#### **Composing Nonlinear Solvers**

#### Matthew Knepley

Computational and Applied Mathematics Rice University

MIT Aeronautics and Astronautics Boston, MA May 10, 2016





## PETSc is one of the most popular software libraries in scientific computing.

#### As a principal architect since 2001, I developed

- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Knepley, Karpeev, Sci. Prog., 2009. Brune, Knepley, Scott, SISC, 2013.



As a principal architect since 2001, I developed

- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

| Туре            | Sym        | Statement                                                                                        | Abbreviation                 |
|-----------------|------------|--------------------------------------------------------------------------------------------------|------------------------------|
| Additive        | +          | $ec{m{x}}+lpha(\mathcal{M}(\mathcal{F},ec{m{x}},ec{m{b}})-ec{m{x}})$                             | $\mathcal{M} + \mathcal{N}$  |
|                 |            | $+  eta(\mathcal{N}(\mathcal{F},ec{x},ec{b}) - ec{x})$                                           |                              |
| Multiplicative  | *          | $\mathcal{M}(\mathcal{F},\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{b})$                            | $\mathcal{M} * \mathcal{N}$  |
| Left Prec.      | - <u>L</u> | $\mathcal{M}(ec{x}-\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{x},ec{b})$                            | $\mathcal{M}L \mathcal{N}$   |
| Right Prec.     | - <i>R</i> | $\mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F},ec{x},ec{b})),ec{x},ec{b})$                     | $\mathcal{M}{R} \mathcal{N}$ |
| Inner Lin. Inv. |            | $ert \vec{y} = \vec{J}(\vec{x})^{-1} \vec{r}(\vec{x}) = K(\vec{J}(\vec{x}), \vec{y}_0, \vec{b})$ | $\mathcal{N} \setminus K$    |

As a principal architect since 2001, I developed

- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Aagaard, Knepley, and Williams, J. of Geophysical Research, 2013.



As a principal architect since 2001, I developed

- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

Knepley and Terrel, Transactions on Mathematical Software, 2012.



As a principal architect since 2001, I developed

- unstructured meshes (model, algorithms, implementation),
- nonlinear preconditioning (model, algorithms),
- FEM discretizations (data structures, solvers optimization),
- optimizations for multicore and GPU architectures.

# When you see an approximate solver,

### I see a preconditioner.

Matt (Rice)



MIT 3/69

# When you see an approximate solver,

### I see a preconditioner.

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,



- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,



- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

a Gauss-Siedel iteration between blocks of  $(\mathbf{u}, p)$  and T, and a full Schur complement factorization for  $\mathbf{u}$  and p.

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

• Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

an upper triangular Schur complement factorization for  $\mathbf{u}$  and p, and geometric multigrid for the  $\mathbf{u}$  block.

- Block preconditioners
- Schur complement methods

$$\begin{pmatrix} F & B & M \\ B^T & 0 & 0 \\ N & 0 & K \end{pmatrix} \begin{pmatrix} \mathbf{u} \\ p \\ T \end{pmatrix} = \begin{pmatrix} \mathbf{f} \\ 0 \\ q \end{pmatrix}$$

Multigrid with special smoothers

However, today it is hard to compare & combine them and combine in a **hierarchical** manner. For instance we might want,

algebraic multigrid for the full  $(\mathbf{u}, p)$  system, using a block triangular Gauss-Siedel smoother on each level, and use identity for the (p, p) block.

#### Need solvers to be:

- Composable: separately developed solvers may be easily combined, by non-experts, to form a more powerful solver
- Nested: outer solvers call inner solvers
- Hierarchical: outer solvers may iterate over all variables for a global problem, while nested inner solvers handle smaller subsets of physics, smaller physical subdomains, or coarser meshes
- Extensible: users can easily customize/extend

Composable Linear Solvers for Multiphysics, Brown, Knepley, May, McInnes, Smith, IPDPS, 2012.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### FieldSplit Customization

- Analysis
  - -pc\_fieldsplit\_<**split num**>\_fields 2,1,5
  - -pc\_fieldsplit\_detect\_saddle\_point
- Synthesis
  - -pc\_fieldsplit\_type
  - -pc\_fieldsplit\_real\_diagonal Use diagonal blocks of operator to build PC
- Schur complements
  - -pc\_fieldsplit\_schur\_precondition <self,user,diag> How to build preconditioner for *S*
  - -pc\_fieldsplit\_schur\_factorization\_type
     <diag,lower,upper,full>
     Which off-diagonal parts of the block factorization to use

ex62:  $P_2/P_1$  Stokes Problem on Unstructured Mesh

$$\begin{pmatrix} A & B \\ B^T & 0 \end{pmatrix}$$

Matt (Rice)

イロト イポト イモト イモト

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh Block-Jacobi (Exact), Cohouet & Chabard, IJNMF, 1988.

-ksp\_type gmres -pc\_type fieldsplit -pc\_fieldsplit\_type additive -fieldsplit\_velocity\_ksp\_type preonly -fieldsplit\_velocity\_pc\_type lu -fieldsplit\_pressure\_ksp\_type preonly -fieldsplit\_pressure\_pc\_type jacobi

$$\begin{pmatrix} A & 0 \\ 0 & I \end{pmatrix}$$

Matt (Rice)

イロト イ押ト イヨト イヨト

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh Block-Jacobi (Inexact), Cohouet & Chabard, IJNMF, 1988.

-ksp\_type fgmres -pc\_type fieldsplit -pc\_fieldsplit\_type additive -fieldsplit\_velocity\_ksp\_type preonly -fieldsplit\_velocity\_pc\_type gamg -fieldsplit\_pressure\_ksp\_type preonly -fieldsplit\_pressure\_pc\_type jacobi

$$\begin{pmatrix} \hat{A} & 0 \\ 0 & I \end{pmatrix}$$

| Matt ( | Rice) |
|--------|-------|
|        |       |

## ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh Gauss-Seidel (Inexact), Elman, DTIC, 1994.

-ksp\_type fgmres -pc\_type fieldsplit -pc\_fieldsplit\_type multiplicative -fieldsplit\_velocity\_ksp\_type preonly -fieldsplit\_velocity\_pc\_type gamg -fieldsplit\_pressure\_ksp\_type preonly -fieldsplit\_pressure\_pc\_type jacobi

$$\begin{pmatrix} \hat{A} & B \\ 0 & I \end{pmatrix}$$

Matt (Rice)

(日)

## ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh Gauss-Seidel (Inexact), Elman, DTIC, 1994.

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative
-pc_fieldsplit_0_fields 1 -pc_fieldsplit_1_fields 0
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi
```

$$\begin{pmatrix} I & B^T \\ 0 & \hat{A} \end{pmatrix}$$

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh

#### Diagonal Schur Complement, Olshanskii, et.al., Numer. Math., 2006.

-ksp\_type fgmres -pc\_type fieldsplit -pc\_fieldsplit\_type schur -pc\_fieldsplit\_schur\_factorization\_type diag -fieldsplit\_velocity\_ksp\_type preonly -fieldsplit\_velocity\_pc\_type gamg -fieldsplit\_pressure\_ksp\_type minres -fieldsplit\_pressure\_pc\_type none

$$egin{pmatrix} \hat{A} & 0 \ 0 & -\hat{S} \end{pmatrix}$$

イロト イ押ト イヨト イヨト

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh

#### Lower Schur Complement, May and Moresi, PEPI, 2008.

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type lower
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none
```

 $\begin{pmatrix} \hat{A} & 0 \\ B^T & \hat{S} \end{pmatrix}$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh

#### Upper Schur Complement, May and Moresi, PEPI, 2008.

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none
```

$$\begin{pmatrix} \hat{A} & B \\ & \hat{S} \end{pmatrix}$$

#### ex62: P<sub>2</sub>/P<sub>1</sub> Stokes Problem on Unstructured Mesh

#### Uzawa Iteration, Uzawa, 1958

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_type richardson
-fieldsplit_pressure_ksp_max_its 1
```

$$\begin{pmatrix} A & B \\ & \hat{S} \end{pmatrix}$$

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh Full Schur Complement, Schur, 1905.

