - Each process stores its local portion plus ghost values
 - DMCreateLocalVector(DM da, Vec *Ivec)
 - includes ghost and boundary values!

Updating Ghosts

Two-step process enables overlapping computation and communication

- DMGlobalToLocalBegin(da, gvec, mode, lvec)
 - gvec provides the data
 - mode is either INSERT_VALUES or ADD_VALUES
 - lvec holds the local and ghost values
- DMGlobalToLocalEnd(da, gvec, mode, lvec)
 - Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

Outline

Unifying Paradigm

- DA
- Mesh
- DMMG
- PCFieldSplit

イロト イ団ト イヨト イヨ

Mesh Paradigm

The DMMesh interface also uses local callback functions

- maps between global Vec and local Vec
- Local vectors are structured using a **PetscSection**

When PETSc needs to evaluate the nonlinear residual F(x),

- Each process evaluates the local residual for each element
- PETSc assembles the global residual automatically
 - \bullet DMLocalToGlobal() works just as in the structured case

Mesh

Multiple Mesh Types

DMMG

Outline

Unifying Paradigm

- DA
- Mesh
- DMMG
- PCFieldSplit

イロン イ理 とくほとく ほ

Multigrid Paradigm

The **DM** interface uses the *local* callback functions to

- assemble global functions/operators from local pieces
- assemble functions/operators on coarse grids

Then **PCMG** organizes

- control flow for the multilevel solve, and
- projection and smoothing operators at each level.

DMMG

DM Integration with SNES

- DM supplies global residual and Jacobian to SNES
 - User supplies local version to DM
 - The \mathtt{Rhs}_\star () and \mathtt{Jac}_\star () functions in the example
- Allows automatic parallelism
- Allows grid hierarchy
 - Enables multigrid once interpolation/restriction is defined
- Paradigm is developed in unstructured work
 - Solve needs scatter into contiguous global vectors (initial guess)
- Handle Neumann BC using KSPSetNullSpace()

Multigrid with DM

Allows multigrid with some simple command line options

- -pc_type mg, -pc_mg_levels
- -pc_mq_type, -pc_mq_cycle_type, -pc_mq_galerkin
- -mg levels 1 ksp type, -mg levels 1 pc type
- -mq_coarse_ksp_type, -mq_coarse_pc_type
- -da refine, -ksp view

Interface also works with GAMG and 3rd party packages like ML

Outline

Unifying Paradigm

- DA
- Mesh
- PCFieldSplit

イロン イ理 とくほとく ほ

MultiPhysics Paradigm

The **PCFieldSplit** interface

- extracts functions/operators corresponding to each physics
 - **VecScatter** and MatGetSubMatrix() for efficiency
- assemble functions/operators over all physics
 - Generalizes LocalToGlobal() mapping
- is composable with ANY PETSc solver and preconditioner
 - This can be done recursively

PCFieldSplit

MultiPhysics Paradigm

The **PCFieldSplit** interface

- extracts functions/operators corresponding to each physics
 - **VecScatter** and MatGetSubMatrix() for efficiency
- assemble functions/operators over all physics
 - Generalizes LocalToGlobal() mapping
- is composable with ANY PETSc solver and preconditioner
 - This can be done recursively

FieldSplit provides the buildings blocks for multiphysics preconditioning.

MultiPhysics Paradigm

The PCFieldSplit interface

- extracts functions/operators corresponding to each physics
 - VecScatter and MatGetSubMatrix() for efficiency
- assemble functions/operators over all physics
 - Generalizes LocalToGlobal() mapping
- is composable with ANY PETSc solver and preconditioner
 - This can be done recursively

Notice that this works in exactly the same manner as

- multiple resolutions (MG, FMM, Wavelets)
- multiple domains (Domain Decomposition)
- multiple dimensions (ADI)

Several varieties of preconditioners can be supported:

- Block Jacobi or Block Gauss-Siedel
- Schur complement
- Block ILU (approximate coupling and Schur complement)
- Dave May's implementation of Elman-Wathen type PCs

which only require actions of individual operator blocks

Notice also that we may have any combination of

- "canned" PCs (ILU, AMG)
- PCs needing special information (MG, FMM)
- custom PCs (physics-based preconditioning, Born approximation)

since we have access to an algebraic interface

Outline

Introduction

- 2 Mesh Distribution
- 3 Unifying Paradigm

4

Finite Element Assembly

- Layout
- Integration
- Assembly
- Examples

Finite Element Assembly

Mathematics Puzzle

M. Knepley (UC)

■ ■ つへC KAUST 60/89

FEM Components

Section definition

Integration

Assembly and Boundary conditions

KAUST

61/89

Outline

Finite Element Assembly

- Layout
- Integration
- Assembly
- Examples

- ∢ ∃ ▶

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

Determined by discretization

- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

Outline

Finite Element Assembly

- Layout
- Integration
- Assembly
- Examples

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

FIAT Integration

The quadrature.fiat file contains:

