
Building Robust Scientific Codes

Matthew Knepley

Computation Institute
University of Chicago

HPC3: Workshop on High Performance Computing
and Hybrid Programming Concepts for Hyperbolic PDE Codes

KAUST, Saudi Arabia, March 2011

M. Knepley Robust PASI ’11 1 / 66



What I Need From You

Tell me if you do not understand
Tell me if an example does not work
Suggest better wording or figures
Followup problems at petsc-maint@mcs.anl.gov

M. Knepley Robust PASI ’11 2 / 66

mailto:petsc-maint@mcs.anl.gov


Ask Questions!!!

Helps me understand what you are missing

Helps you clarify misunderstandings

Helps others with the same question

M. Knepley Robust PASI ’11 3 / 66



New Model for Scientific Software

Simplifying Parallelization of Scientific Codes
by a Function-Centric Approach in Python

Jon K. Nilsen, Xing Cai, Bjorn Hoyland, and Hans Petter Langtangen

Python at the application level
numpy for data structures
petsc4py for linear algebra and solvers
PyCUDA for integration (physics) and assembly

M. Knepley Robust PASI ’11 4 / 66

http://arxiv.org/abs/1002.0705
http://arxiv.org/abs/1002.0705


New Model for Scientific Software

Application

FFC/SyFi
eqn. definitionsympy symbolics

numpy
da

ta
st

ru
ct

ur
es

petsc4py

so
lve

rs

PyCUDA

integration/assembly

PETSc
CUDA

OpenCL

Figure: Schematic for a generic scientific applicationM. Knepley Robust PASI ’11 5 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



What is Missing from this Scheme?
Unstructured graph traversal

Iteration over cells in FEM
Use a copy via numpy, use a kernel via Queue

(Transitive) Closure of a vertex
Use a visitor and copy via numpy

Depth First Search
Hell if I know

Logic in computation
Limiters in FV methods

Can sometimes use tricks for branchless logic

Flux Corrected Transport for shock capturing
Maybe use WENO schemes which can be branchless

Boundary conditions
Restrict branching to PETSc C numbering and assembly calls

Audience???
M. Knepley Robust PASI ’11 6 / 66



Version Control

Outline

1 Version Control

2 Configuration and Build

3 PETSc

4 numpy & sympy

5 PyCUDA

6 FEniCS

M. Knepley Robust PASI ’11 7 / 66



Version Control

Location and Retrieval
“Where’s the Tarball”

Version Control
Mercurial, Git, Subversion

Hosting
BitBucket, GitHub, Launchpad

Community involvement
arXiv, PubMed

M. Knepley Robust PASI ’11 8 / 66

http://mercurial.selenic.com
http://git-scm.com
http://subversion.tigris.org
http://bitbucket.org
http://github.com
https://launchpad.net
http://arXiv.org
http://www.ncbi.nlm.nih.gov/pubmed


Version Control

Distributed Version Control

CVS/SVN manage a single repository
Versioned data
Local copy for modification and checkin

Mercurial manages many repositories
Identified by URLs
No one Master

Repositories communicate by ChangeSets
Use push and pull to move changesets
Can move arbitrary changes with patch queues

M. Knepley Robust PASI ’11 9 / 66



Version Control

Project Workflow

User

Figure: Single Repository

M. Knepley Robust PASI ’11 10 / 66



Version Control

Project Workflow

Master

User A User B

Figure: Master Repository with User Clones

M. Knepley Robust PASI ’11 11 / 66



Version Control

Project Workflow

Master Release

User Bugfix

Figure: Project with Release and Bugfix Repositories

M. Knepley Robust PASI ’11 12 / 66



Configuration and Build

Outline

1 Version Control

2 Configuration and Build

3 PETSc

4 numpy & sympy

5 PyCUDA

6 FEniCS

M. Knepley Robust PASI ’11 13 / 66



Configuration and Build

Configuration and Build
“It won’t run on my iPhone”

Portability
PETSc BuildSystem, autoconf

Dependencies
Does this work with UnsupportedGradStudentAMG?