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
```

$$\begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh SIMPLE, Patankar and Spalding, IJHMT, 1972.

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_inner_ksp_type preonly
-fieldsplit_pressure_inner_pc_type jacobi
-fieldsplit_pressure_upper_ksp_type preonly
-fieldsplit_pressure_upper_ksp_type preonly
-fieldsplit_pressure_upper_pc_type jacobi
```

$$\begin{pmatrix} I & 0 \\ B^{T}A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & B^{T}D_{A}^{-1}B \end{pmatrix} \begin{pmatrix} I & D_{A}^{-1}B \\ 0 & I \end{pmatrix}$$

#### ex62: $P_2/P_1$ Stokes Problem on Unstructured Mesh

#### Least-Squares Commutator, Kay, Loghin and Wathen, SISC, 2002.

-ksp\_type fgmres -pc\_type fieldsplit -pc\_fieldsplit\_type schur -pc\_fieldsplit\_schur\_factorization\_type full -pc\_fieldsplit\_schur\_precondition self -fieldsplit\_velocity\_ksp\_type gmres -fieldsplit\_velocity\_pc\_type lu -fieldsplit\_pressure\_ksp\_rtol le-5 -fieldsplit\_pressure\_pc\_type lsc

$$\begin{pmatrix} I & 0 \\ B^T A^{-1} & I \end{pmatrix} \begin{pmatrix} A & 0 \\ 0 & \hat{S}_{LSC} \end{pmatrix} \begin{pmatrix} I & A^{-1} B \\ 0 & I \end{pmatrix}$$

ex31:  $P_2/P_1$  Stokes Problem with Temperature on Unstructured Mesh Additive Schwarz + Full Schur Complement, Elman, Howle, Shadid, Shuttleworth, and Tuminaro, SISC, 2006.

```
-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type additive
-pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
 -fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
 -fieldsplit_0_pc_fieldsplit_type schur
 -fieldsplit_0_pc_fieldsplit_schur_factorization_type full
   -fieldsplit_0_fieldsplit_velocity_ksp_type preonly
   -fieldsplit_0_fieldsplit_velocity_pc_type lu
   -fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
   -fieldsplit_0_fieldsplit_pressure_pc_type jacobi
 -fieldsplit_temperature_ksp_type preonly
 -fieldsplit_temperature_pc_type lu
                \begin{pmatrix} I & 0 \\ B^{T}A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix} = \begin{pmatrix} 0 \\ L_{T} \end{pmatrix}
```

ex31:  $P_2/P_1$  Stokes Problem with Temperature on Unstructured Mesh Upper Schur Comp. + Full Schur Comp. + Least-Squares Comm.

$$\begin{pmatrix} I & 0 \\ B^{\mathsf{T}}A^{-1} & I \end{pmatrix} \begin{pmatrix} \hat{A} & 0 \\ 0 & \hat{S} \end{pmatrix} \begin{pmatrix} I & A^{-1}B \\ 0 & I \end{pmatrix} & G \\ 0 & & \hat{S}_{\text{LSC}} \end{pmatrix}$$

#### The Great Solver Schism: Monolithic or Split?

#### Monolithic

- Direct solvers
- Coupled Schwarz
- Coupled Neumann-Neumann (use unassembled matrices)
- Coupled Multigrid

#### Split

- Physics-split Schwarz (based on relaxation)
- Physics-split Schur (based on factorization)
  - SIMPLE, PCD, LSC
  - segregated smoothers
  - Augmented Lagrangian

#### Need to understand

- Local spectral properties
- Compatibility properties

Global coupling strengths

#### Outline



#### 2 Theory

#### 3 Experiments

4 Concluding THoughts

#### Abstract System

#### Out prototypical nonlinear equation is:

$$\mathcal{F}(\vec{x}) = \vec{b} \tag{1}$$

and we define the residual as

$$\vec{r}(\vec{x}) = \mathcal{F}(\vec{x}) - \vec{b}$$
 (2)

#### Abstract System

#### Out prototypical nonlinear equation is:

$$\mathcal{F}(\vec{x}) = \vec{b} \tag{1}$$

and we define the (linear) residual as

$$\vec{r}(\vec{x}) = A\vec{x} - \vec{b} \tag{3}$$

MIT

10/69

**Composition Strategies** 

#### Linear Left Preconditioning

#### The modified equation becomes

$$P^{-1}\left(A\vec{x}-\vec{b}\right)=0$$
 (4)

**Composition Strategies** 

#### Linear Left Preconditioning

#### The modified defect correction equation becomes

$$P^{-1}\left(A\vec{x}_{i}-\vec{b}\right)=\vec{x}_{i+1}-\vec{x}_{i}$$
(5)

#### Additive Combination

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (\alpha P^{-1} + \beta Q^{-1})(A\vec{x}_i - \vec{b})$$
 (6)

becomes the nonlinear iteration


# Additive Combination

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (\alpha P^{-1} + \beta Q^{-1})\vec{r}_i$$
 (7)



# Additive Combination

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (\alpha P^{-1} + \beta Q^{-1})\vec{r}_i$$
(7)

MIT

12/69

$$\vec{x}_{i+1} = \vec{x}_i + \alpha(\mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b}) - \vec{x}_i) + \beta(\mathcal{M}(\mathcal{F}, \vec{x}_i, \vec{b}) - \vec{x}_i)$$
 (8)

# Nonlinear Left Preconditioning

# From the additive combination, we have

$$P^{-1}\vec{r} \Longrightarrow \vec{x}_i - \mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b})$$
 (9)

so we define the preconditioning operation as

$$\vec{r}_L \equiv \vec{x} - \mathcal{N}(\mathcal{F}, \vec{x}, \vec{b})$$
 (10)

13/69

# **Multiplicative Combination**

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (P^{-1} + Q^{-1} - Q^{-1}AP^{-1})\vec{r}_i$$
 (11)

# **Multiplicative Combination**

# The linear iteration

$$ec{x}_{i+1/2} = ec{x}_i - P^{-1}ec{r}_i$$
 (12)  
 $ec{x}_i = ec{x}_{i+1/2} - Q^{-1}ec{r}_{i+1/2}$  (13)

# **Multiplicative Combination**

# The linear iteration

$$\vec{x}_{i+1/2} = \vec{x}_i - P^{-1} \vec{r}_i$$
 (12)  
 $\vec{x}_i = \vec{x}_{i+1/2} - Q^{-1} \vec{r}_{i+1/2}$  (13)

$$\vec{x}_{i+1} = \mathcal{M}(\mathcal{F}, \mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b}), \vec{b})$$
 (14)

# Nonlinear Right Preconditioning

For the linear case, we have

$$AP^{-1}\vec{y} = \vec{b}$$
(15)  
$$\vec{x} = P^{-1}\vec{y}$$
(16)

so we define the preconditioning operation as

$$\vec{y} = \mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F}, \cdot, \vec{b})), \vec{x}_i, \vec{b})$$
(17)  
$$\vec{x} = \mathcal{N}(\mathcal{F}, \vec{y}, \vec{b})$$
(18)



# Nonlinear Preconditioning

| Туре            | Sym        | Statement                                                                       | Abbreviation                           |
|-----------------|------------|---------------------------------------------------------------------------------|----------------------------------------|
| Additive        | +          | $ec{m{x}}+lpha(\mathcal{M}(\mathcal{F},ec{m{x}},ec{m{b}})-ec{m{x}})$            | $\mathcal{M} + \mathcal{N}$            |
|                 |            | $+  eta (\mathcal{N}(\mathcal{F},ec{x},ec{b}) - ec{x})$                         |                                        |
| Multiplicative  | *          | $\mathcal{M}(\mathcal{F},\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{b})$           | $\mathcal{M} * \mathcal{N}$            |
| Left Prec.      | - <i>L</i> | $\mathcal{M}(ec{x}-\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{x},ec{b})$           | $\mathcal{M}L \mathcal{N}$             |
| Right Prec.     | <i>R</i>   | $\mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F},ec{x},ec{b})),ec{x},ec{b})$    | $\mathcal{M}{\mathcal{R}} \mathcal{N}$ |
| Inner Lin. Inv. |            | $ec{y} = ec{J}(ec{x})^{-1}ec{r}(ec{x}) = {\sf K}(ec{J}(ec{x}), ec{y}_0, ec{b})$ | $\mathcal{N} \setminus K$              |

Composing Scalable Nonlinear Algebraic Solvers, Brune, Knepley, Smith, and Tu, SIAM Review, 2015.

# Outline

### Composition Strategies

### 2 Theory

- Convergence Rates
- Induction Theorem

### 3 Experiments

### 4 Concluding THoughts

< A







# Rate of Convergence

### What should be a Rate of Convergence? [Ptak, 1977]:

- It should relate quantities which may be measured or estimated during the actual process
- It should describe accurately in particular the initial stage of the process, not only its asymptotic behavior ...

$$\|x_{n+1} - x^*\| \le c \|x_n - x^*\|^q$$

→ ∃ →

# Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:

- It should relate quantities which may be measured or estimated during the actual process
- It should describe accurately in particular the initial stage of the process, not only its asymptotic behavior ...

$$||x_{n+1} - x_n|| \le c ||x_n - x_{n-1}||^q$$

# Rate of Convergence

What should be a Rate of Convergence? [Ptak, 1977]:

- It should relate quantities which may be measured or estimated during the actual process
- It should describe accurately in particular the initial stage of the process, not only its asymptotic behavior ...

$$||x_{n+1} - x_n|| \le \omega(||x_n - x_{n-1}||)$$

where we have for all  $r \in (0, R]$ 

$$\sigma(r) = \sum_{n=0}^{\infty} \omega^{(n)}(r) < \infty$$

Define an approximate set Z(r), where  $x^* \in Z(0)$  implies  $f(x^*) = 0$ .



A D M A A A M M

→ ∃ →

Define an approximate set Z(r), where  $x^* \in Z(0)$  implies  $f(x^*) = 0$ .