- An element (usually a family and degree) defined by FIAT
- A quadrature rule

It is run

- automatically by make, or
- independently by the user

It can take arguments

- -element_family and -element_order, or
- make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:

- Quadrature points and weights
- Basis function and derivative evaluations at the quadrature points
- Integration against dual basis functions over the cell
- Local dofs for Section allocation

M. Knepley (UC)

We must map local unknowns to the global basis

FIAT reports the kind of unknown

- - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

FIAT reports the kind of unknown

- - Lagrange

• Vectors transform as J^{-T}

- Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas

• Moments transform as $|J^{-1}|$

- Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

FIAT reports the kind of unknown

- - Lagrange
- Vectors transform as J^{-T}
 - Hermite

Normal vectors require Piola transform and a choice of orientation

- Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

FIAT reports the kind of unknown

- - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas

• Moments transform as $|J^{-1}|$

- Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

FIAT reports the kind of unknown

- - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

$$a((au, w), (\sigma, u)) = L((au, w)) \qquad orall (au, w) \in V$$

where

$$a((\tau, w), (\sigma, u)) = \int_{\Omega} \tau \sigma - \nabla \cdot \tau u + w \nabla \cdot u \, dx$$
$$L((\tau, w)) = \int_{\Omega} wf \, dx$$

- 3 >

```
shape = "triangle"
BDM1 = FiniteElement("Brezzi-Douglas-Marini",shape,1)
DG0 = FiniteElement("Discontinuous Lagrange",shape,0)
element = BDM1 + DG0
(tau, w) = TestFunctions(element)
(sigma, u) = TrialFunctions(element)
a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx
f = Function(DG0)
L = w*f*dx
```

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Here is a discontinuous Galerkin formulation of the Poisson equation:

$$a(v, u) = L(v) \qquad \forall v \in V$$

where

FFC

$$\begin{aligned} a(v,u) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx \\ &+ \sum_{S} \int_{S} -\langle \nabla v \rangle \cdot [[u]]_{n} - [[v]]_{n} \cdot \langle \nabla u \rangle - (\alpha/h) v u \, dS \\ &+ \int_{\partial \Omega} -\nabla v \cdot [[u]]_{n} - [[v]]_{n} \cdot \nabla u - (\gamma/h) v u \, ds \\ L(v) &= \int_{\Omega} v f \, dx \end{aligned}$$

- DG1 = FiniteElement("Discontinuous Lagrange", shape, 1)
- v = TestFunctions(DG1)
- u = TrialFunctions(DG1)
- f = Function (DG1)
- g = Function (DG1)
- n = FacetNormal("triangle")
- h = MeshSize("triangle")
- a = dot(grad(v), grad(u)) * dx
 - dot(avg(grad(v)), jump(u, n)) $\star dS$
 - dot(jump(v, n), avg(grad(u))) * dS
 - + alpha/h * dot(jump(v, n) + jump(u, n)) * dS
 - dot(grad(v), jump(u, n))*ds
 - dot(jump(v, n), grad(u))*ds
 - + gamma/h * v * u * ds
- L = v * f * dx + v * g * ds

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

KAUST

Outline

Finite Element Assembly

- Layout
- Integration
- Assembly
- Examples

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  coords = mesh->restrict(coordinates, c);
  v0, J, invJ, detJ = computeGeometry(coords);
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for (f = 0; f < numBasisFuncs; ++f) {
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
  <Update output vector>
```

A = A = A = ØQQ

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  inputVec = mesh->restrict(U, c);
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

```
M. Knepley (UC)
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    realCoords = J*refCoords[q] + v0;
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           ABARABA B SOGO
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      elemVec[f] += basis[q,f] *rhsFunc(realCoords);
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                           M. Knepley (UC)
                          FFM
                                               KAUST
                                                    73/89
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      for (d = 0; d < \dim; ++d)
        for(e) testDerReal[d] += invJ[e,d]*basisDer[q,
      for (q = 0; q < numBasisFuncs; ++q) {
        for (d = 0; d < \dim; ++d)
          for(e) basisDerReal[d] += invJ[e,d]*basisDer
          elemMat[f,g] += testDerReal[d] * basisDerReal[
        elemVec[f] += elemMat[f,g]*inputVec[g];
                                           ▲ 臣 ▶ ▲ 臣 ▶ 三臣 → �� �
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      elemVec[f] += basis[q, f] *lambda*exp(inputVec[f])
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                            ABARABA B SOGO
    M. Knepley (UC)
                           FEM
                                                 KAUST
                                                      73/89
```

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  mesh->updateAdd(F, c, elemVec);
}
<Aggregate updates>
                                           ABARABA B SOGO
```