Configurable build
Build must integrate with the configuration system
CMake, SCons

M. Knepley Robust PASI ’11 14 / 66

http://petsc.cs.iit.edu/petsc/BuildSystem
http://www.gnu.org/software/autoconf
http://www.cmake.org
http://www.scons.org


Configuration and Build

BuildSystem

Provides tools for Configuration and Build

Dependency tracking and analysis
Package management and hierarchy
Library of standard tests
Standard build rules
Automatic package build and integration

http://petsc.cs.iit.edu/petsc/BuildSystem
http://petsc.cs.iit.edu/petsc/SimpleConfigure

M. Knepley Robust PASI ’11 15 / 66

http://petsc.cs.iit.edu/petsc/BuildSystem
http://petsc.cs.iit.edu/petsc/BuildSystem


Configuration and Build

Configure
Modules

BuildSystem.config.base configures a specific functionality

Entry points:
setupHelp()
setupDependencies()
configure()

Builtin capabilities:
Preprocessing, compilation, linking, running
Manages languages
Checks for executables

Output types:
Define, typedef, or prototype
Make macro or rule
Substitution (old-style)

M. Knepley Robust PASI ’11 16 / 66



Configuration and Build

Configure
Framework

BuildSystem.config.framework manages the configure run

Manages configure modules
Dependencies with DAG, require()
Options table
Initialization, run, cleanup

Outputs
Configure headers and log
Make variable and rules
Pickled configure tree

M. Knepley Robust PASI ’11 17 / 66



Configuration and Build

Configure
Third Party Packages

BuildSystem.config.package manages other packages

BuildSystem/config/packages/* examples (MPI, FIAT, etc.)
Standard location and install hooks
Standard header and library tests
Uniform interface for parameter retrieval
Special support for GNU packages

M. Knepley Robust PASI ’11 18 / 66



Configuration and Build

Configure
Build Integration

A module can declare a dependency using:

fw = s e l f . framework
s e l f . mpi = fw . requ i re ( ’ con f i g . packages . MPI ’ , s e l f )

so that MPI is configured before self. Information is retrieved during
configure():

i f s e l f . mpi . found :
inc lude . extend ( s e l f . mpi . i nc lude )
l i b s . extend ( s e l f . mpi . l i b )

M. Knepley Robust PASI ’11 19 / 66



Configuration and Build

Configure
Build Integration

A module can declare a dependency using:

fw = s e l f . framework
s e l f . mpi = fw . requ i re ( ’ con f i g . packages . MPI ’ , s e l f )

so that MPI is configured before self. Information is retrieved during
configure():

i f s e l f . mpi . found :
inc lude . extend ( s e l f . mpi . i nc lude )
l i b s . extend ( s e l f . mpi . l i b )

M. Knepley Robust PASI ’11 19 / 66



Configuration and Build

Configure
Build Integration

A build system can acquire the information using:

c lass ConfigReader ( s c r i p t . S c r i p t ) :
def _ _ i n i t _ _ ( s e l f ) :

impor t RDict
argDB = RDict . RDict (None , None , 0 , 0)
argDB . saveFilename = os . path . j o i n ( ’ path ’ , ’ RDict . db ’ )
argDB . load ( )
s c r i p t . S c r i p t . _ _ i n i t _ _ ( s e l f , argDB = argDB )
r e t u r n

def getMPIModule ( s e l f ) :
s e l f . setup ( )
fw = s e l f . loadConf igure ( )
mpi = fw . requ i re ( ’ con f i g . packages . MPI ’ , None )
r e t u r n mpi