For Newton's method, we use

$$Z(r) = \left\{ x \Big| \|f'(x)^{-1}f(x)\| \le r, d(f'(x)) \ge h(r), \|x - x_0\| \le g(r) \right\},$$

where

$$d(A)=\inf_{\|x\|\geq 1}\|Ax\|,$$

and h(r) and g(r) are positive functions.

| Matt ( | (Rice) |
|--------|--------|
|--------|--------|

20/69

Define an approximate set Z(r), where  $x^* \in Z(0)$  implies  $f(x^*) = 0$ .

For  $r \in (0, R]$ ,

$$Z(r) \subset U(Z(\omega(r)), r)$$

implies

 $Z(r) \subset U(Z(0), \sigma(r)).$ 

For the fixed point iteration

$$x_{n+1} = Gx_n,$$

if I have

$$x_0 \in Z(r_0)$$

and for  $x \in Z(r)$ ,

$$\|Gx - x\| \le r$$
  
 $Gx \in Z(\omega(r))$ 

then

< A

★ ∃ ► ★

MIT

21/69

For the fixed point iteration

$$x_{n+1}=Gx_n,$$

if I have

$$x_0 \in Z(r_0)$$

and for  $x \in Z(r)$ ,

$$\|Gx - x\| \le r$$
  
 $Gx \in Z(\omega(r))$ 

then

$$x^* \in Z(0)$$
  
 $x_n \in Z(\omega^{(n)}(r_0))$ 

∃ ▶ ∢

For the fixed point iteration

$$x_{n+1}=Gx_n,$$

if I have

$$x_0 \in Z(r_0)$$

and for  $x \in Z(r)$ ,

$$\|Gx - x\| \le r$$
  
 $Gx \in Z(\omega(r))$ 

then

$$\begin{aligned} \|x_{n+1} - x_n\| &\leq \omega^{(n)}(r_0) \\ \|x_n - x^*\| &\leq \sigma(\omega^{(n)}(r_0))_{\text{dist}(r_0)} \neq \sigma(r_0) \end{aligned}$$

For the fixed point iteration

$$x_{n+1}=Gx_n,$$

if I have

$$x_0 \in Z(r_0)$$

and for  $x \in Z(r)$ ,

$$\|Gx - x\| \le r$$
  
 $Gx \in Z(\omega(r))$ 

then

$$||x_n - x^*|| \le \sigma(\omega(||x_n - x_{n-1}||))$$
  
=  $\sigma(||x_n - x_{n-1}||) - ||x_n - x_{n-1}||$ 

# Newton's Method

$$\omega_{\mathcal{N}}(r) = cr^2$$

Matt (Rice)

2

イロト イヨト イヨト イヨ

#### Convergence Rates

# Newton's Method

$$\omega_{\mathcal{N}}(r) = rac{r^2}{2\sqrt{r^2 + a^2}}$$
 $\sigma_{\mathcal{N}}(r) = r + \sqrt{r^2 + a^2} - a$ 

where

$$a=\frac{1}{k_0}\sqrt{1-2k_0r_0},$$

 $k_0$  is the (scaled) Lipschitz constant for f', and  $r_0$  is the (scaled) initial residual.

< 47 ▶

. . . . . . .

MIT

22/69

#### Theory Convergence Rates

# Newton's Method

$$\omega_{\mathcal{N}}(r) = \frac{r^2}{2\sqrt{r^2 + a^2}}$$
$$\sigma_{\mathcal{N}}(r) = r + \sqrt{r^2 + a^2} - a$$

This estimate is *tight* in that the bounds hold with equality for some function f,

$$f(x) = x^2 - a^2$$

using initial guess

Also, if equality is attained for some  $n_0$ , this holds for all  $n \ge n_0$ .

Matt (Rice)

 $x_0=\frac{1}{k_0}.$ 

(B)

#### Theory Convergence Rates

### Newton's Method

$$\omega_{\mathcal{N}}(r) = \frac{r^2}{2\sqrt{r^2 + a^2}}$$
$$\sigma_{\mathcal{N}}(r) = r + \sqrt{r^2 + a^2} - a$$

If  $r \gg a$ , meaning we have an inaccurate guess,

$$\omega_{\mathcal{N}}(r) \approx \frac{1}{2}r,$$

whereas if  $r \ll a$ , meaning we are close to the solution,

$$\omega_{\mathcal{N}}(r) \approx \frac{1}{2a}r^2.$$

# Left vs. Right

Left:

$$\mathcal{F}(\mathbf{x}) \Longrightarrow \mathbf{x} - \mathcal{N}(\mathcal{F}, \mathbf{x}, \mathbf{b})$$

# Right:

 $x \Longrightarrow y = \mathcal{N}(\mathcal{F}, x, b)$ 

# Heisenberg vs. Schrödinger Picture

イロト イ団ト イヨト イヨト

# Left vs. Right

Left:

$$\mathcal{F}(\mathbf{x}) \Longrightarrow \mathbf{x} - \mathcal{N}(\mathcal{F}, \mathbf{x}, \mathbf{b})$$

Right:

$$x \Longrightarrow y = \mathcal{N}(\mathcal{F}, x, b)$$

# Heisenberg vs. Schrödinger Picture

イロト イポト イヨト イヨ

 $\mathcal{M} -_R \mathcal{N}$ 

# We start with $x \in Z(r)$ , apply $\mathcal{N}$ so that

$$y \in Z(\omega_{\mathcal{N}}(r)),$$

and then apply  $\mathcal{M}$  so that

$$\mathbf{x}' \in \mathbf{Z}(\omega_{\mathcal{M}}(\omega_{\mathcal{N}}(\mathbf{r}))).$$

Thus we have

$$\omega_{\mathcal{M}-R\mathcal{N}} = \omega_{\mathcal{M}} \circ \omega_{\mathcal{N}}$$





- Convergence Rates
- Induction Theorem



• • • • • • • • • • • • •

# Non-Abelian

 $\mathcal{N} -_R \mathsf{NRICH}$ 

$$egin{aligned} &\omega_{\mathcal{N}}\circ\omega_{\mathrm{NRICH}}=rac{1}{2}rac{r^2}{\sqrt{r^2+a^2}}\circ \mathit{Cr},\ &=rac{1}{2}rac{c^2r^2}{\sqrt{c^2r^2+a^2}},\ &=rac{1}{2}rac{cr^2}{\sqrt{r^2+(a/c)^2}},\ &=rac{1}{2}crac{r^2}{\sqrt{r^2+(a/c)^2}},\ &=rac{1}{2}crac{r^2}{\sqrt{r^2+ ilde{a}^2}}, \end{aligned}$$

MIT

26 / 69

### Non-Abelian

$$\mathcal{N} -_R$$
 NRICH:  $\frac{1}{2}c \frac{r^2}{\sqrt{r^2 + \tilde{a}^2}}$ 

NRICH  $-_R \mathcal{N}$ 



### Non-Abelian

$$\mathcal{N} -_R$$
 NRICH:  $\frac{1}{2}c \frac{r^2}{\sqrt{r^2 + \tilde{a}^2}}$ 

NRICH 
$$-_R \mathcal{N}: \frac{1}{2}C \frac{r^2}{\sqrt{r^2+a^2}}$$

# The first method also changes the onset of second order convergence.

Induction Theorem

# Composed Rates of Convergence

### Theorem

# If $\omega_1$ and $\omega_2$ are convex rates of convergence, then $\omega = \omega_1 \circ \omega_2$ is a rate of convergence.

. . . . . . .

# Composed Rates of Convergence

# Theorem

If  $\omega_1$  and  $\omega_2$  are convex rates of convergence, then  $\omega = \omega_1 \circ \omega_2$  is a rate of convergence.

First we show that

$$\omega(s) \leq \frac{s}{r}\omega(r),$$

which means that convex rates of convergence are non-decreasing.

This implies that compositions of convex rates of convergence are also convex and non-decreasing.

Induction Theorem

# Composed Rates of Convergence

### Theorem

If  $\omega_1$  and  $\omega_2$  are convex rates of convergence, then  $\omega = \omega_1 \circ \omega_2$  is a rate of convergence.

# Then we show that

$$\omega(r) < r \quad \forall r \in (0, R)$$

by contradiction.

MIT

29/69

Induction Theorem

# Composed Rates of Convergence

### Theorem

If  $\omega_1$  and  $\omega_2$  are convex rates of convergence, then  $\omega = \omega_1 \circ \omega_2$  is a rate of convergence.