M. Knepley (UC)

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

KAUST

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
Distribution<Mesh>::completeSection(mesh, F); = - 2000
```

M. Knepley (UC)

Assembly

Boundary Conditions

Dirichlet conditions may be expressed as

 $u|_{\Gamma} = g$

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

 $\nabla u \cdot \hat{n}|_{\Gamma} = h$

and implemented by explicit integration along the boundary

• The user provides a weak form.

Dirichlet Values

- Topological boundary is marked during generation
- Cells bordering boundary are marked using markBoundaryCells()
- To set values:
 - Loop over boundary cells
 - Loop over the element closure
 - For each boundary point i, apply the functional N_i to the function g
- The functionals are generated with the quadrature information
- Section allocation applies Dirichlet conditions automatically
 - Values are stored in the Section
 - restrict () behaves normally, update () ignores constraints

Dual Basis Application

We would like the action of a dual basis vector (functional)

$$<\mathcal{N}_i,f>=\int_{\mathrm{ref}}N_i(x)f(x)dV$$

• Projection onto \mathcal{P}

• Code is generated from FIAT specification

- Python code generation package inside PETSc
- Common interface for all elements

Assembly

Assembly with Dirichlet Conditions

The original equation may be partitioned into

- unknowns in the interior (I)
- unknowns on the boundary (Γ)

so that we obtain

$$\left(\begin{array}{cc}A_{II} & A_{I\Gamma}\\A_{\Gamma I} & A_{\Gamma\Gamma}\end{array}\right)\left(\begin{array}{c}u_{I}\\u_{\Gamma}\end{array}\right)=\left(\begin{array}{c}f_{I}\\f_{\Gamma}\end{array}\right)$$

However u_{Γ} is known, so we may reduce this to

$$A_{II}u_I=f_I-A_{I\Gamma}u_{\Gamma}$$

We will show that our scheme automatically constructs this extra term.

Assembly

Assembly with Dirichlet Conditions Residual Assembly

A (1) > A (1) > A

Assembly

Assembly with Dirichlet Conditions Residual Assembly

Assembly

Assembly with Dirichlet Conditions Residual Assembly

Compute

KAUST 78 / 89

< Ξ

Assembly

Assembly with Dirichlet Conditions Residual Assembly

Compute

Assembly

Assembly with Dirichlet Conditions Residual Assembly

Outline

Finite Element Assembly

- Layout
- Integration
- Assembly
- Examples

- A 🖻 🕨

PyLith

Examples

Multiple Mesh Types

Examples

Cohesive Cells

Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault

- Demand complex mesh manipulation
 - We allow specification of only fault vertices
 - Must "sew" together on output
- Use Lagrange multipliers to enforce constraints
 - Forces illuminate physics
- Allow different fault constitutive models
 - Simplest is enforced slip
 - Now have fault constitutive models
• In order to create a fault, the generator provides

a set of fault vertices, or

a set of fault faces.

• Fault vertices, unlike fault faces, must be

- combined into faces on a fault mesh, and
- oriented

• The fault mesh is used to

- split vertices along the fault
- introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

• In order to create a fault, the generator provides

- a set of fault vertices, or
- a set of fault faces.

• Fault vertices, unlike fault faces, must be

- combined into faces on a fault mesh, and
- oriented

• The fault mesh is used to

- split vertices along the fault
- introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

• In order to create a fault, the generator provides

- a set of fault vertices, or
- a set of fault faces.

• Fault vertices, unlike fault faces, must be

- · combined into faces on a fault mesh, and
- oriented

• The fault mesh is used to

- split vertices along the fault
- introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

Examples

Reverse-slip Benchmark

Fracture Mechanics

- Full variational formulation
 - Phase field
 - Linear or Quadratic penalty
- Uses TAO optimization
 - Necessary for linear penalty
 - Backtacking
- No prescribed cracks (movie)
 - Arbitrary crack geometry
 - Arbitrary intersections
- Multiple materials
 - Composite toughness

^aBourdin

Examples

Fracture Mechanics

¹Bourdin

M. Knepley (UC)

・ロト ・ 日 ・ ・ ヨ ・

Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Dimension and mesh independent code
 - Complete serial code reuse
- Opportunites for optimization
 - Higher level operations missed by traditional compilers
 - Single communication routine to optimize
- Expansion of capabilities
 - Arbitrary elements
 - Unstructured multigrid
 - Multilevel algorithms

References

FEniCS Documentation:

http://www.fenics.org/wiki/FEniCS_Project

- Project documentation
- Users manuals
- Repositories, bug tracking
- Image gallery

Publications:

http://www.fenics.org/wiki/Related_presentations_and_publications

• Research and publications that make use of FEniCS

PETSc Documentation:

http://www.mcs.anl.gov/petsc/docs

- PETSc Users manual
- Manual pages
- Many hyperlinked examples
- FAQ, Troubleshooting info, installation info, etc.
- Publication using PETSc

KAUST

88 / 89

Experimentation is Essential!

Proof is not currently enough to examine solvers

- N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13, pp.778–795, 1992.
- Anne Greenbaum, Vlastimil Ptak, and Zdenek Strakos, Any Nonincreasing Convergence Curve is Possible for GMRES, SIAM J. Matrix Anal. Appl., **17** (3), pp.465–469, 1996.

KAUST

89 / 89