M. Knepley Robust PASI ’11 20 / 66



Configuration and Build

Make

GNU Make automates a package build

Has a single predicate, older-than

Executes shell code for actions

PETSc has support for
configuration integration
automatic compilation

Alternatives
SCons
CMake

M. Knepley Robust PASI ’11 21 / 66

http://www.gnu.org/make
http://www.scons.org
http://www.cmake.org


Configuration and Build

builder

Simple replacement for GNU make

Excellent configure integration

User-defined predicates

Dependency analysis and tracking

Python actions

Support for test execution

M. Knepley Robust PASI ’11 22 / 66



Configuration and Build

builder
Two Interfaces

The simple interface handles the entire build:
./config/builder.py

A more flexible front end allows finer control:
./config/builder2.py help [command]
./config/builder2.py clean
./config/builder2.py stubs fortran
./config/builder2.py build [src/snes/interface/snesj.c]
./config/builder2.py check [src/snes/examples/tutorials/ex10.c]

M. Knepley Robust PASI ’11 23 / 66



Configuration and Build

Testing
“They are identical in the eyeball norm”

Unit tests
cppUnit

Regression tests
buildbot

Benchmarks
Cigma

M. Knepley Robust PASI ’11 24 / 66

http://sourceforge.net/projects/cppunit
http://buildbot.net
http://www.geodynamics.org/cig/software/packages/cs/cigma


PETSc

Outline

1 Version Control

2 Configuration and Build

3 PETSc
Traditional PETSc
petsc4py

4 numpy & sympy

5 PyCUDA

6 FEniCS

M. Knepley Robust PASI ’11 25 / 66



PETSc Traditional PETSc

Outline

3 PETSc
Traditional PETSc
petsc4py

M. Knepley Robust PASI ’11 26 / 66



PETSc Traditional PETSc

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries

M. Knepley Robust PASI ’11 27 / 66

http://amzn.com/0521602866


PETSc Traditional PETSc

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

M. Knepley Robust PASI ’11 28 / 66

http://www.mcs.anl.gov/~bsmith


PETSc Traditional PETSc

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I’ll
put this tile down on the ground, and then I’ll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

M. Knepley Robust PASI ’11 29 / 66

http://www.rce-cast.com/Podcast/rce-28-mpich2.html


PETSc Traditional PETSc

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free
Download from http://www.petsc.org
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley Robust PASI ’11 30 / 66

http://www.petsc.org
mailto:petsc-maint@mcs.anl.gov


PETSc Traditional PETSc

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

ECP, PSAAPIII, AMR, BES, SciDAC, MICS
National Science Foundation

CSSI, SI2, CIG, CISE

Intel Parallel Computing Center

M. Knepley Robust PASI ’11 31 / 66



PETSc Traditional PETSc

Timeline (Old People)

1991 1995 2000 2005 2010 2015

PETSc-1

MPI-1
MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

M. Knepley Robust PASI ’11 32 / 66



PETSc Traditional PETSc

Timeline (Young People)

2000 2005 2010 2015

PETSc-3
Lisandro

Jed
Shri

Peter
Jason
Mark

Patrick
Michael

Toby
Karl

Stefano
Dave

M. Knepley Robust PASI ’11 33 / 66



PETSc Traditional PETSc

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley Robust PASI ’11 34 / 66

https://hpgmg.org/


PETSc Traditional PETSc

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley Robust PASI ’11 34 / 66

https://hpgmg.org/


PETSc Traditional PETSc

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley Robust PASI ’11 34 / 66

https://hpgmg.org/


PETSc petsc4py

Outline

3 PETSc
Traditional PETSc
petsc4py

M. Knepley Robust PASI ’11 35 / 66



PETSc petsc4py

petsc4py

petcs4py provides Python bindings for PETSc

Provides ALL PETSc functionality in a Pythonic way
Logging using the Python with statement

Can use Python callback functions
SNESSetFunction(), SNESSetJacobian()

Manages all memory (creation/destruction)

Visualization with matplotlib

M. Knepley Robust PASI ’11 36 / 66

http://code.google.com/p/petsc4py/
http://matplotlib.sourceforge.net


PETSc petsc4py

petsc4py Installation

Automatic
pip install -install-options=-user petscp4y
Uses $PETSC_DIR and $PETSC_ARCH
Installed into $HOME/.local
No additions to PYTHONPATH