# This is enough to show that

$$\omega_1(\omega_2(r)) < \omega_1(r),$$

and in fact

$$(\omega_1 \circ \omega_2)^{(n)}(r) < \omega_1^{(n)}(r).$$

Induction Theorem

### Multidimensional Induction Theorem Preconditions

### Theorem

### Let

- p (1 for our case) and m (2 for our case) be two positive integers,
- X be a complete metric space and  $D \subset X^{p}$ ,
- $G: D \to X^p$  and  $F: D \to X^{p+1}$  be defined by Fu = (u, Gu),
- $F_k = P_k F$ ,  $-p + 1 \le k \le m$ , the components of F,
- $P = P_m$ ,
- $Z(r) \subset D$  for each  $r \in T^p$ ,
- $\omega$  be a rate of convergence of type (p, m) on T,
- $u_0 \in D$  and  $r_0 \in T^p$ .
Induction Theorem

## Multidimensional Induction Theorem

#### Theorem

If the following conditions hold

$$egin{aligned} & u_0 \in Z(r_0), \ & extsf{PFZ}(r) \subset Z( ilde{\omega}(r)), \ & \|F_k u - F_{k+1} u\| \leq \omega_k(r), \end{aligned}$$

for all  $r \in T^p$ ,  $u \in Z(r)$ , and  $k = 0, \ldots, m-1$ , then

•  $u_0$  is admissible, and  $\exists x^* \in X$  such that  $(P_k u_n)_{n \ge 0} \to x^*$ ,

2 and the following relations hold for n > 1,

$$\begin{aligned} & Pu_n \in Z(\tilde{\omega}(r_0)), \\ & \|P_k u_n - P_{k+1} u_n\| \leq \omega_k^{(n)}(r_0), \qquad 0 \leq k \leq m-1, \\ & \|P_k u_n - x^*\| \leq \sigma_k(\tilde{\omega}(r_0)), \qquad 0 \leq k \leq m; \end{aligned}$$

Induction Theorem

## Multidimensional Induction Theorem

#### Theorem

If the following conditions hold

$$egin{aligned} & u_0 \in Z(r_0), \ & \mathcal{PFZ}(r) \subset Z(\widetilde{\omega}(r)), \ & \|\mathcal{F}_k u - \mathcal{F}_{k+1} u\| \leq \omega_k(r), \end{aligned}$$

for all  $r \in T^p$ ,  $u \in Z(r)$ , and  $k = 0, \ldots, m-1$ , then

**1**  $u_0$  is admissible, and  $\exists x^* \in X$  such that  $(P_k u_n)_{n \ge 0} \to x^*$ ,

2 and the following relations hold for n > 1,

$$\|P_k u_n - x^*\| \leq \sigma_k(r_n), \qquad 0 \leq k \leq m.$$

where  $r_n \in T^p$  and  $Pu_{n-1} \in Z(r_n)$ .

Induction Theorem

## Multidimensional Induction Theorem

#### Theorem

If the following conditions hold

$$egin{aligned} & u_0 \in Z(r_0), \ & extsf{PFZ}(r) \subset Z( ilde{\omega}(r)), \ & \|F_k u - F_{k+1} u\| \leq \omega_k(r), \end{aligned}$$

for all  $r \in T^p$ ,  $u \in Z(r)$ , and  $k = 0, \ldots, m-1$ , then

•  $u_0$  is admissible, and  $\exists x^* \in X$  such that  $(P_k u_n)_{n \ge 0} \to x^*$ ,

2 and the following relations hold for n > 1,

$$\begin{aligned} & Pu_n \in Z(\tilde{\omega}(r_0)), \\ & \|P_k u_n - P_{k+1} u_n\| \leq \omega_k^{(n)}(r_0), \qquad 0 \leq k \leq m-1, \\ & \|P_k u_n - x^*\| \leq \sigma_k(\tilde{\omega}(r_0)), \qquad 0 \leq k \leq m; \end{aligned}$$

Induction Theorem

## Multidimensional Induction Theorem

#### Theorem

#### If the following conditions hold

 $u_0 \in Z(r_0),$  $PFZ(r) \subset Z(\omega \circ \psi(r)),$  $\|F_0 u - F_1 u\| < r$  $\|F_1u-F_2u\|\leq \psi(r),$ for all  $r \in T^p$ ,  $u \in Z(r)$ , and  $k = 0, \ldots, m-1$ , then **1**  $u_0$  is admissible, and  $\exists x^* \in X$  such that  $(P_k u_n)_{n \ge 0} \to x^*$ , 2 and the following relations hold for n > 1,  $Pu_n \in Z(\tilde{\omega}(r_0)),$  $\|P_k u_n - P_{k+1} u_n\| \le \omega_k^{(n)}(r_0), \quad 0 \le k \le m-1,$  $\|P_k u_n - x^*\| \leq \sigma_k(\tilde{\omega}(r_0)),$ 0 < k < m;

## Composed Newton Methods

#### Theorem

Suppose that we have two nonlinear solvers

- $\mathcal{M}, Z_1, \omega,$
- $\mathcal{N}, Z_0, \psi,$

and consider  $\mathcal{M} -_R \mathcal{N}$ , meaning a single step of  $\mathcal{N}$  for each step of  $\mathcal{M}$ .

Concretely, take M to be the Newton iteration, and N the Chord method. Then the assumptions of the theorem above are satisfied using  $Z = Z_1$  and

$$\omega(\mathbf{r}) = \{\psi(\mathbf{r}), \omega \circ \psi(\mathbf{r})\},\$$

giving us the existence of a solution, and both a priori and a posteriori bounds on the error.

| Matt ( | (Rice) |
|--------|--------|
|--------|--------|

## Example

| $f(x) = x^2 + (0.0894427)^2$ |                   |                                    |                                                     |  |  |  |  |  |
|------------------------------|-------------------|------------------------------------|-----------------------------------------------------|--|--|--|--|--|
| n                            | $\ x_{n+1}-x_n\ $ | $  x_{n+1} - x_n   - w^{(n)}(r_0)$ | $  x_n - x^*   - s(w^{(n)}(r_0))$                   |  |  |  |  |  |
| 0                            | 1.9990e+00        | < 10 <sup>-16</sup>                | < 10 <sup>-16</sup>                                 |  |  |  |  |  |
| 1                            | 9.9850e-01        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 2                            | 4.9726e-01        | $< 10^{-16}$                       | $< 10^{-16}$                                        |  |  |  |  |  |
| 3                            | 2.4470e-01        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 4                            | 1.1492e-01        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 5                            | 4.5342e-02        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 6                            | 1.0251e-02        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 7                            | 5.8360e-04        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 8                            | 1.9039e-06        | < 10 <sup>-16</sup>                | $< 10^{-16}$                                        |  |  |  |  |  |
| 9                            | 2.0264e-11        | < 10 <sup>-16</sup>                | < 10 <sup>-16</sup>                                 |  |  |  |  |  |
| 10                           | 0.0000e+00        | $< 10^{-16}$                       | < 10 <sup>-16</sup><br>< □ ▶ < ∰ ▶ < ≣ ▶ < ≣ ▶ ≡ ∽○ |  |  |  |  |  |

Matt (Rice)

#### Example



Matrix iterations also 1D scalar once you diagonalize

Pták's nondiscrete induction and its application to matrix iterations, Liesen, IMA J. Num. Anal, ac

Matt (Rice)

MIT 34 / 69

## Outline

Composition Strategies

#### 2 Theory



- Composition
- Multilevel
- Magma Dynamics

#### 4 Concluding THoughts

< 17 ▶

MIT

35 / 69

## Outline



- Multilevel
- Magma Dynamics



イロト イポト イヨト イヨ

$$\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{S} : \nabla \boldsymbol{v} \, \boldsymbol{d}\Omega + \int_{\Omega} \text{loading } \boldsymbol{e}_{\boldsymbol{y}} \cdot \boldsymbol{v} \, \boldsymbol{d}\Omega = \boldsymbol{0} \tag{19}$$

- F Deformation gradient
- S Second Piola-Kirchhoff tensor

Saint Venant-Kirchhoff model of hyperelasticity

- $\Omega$  -arc angle subsection of a cylindrical shell
  - -height *thickness* -rad *inner radius* -width *width*

< 3 > < 3</p>

Composition

## Large Deformation Elasticity



Composition

## Large Deformation Elasticity



Composition

## Large Deformation Elasticity



Composition

# Large Deformation Elasticity

#### SNES example 16:

```
cd src/snes/examples/tutorials
make ex16
./ex16 -da_grid_x 401 -da_grid_y 9 -da_grid_z 9
   -height 3 -width 3
   -rad 100 -young 100 -poisson 0.2
   -loading -1 -ploading 0
```

## Plain SNES Convergence

#### $(\mathcal{N} \backslash K - MG)$ and NCG



Matt (Rice)

MIT 40 / 69

## Plain SNES Convergence

| Solver                           | T     | N. It | L. It | Func | Jac | PC   | NPC |
|----------------------------------|-------|-------|-------|------|-----|------|-----|
| NCG                              | 53.05 | 4495  | 0     | 8991 | _   | _    | _   |
| $(\mathcal{N} \setminus K - MG)$ | 23.43 | 27    | 1556  | 91   | 27  | 1618 | _   |



크

イロト イ団ト イヨト イヨ

#### Composed SNES Convergence

 $NCG(10) + (\mathcal{N} \setminus K - MG)$  and  $NCG(10) * (\mathcal{N} \setminus K - MG)$ 