From Source
virtualenv python-env
source ./python-env/bin/activate
Now everything installs into your proxy Python environment
hg clone https://petsc4py.googlecode.com/hg
petsc4py-dev
ARCHFLAGS="-arch x86_64" python setup.py sdist
ARCHFLAGS="-arch x86_64" pip install
dist/petsc4py-1.1.2.tar.gz
ARCHFLAGS only necessary on Mac OSX

M. Knepley Robust PASI ’11 37 / 66



PETSc petsc4py

petsc4py Examples

externalpackages/petsc4py-1.1/demo/bratu2d/bratu2d.py

Solves Bratu equation (SNES ex5) in 2D

Visualizes solution with matplotlib

src/ts/examples/tutorials/ex8.py

Solves a 1D ODE for a diffusive process

Visualize solution using -vec_view_draw

Control timesteps with -ts_max_steps

M. Knepley Robust PASI ’11 38 / 66

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-current/src/snes/examples/tutorials/ex5.c.html


numpy & sympy

Outline

1 Version Control

2 Configuration and Build

3 PETSc

4 numpy & sympy
numpy
sympy

5 PyCUDA

6 FEniCS

M. Knepley Robust PASI ’11 39 / 66



numpy & sympy numpy

Outline

4 numpy & sympy
numpy
sympy

M. Knepley Robust PASI ’11 40 / 66



numpy & sympy numpy

numpy

numpy is ideal for building Python data structures

Supports multidimensional arrays
Easily interfaces with C/C++ and Fortran
High performance BLAS/LAPACK and functional operations
Python 2 and 3 compatible
Used by petsc4py to talk to PETSc

M. Knepley Robust PASI ’11 41 / 66

http://numpy.scipy.org


numpy & sympy sympy

Outline

4 numpy & sympy
numpy
sympy

M. Knepley Robust PASI ’11 42 / 66



numpy & sympy sympy

sympy

sympy is useful for symbolic manipulation

Interacts with numpy
Derivatives and integrals
Series expansions
Equation simplification
Small and open source

M. Knepley Robust PASI ’11 43 / 66

http://sympy.scipy.org


numpy & sympy sympy

sympy
Example of Series Transform

Create the shifted polynomial

order∑
i=0

ci

i!
(x − a)i

def cons t ruc tSh i f t edPo lynomia l ( order ) :
from sympy impor t Symbol , c o l l e c t , d i f f , l i m i t
from sympy impor t f a c t o r i a l as f
c = [ Symbol ( ’ c ’+ s t r ( i ) ) f o r i i n range ( order ) ]
g = sum ( [ c [ i ] * ( x−a ) * * i / f ( i ) f o r i i n range ( order ) ] )
# Convert to a monomial
g = c o l l e c t ( g . expand ( ) , x )
r e t u r n c , g

M. Knepley Robust PASI ’11 44 / 66



numpy & sympy sympy

sympy
Example of Series Transform

Here is the shifted polynomial for order 5:
c0 - a*c1 + c2*a**2/2 - c3*a**3/6 + c4*a**4/24
+ x*(c1 - a*c2 + c3*a**2/2 - c4*a**3/6)
+ x**2*(c2/2 - a*c3/2 + c4*a**2/4)
+ x**3*(c3/6 - a*c4/6)
+ c4*x**4/24

M. Knepley Robust PASI ’11 45 / 66



numpy & sympy sympy

sympy
Example of Series Transform

Construct matrix transform from

order∑
i=0

ci

i!
(x − a)i to

order∑
i=0

ci

i!
x i

def cons t ruc tTrans fo rmMat r i x ( order = 5 ) :
from sympy impor t d i f f , l i m i t
c , g = cons t ruc tSh i f t edPo lynomia l ( order , debug )
M = [ ]
f o r o i n range ( order ) :

exp = g . d i f f ( x , o ) . l i m i t ( x , 0)
M. append ( [ exp . d i f f ( c [ p ] ) f o r p i n range ( order ) ] )

r e t u r n M

M. Knepley Robust PASI ’11 46 / 66



numpy & sympy sympy

sympy
Example of Series Transform

Here is the transform matrix M:
1 −a a2

2 −a3

6
a4

24
0 1 −a a2

2 −a3

6
0 0 1 −a a2

2
0 0 0 1 −a
0 0 0 0 1



M. Knepley Robust PASI ’11 47 / 66



PyCUDA

Outline

1 Version Control

2 Configuration and Build

3 PETSc

4 numpy & sympy

5 PyCUDA

6 FEniCS

M. Knepley Robust PASI ’11 48 / 66



PyCUDA

PyCUDA and PyOpenCL

Python packages by Andreas Klöckner
for embedded GPU programming

Handles unimportant details automatically
CUDA compile and caching of objects
Device initialization
Loading modules onto card

Excellent Documentation & Tutorial

Excellent platform for Metaprogramming
Only way to get portable performance
Road to FLAME-type reasoning about algorithms

M. Knepley Robust PASI ’11 49 / 66

http://mathema.tician.de/aboutme
http://documen.tician.de/pycuda
http://arxiv.org/abs/0911.3456


PyCUDA

Code Template
<%namespace name=" pb " module=" performanceBenchmarks " / >
$ { pb . globalMod ( isGPU ) } vo id kerne l ( $ { pb . g r i dS ize ( isGPU ) } f l o a t * output ) {

$ { pb . g r idLoopSta r t ( isGPU , load , s to re ) }
$ { pb . threadLoopStar t ( isGPU , blockDimX ) }
f l o a t G[ $ { dim * dim } ] = { $ { ’ , ’ . j o i n ( [ ’ 3.0 ’ ] * ( dim * dim ) ) } } ;
f l o a t K [ $ { dim * dim } ] = { $ { ’ , ’ . j o i n ( [ ’ 3.0 ’ ] * ( dim * dim ) ) } } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x *$ { numThreads } ;

/ / Cont ract G and K
% f o r n i n range ( numLocalElements ) :
% f o r alpha i n range ( dim ) :
% f o r beta i n range ( dim ) :
<% gIdx = ( n* dim + alpha ) * dim + beta %>
<% kIdx = alpha * dim + beta %>

product += G[ $ { gIdx } ] * K [ $ { k Idx } ] ;
% endfor
% endfor
% endfor

output [ Oof fse t+ idx ] = product ;
$ { pb . threadLoopEnd ( isGPU ) }
$ { pb . gridLoopEnd ( isGPU ) }
r e t u r n ;

}
M. Knepley Robust PASI ’11 50 / 66



PyCUDA

Rendering a Template

We render code template into strings using a dictionary of inputs.

args = { ’ dim ’ : s e l f . dim ,
’ numLocalElements ’ : 1 ,
’ numThreads ’ : s e l f . threadBlockSize }

kernelTemplate = s e l f . getKernelTemplate ( )
gpuCode = kernelTemplate . render ( isGPU = True , * * args )
cpuCode = kernelTemplate . render ( isGPU = False , * * args )

M. Knepley Robust PASI ’11 51 / 66



PyCUDA

GPU Source Code

__global__ vo id kerne l ( f l o a t * output ) {
const i n t g r i d I d x = b lock Idx . x + b lock Idx . y * gridDim . x ;
const i n t i dx = th read Idx . x + th read Idx . y * 1 ; / / This i s ( i , j )
f l o a t G[ 9 ] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t K [ 9 ] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x * 1 ;

/ / Cont ract G and K
product += G[ 0 ] * K [ 0 ] ;
product += G[ 1 ] * K [ 1 ] ;
product += G[ 2 ] * K [ 2 ] ;
product += G[ 3 ] * K [ 3 ] ;
product += G[ 4 ] * K [ 4 ] ;
product += G[ 5 ] * K [ 5 ] ;
product += G[ 6 ] * K [ 6 ] ;
product += G[ 7 ] * K [ 7 ] ;
product += G[ 8 ] * K [ 8 ] ;
ou tput [ Oof fse t+ idx ] = product ;
r e t u r n ;