Composition

## Composed SNES Convergence

| Solver                            | Т     | N. It | L. It | Func | Jac | PC   | NPC |
|-----------------------------------|-------|-------|-------|------|-----|------|-----|
| NCG                               | 53.05 | 4495  | 0     | 8991 | —   | _    | _   |
| $(\mathcal{N} ackslash K - MG)$   | 23.43 | 27    | 1556  | 91   | 27  | 1618 | —   |
| NCG(10)                           | 14.92 | 9     | 459   | 218  | 9   | 479  | —   |
| $+(\mathcal{N} \setminus K - MG)$ |       |       |       |      |     |      |     |
| NCG(10)                           | 16.34 | 11    | 458   | 251  | 11  | 477  | —   |
| $*(\mathcal{N} \setminus K - MG)$ |       |       |       |      |     |      |     |

2

イロト イ団ト イヨト イヨ

Composition

#### Peconditioned SNES Convergence

NGMRES  $-_{R}(\mathcal{N}\setminus K - MG)$  and NCG  $-_{L}(\mathcal{N}\setminus K - MG)$ 



-

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Composition

## Peconditioned SNES Convergence

| Solver                             | Т     | N. It | L. It | Func | Jac | PC   | NPC |
|------------------------------------|-------|-------|-------|------|-----|------|-----|
| NCG                                | 53.05 | 4495  | 0     | 8991 | _   | _    | _   |
| $(\mathcal{N} \setminus K - MG)$   | 23.43 | 27    | 1556  | 91   | 27  | 1618 | _   |
| NCG(10)                            | 14.92 | 9     | 459   | 218  | 9   | 479  | —   |
| $+(\mathcal{N} \setminus K - MG)$  |       |       |       |      |     |      |     |
| NCG(10)                            | 16.34 | 11    | 458   | 251  | 11  | 477  | —   |
| $*(\mathcal{N} \setminus K - MG)$  |       |       |       |      |     |      |     |
| NGMRES                             | 9.65  | 13    | 523   | 53   | 13  | 548  | 13  |
| ${R}(\mathcal{N} ackslash K - MG)$ |       |       |       |      |     |      |     |
| NCG                                | 9.84  | 13    | 529   | 53   | 13  | 554  | 13  |
| $L(\mathcal{N} \setminus K - MG)$  |       |       |       |      |     |      |     |

크

イロト イ団ト イヨト イヨト

## Outline



#### Multilevel

Magma Dynamics

2

イロト イ団ト イヨト イヨ

#### SNES ex19 **Driven Cavity Flow**

## $-\Delta \vec{\mu} + \nabla \times \Omega = 0$

## $-\Delta\Omega + \nabla \cdot (\vec{u}\Omega) - GR\nabla_x T = 0$

 $-\Delta T + PR \nabla \cdot (\vec{u}T) = 0$ 

イロト イ団ト イヨト イヨト

Experiments ML

Multilevel

#### SNES ex19 Driven Cavity Flow



 $-\Delta \vec{u} + \nabla \times \Omega = \mathbf{0}$ 

 $\nabla \cdot (\vec{u}\Omega) - GR\nabla_x T = 0$ 

 $-\Delta T + PR\nabla \cdot (\vec{u}T) = 0$ 

#### **Driven Cavity Problem**

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e2
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
```

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## Driven Cavity Problem

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e2
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 100
  0 SNES Function norm 768.116
  1 SNES Function norm 658.288
  2 SNES Function norm 529.404
  3 SNES Function norm 377.51
  4 SNES Function norm 304.723
  5 SNES Function norm 0.00942733
  7 SNES Function norm 0.00942733
  7 SNES Function norm 5.20667e-08
Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 7
```

#### **Driven Cavity Problem**

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof le4
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
```

э

イロト イヨト イヨト イヨト

## **Driven Cavity Problem**

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e4
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 10000
  0 SNES Function norm 785.404
  1 SNES Function norm 663.055
  2 SNES Function norm 519.583
  3 SNES Function norm 519.583
  3 SNES Function norm 360.87
  4 SNES Function norm 245.893
  5 SNES Function norm 1.8117
  6 SNES Function norm 0.00468828
  7 SNES Function norm 4.417e-08
Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 7
```

#### **Driven Cavity Problem**

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e5
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
```

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## **Driven Cavity Problem**

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 100000
```

0 SNES Function norm 1809.96 Nonlinear solve did not converge due to DIVERGED\_LINEAR\_SOLVE iterations (

## Driven Cavity Problem

#### SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e5
  -da_grid_x 16 -da_grid_y 16 -da_refine 2 -pc_type lu
  -snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 100000
  0 SNES Function norm 1809.96
  1 SNES Function norm 1678.37
  2 SNES Function norm 1643.76
  3 SNES Function norm 1559.34
  4 SNES Function norm 1557.6
  5 SNES Function norm 1510.71
  6 SNES Function norm 1500.47
  7 SNES Function norm 1498.93
 8 SNES Function norm 1498.44
  9 SNES Function norm 1498.27
 10 SNES Function norm 1498.18
 11 SNES Function norm 1498.12
 12 SNES Function norm 1498.11
 13 SNES Function norm 1498.11
 14 SNES Function norm 1498.11
```

• • •

#### Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da\_refine 4 -snes\_monitor\_short -snes\_type newtonls -snes\_converged\_reason -pc\_type lu

```
lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 1132.29
2 SNES Function norm 925.717
4 SNES Function norm 924.778
5 SNES Function norm 836.867
...
21 SNES Function norm 585.143
22 SNES Function norm 585.142
23 SNES Function norm 585.142
24 SNES Function norm 585.142
...
```

.

#### Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da\_refine 4 -snes\_monitor\_short -snes type fas -snes converged reason -fas levels snes type gs -fas levels snes max it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000

- 0 SNES Function norm 1228.95
- 1 SNES Function norm 574,793
- 2 SNES Function norm 513.02
- 3 SNES Function norm 216.721
- 4 SNES Function norm 85,949

Nonlinear solve did not converge due to DIVERGED INNER iterations 4

э.

イロン イ理 とくほ とくほ とう

## Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes type fas -snes converged reason
-fas_levels_snes_type gs -fas_levels_snes max it 6
 -fas_coarse_snes_converged_reason
```

lid velocity = 100, prandtl # = 1, grashof # = 50000

- 0 SNES Function norm 1228.95 Nonlinear solve converged due to CONVERGED\_FNORM\_RELATIVE its 12
- 1 SNES Function norm 574,793 Nonlinear solve did not converge due to DIVERGED MAX IT its 50
- 2 SNES Function norm 513.02 Nonlinear solve did not converge due to DIVERGED MAX IT its 50
- 3 SNES Function norm 216.721 Nonlinear solve converged due to CONVERGED\_FNORM RELATIVE its 22
- 4 SNES Function norm 85,949

Nonlinear solve did not converge due to DIVERGED\_LINE\_SEARCH its 42 Nonlinear solve did not converge due to DIVERGED INNER iterations 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

## Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes monitor short
 -snes type fas -snes converged reason
 -fas_levels_snes_type qs -fas_levels_snes_max_it 6
  -fas coarse snes linesearch type basic
  -fas coarse snes converged reason
lid velocity = 100, prandtl \# = 1, grashof \# = 50000
  0 SNES Function norm 1228.95
    Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
  ٠
 47 SNES Function norm 78,8401
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 5
 48 SNES Function norm 73,1185
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 6
 49 SNES Function norm 78,834
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 5
 50 SNES Function norm 73.1176
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 6
  ٠
  :
```

Matt (Rice)

MIT 46/69

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

## Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da\_refine 4 -snes\_monitor\_short -snes\_type nrichardson -npc\_snes\_max\_it 1 -snes\_converged\_reason -npc\_snes\_type fas -npc\_fas\_coarse\_snes\_converged\_reason -npc\_fas\_levels\_snes\_type qs -npc\_fas\_levels\_snes\_max\_it 6 -npc fas coarse snes linesearch type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000 0 SNES Function norm 1228.95 Nonlinear solve converged due to CONVERGED\_FNORM\_RELATIVE its 6 1 SNES Function norm 552,271 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 27 2 SNES Function norm 173,45 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 45 : 43 SNES Function norm 3,45407e-05 Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 2 44 SNES Function norm 1.6141e-05 Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 2 45 SNES Function norm 9,13386e-06 Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 45

## Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da\_refine 4 -snes\_monitor\_short -snes\_type ngmres -npc\_snes\_max\_it 1 -snes\_converged\_reason -npc\_snes\_type fas -npc\_fas\_coarse\_snes\_converged\_reason -npc\_fas\_levels\_snes\_type qs -npc\_fas\_levels\_snes\_max\_it 6 -npc fas coarse snes linesearch type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000 0 SNES Function norm 1228.95 Nonlinear solve converged due to CONVERGED\_FNORM\_RELATIVE its 6 1 SNES Function norm 538,605 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 13 2 SNES Function norm 178,005 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 24 : 27 SNES Function norm 0.000102487 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 2 28 SNES Function norm 4.2744e-05 Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 2 29 SNES Function norm 1.01621e-05 Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 29
## Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da refine 4 -snes monitor short
 -snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason
 -npc_snes_type fas -npc_fas_coarse_snes_converged_reason
 -npc fas levels snes type newtonls -npc fas levels snes max it 6
  -npc fas levels snes linesearch type basic
  -npc fas levels snes max linear solve fail 30
  -npc_fas_levels_ksp_max_it 20 -npc_fas_levels_snes_converged_reason
  -npc_fas_coarse_snes_linesearch_type basic
lid velocity = 100, prandtl \# = 1, grashof \# = 50000
  0 SNES Function norm 1228.95
   Nonlinear solve did not converge due to DIVERGED_MAX_IT its 6
    •
       Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 1
    ٠
  1 SNES Function norm 0.1935
  2 SNES Function norm 0.0179938
  3 SNES Function norm 0.00223698
  4 SNES Function norm 0.000190461
  5 SNES Function norm 1.6946e-06
Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 5
```

## Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes type composite -snes composite type additiveoptimal
-snes_composite_sneses fas, newtonls -snes_converged_reason
-sub 0 fas levels snes type qs -sub 0 fas levels snes max it 6
  -sub 0 fas coarse snes linesearch type basic
-sub 1 snes linesearch type basic -sub 1 pc type mg
```

lid velocity = 100, prandtl # = 1, grashof # = 50000

- 0 SNES Function norm 1228.95
- 1 SNES Function norm 541,462
- 2 SNES Function norm 162.92
- 3 SNES Function norm 48,8138
- 4 SNES Function norm 11.1822
- 5 SNES Function norm 0.181469
- 6 SNES Function norm 0.00170909
- 7 SNES Function norm 3,24991e-08

Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 7

## Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes type composite -snes composite type multiplicative
-snes_composite_sneses fas, newtonls -snes_converged_reason
-sub 0 fas levels snes type qs -sub 0 fas levels snes max it 6
  -sub 0 fas coarse snes linesearch type basic
-sub 1 snes linesearch type basic -sub 1 pc type mg
```

lid velocity = 100, prandtl # = 1, grashof # = 50000 0 SNES Function norm 1228.95 1 SNES Function norm 544,404 2 SNES Function norm 18,2513 3 SNES Function norm 0.488689 4 SNES Function norm 0.000108712 5 SNES Function norm 5.68497e-08

Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 5

## Nonlinear Preconditioning

| Solver                                  | Т    | N. It | L. It | Func | Jac | PC  | NPC |
|-----------------------------------------|------|-------|-------|------|-----|-----|-----|
| $(\mathcal{N} \setminus K - MG)$        | 9.83 | 17    | 352   | 34   | 85  | 370 | _   |
| NGMRES - R                              | 7.48 | 10    | 220   | 21   | 50  | 231 | 10  |
| $(\mathcal{N} \setminus K - MG)$        |      |       |       |      |     |     |     |
| FAS                                     | 6.23 | 162   | 0     | 2382 | 377 | 754 | _   |
| $FAS + (\mathcal{N} \backslash K - MG)$ | 8.07 | 10    | 197   | 232  | 90  | 288 | _   |
| $FAS*(\mathcal{N} \setminus K - MG)$    | 4.01 | 5     | 80    | 103  | 45  | 125 | _   |
| NRICH $-L$ FAS                          | 3.20 | 50    | 0     | 1180 | 192 | 384 | 50  |
| NGMRES – R FAS                          | 1.91 | 24    | 0     | 447  | 83  | 166 | 24  |

Э

イロン イロン イヨン イ

## Nonlinear Preconditioning

## See discussion in:

Composing Scalable Nonlinear Algebraic Solvers, Peter Brune, Matthew Knepley, Barry Smith, and Xuemin Tu,

SIAM Review, **57**(4), 535–565, 2015.

http://www.mcs.anl.gov/uploads/cels/papers/P2010-0112.pdf

## Outline



- Composition
- Multilevel
- Magma Dynamics

イロト イポト イヨト イヨ

## Magma Dynamics

- Couples scales
  - Subduction
  - Magma Migration
- Physics
  - Incompressible fluid
  - Porous solid
  - Variable porosity
- Deforming matrix
  - Compaction pressure
- Code generation
  - FEniCS
- Multiphysics Preconditioning
  - PETSc FieldSplit





<sup>a</sup>Katz

## Magma Dynamics

- Couples scales
  - Subduction
  - Magma Migration

#### Physics

- Incompressible fluid
- Porous solid
- Variable porosity
- Deforming matrix
  - Compaction pressure
- Code generation
  - FEniCS
- Multiphysics Preconditioning
  - PETSc FieldSplit



<sup>a</sup>Katz, Speigelman

## **Dimensional Formulation**

$$abla p - 
abla \zeta_{\phi} (
abla \cdot ec m{arsigma}^{\mathcal{S}}) - 
abla \cdot \left( 2\eta_{\phi} \dot{m{\epsilon}}^{\mathcal{S}} 
ight) = 0$$

$$abla \cdot \left( -rac{\mathcal{K}_{\phi}}{\mu} 
abla \mathcal{p} + ec{m{v}}^{\mathcal{S}} 
ight) = \mathbf{0}$$

$$rac{\partial \phi}{\partial t} - 
abla \cdot (\mathbf{1} - \phi) ec{m{v}}^{m{S}} = \mathbf{0}$$

イロト イ団ト イヨト イヨ

Matt (Rice)

MIT 49 / 69

#### Magma Dynamics

## **Closure Conditions**

$$m{K}_{\phi}=m{K}_{0}\left(rac{\phi}{\phi_{0}}
ight)^{m{n}}$$

$$\eta_{\phi} = \eta_{0} \exp\left(-\lambda(\phi - \phi_{0})\right)$$

$$\zeta_{\phi} = \zeta_0 \left(\frac{\phi}{\phi_0}\right)^{-m}$$

Matt (Rice)

MIT 50 / 69

・ロト ・ 日 ト ・ 目 ト ・

Experiments

Magma Dynamics

## Nondimensional Formulation

$$\nabla \boldsymbol{\rho} - \nabla \left( \left( \frac{\phi}{\phi_0} \right)^{-m} \nabla \cdot \vec{\boldsymbol{v}}^{S} \right) - \nabla \cdot \left( 2\boldsymbol{e}^{-\lambda(\phi-\phi_0)} \dot{\boldsymbol{\epsilon}}^{S} \right) = \boldsymbol{0}$$

$$\nabla \cdot \left( -\frac{R^2}{r_{\zeta} + 4/3} \left( \frac{\phi}{\phi_0} \right)^n \nabla p + \vec{v}^S \right) = 0$$

$$\frac{\partial \phi}{\partial t} - \nabla \cdot (1 - \phi) \vec{v}^{S} = \mathbf{0}$$

イロト イ団ト イヨト イヨ

## Initial and Boundary conditions

Initially

$$\phi = \phi_0 + A\cos(\vec{k}\cdot\vec{x})$$

where

 $A \ll \phi_0$ 

## and on the top and bottom boundary

$$egin{aligned} &\mathcal{K}_{\phi}
abla p\cdot \hat{n} &= 0 \ &ec{v}^{\mathcal{S}} &= \pm rac{\dot{\gamma}}{2}\hat{x} \end{aligned}$$

```
-snes_monitor -snes_converged_reason
-snes_type newtonls -snes_linesearch_type bt
-snes_fd_color -snes_fd_color_use_mat -mat_coloring_type greedy
-ksp_rtol 1.0e-10 -ksp_monitor -ksp_gmres_restart 200
-pc_type fieldsplit
-pc_fieldsplit_0_fields 0,2 -pc_fieldsplit_1_fields 1
-pc_fieldsplit_type schur -pc_fieldsplit_schur_precondition selfp
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_pc_type lu
-fieldsplit_pressure_ksp_rtol 1.0e-9 -fieldsplit_pressure_pc_type gamg
-fieldsplit_pressure_ksp_monitor
-fieldsplit_pressure_ksp_max_it 200
```

#### Newton options Separate porosity

```
-pc_type fieldsplit
-pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
-pc_fieldsplit_type multiplicative
-fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1.0e-9
-fieldsplit_0_fieldsplit_pressure_ctype gamg
-fieldsplit_0_fieldsplit_pressure_ksp_monitor
-fieldsplit_0_fieldsplit_pressure_ksp_monitor
-fieldsplit_0_fieldsplit_pressure_ksp_max_it 200
```

#### Early Newton convergence

```
0 TS dt 0.01 time 0
    0 SNES Function norm 5,292194079127e-03
      Linear pressure solve converged due to CONVERGED RTOL its 10
      0 KSP Residual norm 4,618093146920e+00
      Linear pressure solve converged due to CONVERGED RTOL its 10
      1 KSP Residual norm 3.018153330707e-03
     Linear pressure solve converged due to CONVERGED RTOL its 11
      2 KSP Residual norm 4,274869628519e-13
   Linear solve converged due to CONVERGED_RTOL its 2
    1 SNES Function norm 2,766906985362e-06
      Linear pressure solve converged due to CONVERGED RTOL its 8
      0 KSP Residual norm 2,555890235972e-02
      Linear pressure solve converged due to CONVERGED RTOL its 8
      1 KSP Residual norm 1.638293944976e-07
      Linear pressure solve converged due to CONVERGED RTOL its 8
      2 KSP Residual norm 1,771928779400e-14
   Linear solve converged due to CONVERGED RTOL its 2
    2 SNES Function norm 1,188754322734e-11
 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 2
1 TS dt 0.01 time 0.01
```

#### Later Newton convergence

```
0 TS dt 0.01 time 0.63
    0 SNES Function norm 9,366565251786e-03
      Linear pressure solve converged due to CONVERGED RTOL its 16
      Linear pressure solve converged due to CONVERGED RTOL its 16
      Linear pressure_ solve converged due to CONVERGED_RTOL its 16
   Linear solve converged due to CONVERGED_RTOL its 2
    1 SNES Function norm 4,492625910272e-03
    Linear solve converged due to CONVERGED RTOL its 2
    2 SNES Function norm 3,666181450068e-03
    Linear solve converged due to CONVERGED RTOL its 2
    3 SNES Function norm 2,523116582272e-03
   Linear solve converged due to CONVERGED RTOL its 2
    4 SNES Function norm 3,022638159491e-04
   Linear solve converged due to CONVERGED RTOL its 2
    5 SNES Function norm 9.761317324448e-06
    Linear solve converged due to CONVERGED RTOL its 2
    6 SNES Function norm 1.147944474432e-08
    Linear solve converged due to CONVERGED_RTOL its 2
    7 SNES Function norm 8,729160299009e-14
  Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 7
1 TS dt 0.01 time 0.64
```

イロン イ理 とく ヨン イヨン 二 ヨー

#### Newton failure

0 TS dt 0.01 time 0.64 Time 0.64 L\_2 Error: 0.494811 [0.0413666, 0.491642, 0.0376071] 0 SNES Function norm 9,682733054059e-03 Linear solve converged due to CONVERGED RTOL iterations 2 1 SNES Function norm 6,841434267123e-03 Linear solve converged due to CONVERGED RTOL iterations 3 2 SNES Function norm 4,412420553822e-03 Linear solve converged due to CONVERGED RTOL iterations 5 3 SNES Function norm 3.309326919835e-03 Linear solve converged due to CONVERGED\_RTOL iterations 6 4 SNES Function norm 3,022494350289e-03 Linear solve converged due to CONVERGED RTOL iterations 7 5 SNES Function norm 2,941050948582e-03 Linear solve converged due to CONVERGED RTOL iterations 7 . 9 SNES Function norm 2,631941422878e-03 Linear solve converged due to CONVERGED\_RTOL iterations 7 10 SNES Function norm 2,631897334054e-03 Linear solve converged due to CONVERGED RTOL iterations 10 11 SNES Function norm 2,631451174722e-03 Linear solve converged due to CONVERGED\_RTOL iterations 15 ◆□▶ ◆□▶ ★ 三▶ ★ 三▶ - 三 - の へ ()

## NCG+Newton options

```
-snes monitor -snes converged reason
-snes_type composite -snes_composite_type multiplicative
 -snes composite sneses ncq, newtonls
  -sub_0_snes_monitor -sub_1_snes_monitor
  -sub_0_snes_type ncg -sub_0_snes_linesearch_type cp
   -sub 0 snes max it 5
  -sub 1 snes linesearch type bt -sub 1 snes fd color
   -sub_1_snes_fd_color_use_mat -mat_coloring_type greedy
  -sub_1_ksp_rtol 1.0e-10 -sub_1_ksp_monitor -sub_1_ksp_gmres_restart 200
  -sub_1_pc_type fieldsplit -sub_1_pc_fieldsplit_0_fields 0,2
   -sub_1_pc_fieldsplit_1_fields 1
  -sub_1_pc_fieldsplit_type schur
   -sub 1 pc fieldsplit schur precondition selfp
   -sub_1_pc_fieldsplit_schur_factorization_type full
    -sub 1 fieldsplit 0 pc type lu
    -sub_1_fieldsplit_pressure_ksp_rtol 1.0e-9
     -sub_1_fieldsplit_pressure_pc_type gamg
     -sub_1_fieldsplit_pressure_ksp_gmres_restart 100
     -sub 1 fieldsplit pressure ksp max it 200
```

#### NCG+Newton convergence

#### TS dt 0.01 time 0.64 0 SNES Function norm 9.682733054059e-03 0 SNES Function norm 9,682733054059e-03 SNES Function norm 3,705698943518e-02 2 SNES Function norm 4,981898384331e-02 3 SNES Function norm 5.710183285964e-02 SNES Function norm 5,476973798534e-02 4 5 SNES Function norm 6,464724668855e-02 SNES Function norm 6,464724668855e-02 KSP Residual norm 1.021155502263e+00 $\cap$ 1 KSP Residual norm 9,145207488003e-05 2 KSP Residual norm 3.899752904206e-09 3 KSP Residual norm 1.001750831581e-12 1 SNES Function norm 8,940296814443e-03 1 SNES Function norm 8,940296814443e-03 SNES Function norm 4,290429277269e-02 2 З SNES Function norm 1,154466745956e-02 SNES Function norm 2,938816182982e-03 4 5 SNES Function norm 4,148507767082e-04 SNES Function norm 1.892807106900e-05 6 SNES Function norm 4.912654244547e-08 7 SNES Function norm 3.851626525260e-13 8 1 TS dt 0.01 time 0.65

Matt (Rice)

イロト イ団ト イヨト イヨト

#### Top level

```
-snes monitor -snes converged reason
-snes type fas -snes fas type full -snes fas levels 4
 -fas levels 3 snes monitor -fas levels 3 snes converged reason
  -fas levels 3 snes atol 1.0e-9 -fas levels 3 snes max it 2
  -fas levels 3 snes type newtonls -fas levels 3 snes linesearch type bt
  -fas levels 3 snes fd color -fas levels 3 snes fd color use mat
  -fas levels 3 ksp rtol 1.0e-10 -mat coloring type greedy
  -fas_levels_3_ksp_gmres_restart 50 -fas_levels_3_ksp_max_it 200
   -fas levels 3 pc type fieldsplit
    -fas levels 3 pc fieldsplit 0 fields 0.2
    -fas levels 3 pc fieldsplit 1 fields 1
    -fas levels 3 pc fieldsplit type schur
     -fas_levels_3_pc_fieldsplit_schur_precondition selfp
     -fas_levels_3_pc_fieldsplit_schur_factorization_type full
      -fas levels 3 fieldsplit 0 pc type lu
      -fas_levels_3_fieldsplit_pressure_ksp_rtol 1.0e-9
       -fas levels 3 fieldsplit pressure pc type gamg
       -fas_levels_3_fieldsplit_pressure_ksp_gmres_restart 100
       -fas levels 3 fieldsplit pressure ksp max it 200
```

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ - 三 - の へ ()

#### 2nd level

```
-fas_levels_2_snes_monitor -fas_levels_2_snes_converged_reason
-fas levels 2 snes atol 1.0e-9 -fas levels 2 snes max it 2
-fas levels 2 snes type newtonls -fas levels 2 snes linesearch type bt
-fas levels 2 snes fd color -fas levels 2 snes fd color use mat
-fas levels 2 ksp rtol 1.0e-10 -fas levels 2 ksp gmres restart 50
-fas_levels_2_pc_type fieldsplit
 -fas_levels_2_pc_fieldsplit_0_fields 0,2
 -fas levels 2 pc fieldsplit 1 fields 1
 -fas levels 2 pc fieldsplit type schur
   -fas_levels_2_pc_fieldsplit_schur_precondition selfp
   -fas levels 2 pc fieldsplit schur factorization type full
   -fas levels 2 fieldsplit 0 pc type lu
   -fas_levels_2_fieldsplit_pressure_ksp_rtol 1.0e-9
    -fas levels 2 fieldsplit pressure pc type gamg
    -fas_levels_2_fieldsplit_pressure_ksp_gmres_restart 100
    -fas levels 2 fieldsplit pressure ksp max it 200
```

#### 1st level

```
-fas_levels_1_snes_monitor -fas_levels_1_snes_converged_reason
-fas_levels_1_snes_atol 1.0e-9
-fas_levels_1_snes_type newtonls -fas_levels_1_snes_linesearch_type bt
-fas_levels_1_snes_fd_color -fas_levels_1_snes_fd_color_use_mat
-fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_ksp_gmres_restart 50
-fas_levels_1_pc_type fieldsplit
-fas_levels_1_pc_fieldsplit_0_fields 0,2
-fas_levels_1_pc_fieldsplit_1_fields 1
-fas_levels_1_pc_fieldsplit_type schur
-fas_levels_1_pc_fieldsplit_schur_precondition selfp
-fas_levels_1_pc_fieldsplit_schur_factorization_type full
-fas_levels_1_fieldsplit_0_pc_type lu
-fas_levels_1_fieldsplit_pressure_ksp_rtol 1.0e-9
-fas_levels_1_fieldsplit_pressure_pc_type gamg
```