}

M. Knepley Robust PASI ’11 52 / 66



PyCUDA

CPU Source Code
vo id kerne l ( i n t numInvocations , f l o a t * output ) {

f o r ( i n t g r i d I d x = 0; g r i d I d x < numInvocations ; ++ g r i d I d x ) {
f o r ( i n t i = 0 ; i < 1 ; ++ i ) {

f o r ( i n t j = 0 ; j < 1 ; ++ j ) {
const i n t i dx = i + j * 1 ; / / This i s ( i , j )

f l o a t G[ 9 ] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t K [ 9 ] = { 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 , 3 . 0 } ;
f l o a t product = 0 . 0 ;
const i n t Oof fse t = g r i d I d x * 1 ;

/ / Cont ract G and K
product += G[ 0 ] * K [ 0 ] ;
product += G[ 1 ] * K [ 1 ] ;
product += G[ 2 ] * K [ 2 ] ;
product += G[ 3 ] * K [ 3 ] ;
product += G[ 4 ] * K [ 4 ] ;
product += G[ 5 ] * K [ 5 ] ;
product += G[ 6 ] * K [ 6 ] ;
product += G[ 7 ] * K [ 7 ] ;
product += G[ 8 ] * K [ 8 ] ;
ou tput [ Oof fse t+ idx ] = product ;

}
}

}
r e t u r n ;

}

M. Knepley Robust PASI ’11 53 / 66



PyCUDA

Creating a Module

CPU:

# Output kerne l and C support code
s e l f . outputKernelC ( cpuCode )
s e l f . w r i t e M a k e f i l e ( )
out , er r , s ta tus = s e l f . executeShellCommand ( ’make ’ )
\ end { minted }

\ b i gsk ip

GPU:
\ begin { minted } { python }
from pycuda . compi ler impor t SourceModule

mod = SourceModule ( gpuCode )
s e l f . ke rne l = mod. ge t_ func t i on ( ’ ke rne l ’ )
s e l f . kerne lRepor t ( s e l f . kernel , ’ ke rne l ’ )

M. Knepley Robust PASI ’11 54 / 66



PyCUDA

Executing a Module

impor t pycuda . d r i v e r as cuda
impor t pycuda . a u t o i n i t

blockDim = ( s e l f . dim , s e l f . dim , 1)
s t a r t = cuda . Event ( )
end = cuda . Event ( )
g r i d = s e l f . c a l c u l a t e G r i d (N, numLocalElements )
s t a r t . record ( )
f o r i i n range ( i t e r s ) :

s e l f . ke rne l ( cuda . Out ( output ) ,
b lock = blockDim , g r i d = g r i d )

end . record ( )
end . synchronize ( )
gpuTimes . append ( s t a r t . t i m e _ t i l l ( end ) *1 e−3/ i t e r s )

M. Knepley Robust PASI ’11 55 / 66



FEniCS

Outline

1 Version Control

2 Configuration and Build

3 PETSc

4 numpy & sympy

5 PyCUDA

6 FEniCS

M. Knepley Robust PASI ’11 56 / 66



FEniCS

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://www.fenics.org/fiat

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

User can build arbitrary elements specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project, as is the PETSc Sieve module

M. Knepley Robust PASI ’11 57 / 66

http://www.fenics.org/fiat


FEniCS

FFC

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

a((τ,w), (σ, u)) = L((τ,w)) ∀(τ,w) ∈ V

where

a((τ,w), (σ, u)) =

∫
Ω
τσ −∇ · τu + w∇ · u dx

L((τ,w)) =

∫
Ω

wf dx

M. Knepley Robust PASI ’11 58 / 66



FEniCS

FFC
Mixed Poisson

shape = " t r i a n g l e "

BDM1 = Fin i teE lement ( " Brezzi −Douglas−Mar in i " , shape , 1 )
DG0 = Fin i teE lement ( " Discont inuous Lagrange " , shape , 0 )

element = BDM1 + DG0
( tau , w) = TestFunct ions ( element )
( sigma , u ) = T r i a l F u n c t i o n s ( element )

a = ( dot ( tau , sigma ) − d iv ( tau ) * u + w* d iv ( sigma ) ) * dx

f = Funct ion (DG0)
L = w* f * dx

M. Knepley Robust PASI ’11 59 / 66



FEniCS

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:

a(v ,u) = L(v) ∀v ∈ V

where

a(v ,u) =

∫
Ω
∇u · ∇v dx

+
∑

S

∫
S
− < ∇v > ·[[u]]n − [[v ]]n· < ∇u > −(α/h)vu dS

+

∫
∂Ω

−∇v · [[u]]n − [[v ]]n · ∇u − (γ/h)vu ds

L(v) =

∫
Ω

vf dx

M. Knepley Robust PASI ’11 60 / 66



FEniCS

FFC
DG Poisson

DG1 = Fin i teE lement ( " Discont inuous Lagrange " , shape , 1 )
v = TestFunct ions (DG1)
u = T r i a l F u n c t i o n s (DG1)
f = Funct ion (DG1)
g = Funct ion (DG1)
n = FacetNormal ( " t r i a n g l e " )
h = MeshSize ( " t r i a n g l e " )
a = dot ( grad ( v ) , grad ( u ) ) * dx

− dot ( avg ( grad ( v ) ) , jump ( u , n ) ) * dS
− dot ( jump ( v , n ) , avg ( grad ( u ) ) ) * dS
+ alpha / h* dot ( jump ( v , n ) + jump ( u , n ) ) * dS
− dot ( grad ( v ) , jump ( u , n ) ) * ds
− dot ( jump ( v , n ) , grad ( u ) ) * ds
+ gamma/ h* v *u* ds

L = v * f * dx + v *g* ds

M. Knepley Robust PASI ’11 61 / 66



FEniCS

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner ( grad ( v ) , grad ( u ) ) * dx

M. Knepley Robust PASI ’11 62 / 66



FEniCS

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (1)

element = F in i teE lement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner ( grad ( v ) , grad ( u ) ) * dx

M. Knepley Robust PASI ’11 62 / 66



FEniCS

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner (sym( grad ( v ) ) , sym( grad ( u ) ) ) * dx

M. Knepley Robust PASI ’11 63 / 66



FEniCS

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (2)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner (sym( grad ( v ) ) , sym( grad ( u ) ) ) * dx

M. Knepley Robust PASI ’11 63 / 66



FEniCS

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release

M. Knepley Robust PASI ’11 64 / 66



FEniCS

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release

M. Knepley Robust PASI ’11 64 / 66



FEniCS

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (3)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release

M. Knepley Robust PASI ’11 64 / 66



FEniCS

Weak Form Processing

from f f c . ana l ys i s impor t analyze_forms
from f f c . compi ler impor t compute_ir

parameters = f f c . defau l t_parameters ( )
parameters [ ’ r ep resen ta t i on ’ ] = ’ tensor ’
ana l ys i s = analyze_forms ( [ a , L ] , { } , parameters )
i r = compute_ir ( ana lys is , parameters )

a_K = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 0 ]
a_G = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 1 ]

K = a_K . A0 . astype (numpy . f l o a t 3 2 )
G = a_G

M. Knepley Robust PASI ’11 65 / 66



Conclusions

Big Picture

Usability is paramount
Need community by-in
Need complete workflow

Leverage existing systems
Adoption is much easier with the familiar
arXiv, package managers

M. Knepley Robust PASI ’11 66 / 66

http://arXiv.org

	Version Control
	Configuration and Build
	PETSc
	Traditional PETSc
	petsc4py

	numpy & sympy
	numpy
	sympy

	PyCUDA
	FEniCS
	Conclusions