#### Coarse level

```
-fas_coarse_snes_monitor -fas_coarse_snes_converged_reason
-fas_coarse_snes_atol 1.0e-9
-fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type bt
-fas_coarse_snes_fd_color -fas_coarse_snes_fd_color_use_mat
-fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_ksp_gmres_restart 50
-fas_coarse_pc_type fieldsplit
-fas_coarse_pc_fieldsplit_0_fields 0,2
-fas_coarse_pc_fieldsplit_1_fields 1
-fas_coarse_pc_fieldsplit_type schur
-fas_coarse_pc_fieldsplit_schur_precondition selfp
-fas_coarse_pc_fieldsplit_schur_factorization_type full
-fas_coarse_fieldsplit_0_pc_type lu
-fas_coarse_fieldsplit_pressure_ksp_rtol 1.0e-9
-fas_coarse_fieldsplit_pressure_pc_type gamg
```

#### FAS convergence

0 TS dt 0.01 time 0.64 0 SNES Function norm 9,682733054059e-03 2 SNES Function norm 4,412420553822e-03 2 SNES Function norm 8.022096211721e-15 1 SNES Function norm 2,773743832538e-04 1 SNES Function norm 5,627093528843e-11 1 SNES Function norm 4,405884464849e-10 2 SNES Function norm 8,985059910030e-08 1 SNES Function norm 4,672651281994e-15 0 SNES Function norm 3,160322858961e-15 0 SNES Function norm 4.672651281994e-15 1 SNES Function norm 1.046571008046e-14 2 SNES Function norm 1,804845173803e-02 2 SNES Function norm 2.776600115290e-12 0 SNES Function norm 1.354009326059e-12 0 SNES Function norm 5,881604627760e-13 0 SNES Function norm 1.354011456281e-12 0 SNES Function norm 2,776600115290e-12 2 SNES Function norm 9,640723411562e-05 1 SNES Function norm 9,640723411562e-05 2 SNES Function norm 1.057876040732e-08 3 SNES Function norm 5,623618219189e-11 1 TS dt 0.01 time 0.65 イロト イ団ト イヨト イヨト

Matt (Rice)

## Outline

- Composition Strategies
- 2 Theory
- 3 Experiments
- 4 Concluding THoughts

< 17 ▶

#### **User Solve**

MPI\_Comm comm; SNES snes; DM dm; Vec u;

SNESCreate(comm, &snes); SNESSetDM(snes, dm); SNESSetFromOptions(snes); DMCreateGlobalVector(dm, &u); SNESSolve(snes, NULL, u);

イロト イ押ト イヨト イヨト

## Nonlinear Solver Organization

## Hierarchical

- MG (FAS)
- DD (Nonlinear FETI-DP)

## Robust

- Line Search/Trust Region
- Krylov (NGMRES)
- Nonlinear ASM
- Direct (Homotopy, Gröbner Basis)

## What is Missing?



Э

イロト イヨト イヨト イ

**Concluding THoughts** 

## **Closing Admonition**

# Never believe anything,

# unless you can run it.

Matt (Rice)

MIT 66 / 69

. . . . . . .

**Concluding THoughts** 

## **Closing Admonition**

# Never believe anything,

# unless you can run it.





→ ∃ →

#### ex55: Allen-Cahn problem in 2D

- constant mobility
- triangular elements

#### Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp\_type fgmres -pc\_type mg -mg\_levels\_ksp\_type fgmres -mg\_levels\_pc\_type fieldsplit -mg\_levels\_pc\_fieldsplit\_detect\_saddle\_point -mg\_levels\_pc\_fieldsplit\_type schur -da\_grid\_x 65 -da\_grid\_y 65 -mg\_levels\_pc\_fieldsplit\_factorization\_type full -mg\_levels\_pc\_fieldsplit\_schur\_precondition user -mg\_levels\_fieldsplit\_1\_ksp\_type gmres -mg\_coarse\_ksp\_type preonly -mg\_levels\_fieldsplit\_1\_pc\_type none -mg\_coarse\_pc\_type svd -mg\_levels\_fieldsplit\_0\_ksp\_type preonly -mg\_levels\_fieldsplit\_0\_pc\_type sor -pc\_mg\_levels 5 -mg\_levels\_fieldsplit\_0\_pc\_sor\_forward -pc\_mg\_galerkin -snes\_vi\_monitor -ksp\_monitor\_true\_residual -snes\_atol 1.e-11 -mg\_levels\_ksp\_max\_it 2 -mg\_levels\_fieldsplit\_ksp\_max\_it 5

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ - 三 - の へ ()

#### ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp\_type fgmres -pc\_type mg -pc\_mg\_levels 5
 -da\_grid\_x 65 -da\_grid\_y 65

Use the Galerkin process to compute the coarse grid operators

-pc\_mg\_galerkin

Use SVD as the coarse grid saddle point solver

-mg\_coarse\_ksp\_type preonly -mg\_coarse\_pc\_type svd

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### ex55: Allen-Cahn problem in 2D

#### Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp\_type fgmres -pc\_type mg -pc\_mg\_levels 5
 -da\_grid\_x 65 -da\_grid\_y 65

Use the Galerkin process to compute the coarse grid operators

-pc\_mg\_galerkin

Use SVD as the coarse grid saddle point solver

-mg\_coarse\_ksp\_type preonly -mg\_coarse\_pc\_type svd

イロト イ団ト イヨト イヨト

#### ex55: Allen-Cahn problem in 2D

#### Run flexible GMRES with 5 levels of multigrid as the preconditioner

```
./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
   -da_grid_x 65 -da_grid_y 65
```

#### Use the Galerkin process to compute the coarse grid operators

-pc\_mg\_galerkin

Use SVD as the coarse grid saddle point solver

-mg\_coarse\_ksp\_type preonly -mg\_coarse\_pc\_type svd

イロト イ団ト イヨト イヨト

#### ex55: Allen-Cahn problem in 2D

#### Run flexible GMRES with 5 levels of multigrid as the preconditioner

```
./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
   -da_grid_x 65 -da_grid_y 65
```

#### Use the Galerkin process to compute the coarse grid operators

```
-pc_mg_galerkin
```

#### Use SVD as the coarse grid saddle point solver

```
-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd
```

イロト イ押ト イヨト イヨト

#### ex55: Allen-Cahn problem in 2D

#### Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg\_levels\_ksp\_type fgmres -mg\_levels\_pc\_fieldsplit\_detect\_saddle\_point -mg\_levels\_ksp\_max\_it 2 -mg\_levels\_pc\_type fieldsplit -mg\_levels\_pc\_fieldsplit\_type schur -mg\_levels\_pc\_fieldsplit\_factorization\_type full -mg\_levels\_pc\_fieldsplit\_schur\_precondition diag

#### Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg\_levels\_fieldsplit\_1\_ksp\_type gmres
-mg\_levels\_fieldsplit\_1\_pc\_type none -mg\_levels\_fieldsplit\_ksp\_max\_it 5

#### Schur complement action: Use only the lower diagonal part of A00

-mg\_levels\_fieldsplit\_0\_ksp\_type preonly
-mg\_levels\_fieldsplit\_0\_pc\_type sor
-mg\_levels\_fieldsplit\_0\_pc\_sor\_forward

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

MIT

69/69
# Programming with Options

## ex55: Allen-Cahn problem in 2D

## Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg\_levels\_ksp\_type fgmres -mg\_levels\_pc\_fieldsplit\_detect\_saddle\_point -mg\_levels\_ksp\_max\_it 2 -mg\_levels\_pc\_type fieldsplit -mg\_levels\_pc\_fieldsplit\_type schur -mg\_levels\_pc\_fieldsplit\_factorization\_type full -mg\_levels\_pc\_fieldsplit\_schur\_precondition diag

#### Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg\_levels\_fieldsplit\_1\_ksp\_type gmres -mg\_levels\_fieldsplit\_1\_pc\_type none -mg\_levels\_fieldsplit\_ksp\_max\_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg\_levels\_fieldsplit\_0\_ksp\_type preonly
-mg\_levels\_fieldsplit\_0\_pc\_type sor
-mg\_levels\_fieldsplit\_0\_pc\_sor\_forward

<ロト < 回 > < 回 > < 三 > < 三 > 三 三

MIT

69/69

# Programming with Options

## ex55: Allen-Cahn problem in 2D

## Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg\_levels\_ksp\_type fgmres -mg\_levels\_pc\_fieldsplit\_detect\_saddle\_point -mg\_levels\_ksp\_max\_it 2 -mg\_levels\_pc\_type fieldsplit -mg\_levels\_pc\_fieldsplit\_type schur -mg\_levels\_pc\_fieldsplit\_factorization\_type full -mg\_levels\_pc\_fieldsplit\_schur\_precondition diag

#### Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg\_levels\_fieldsplit\_1\_ksp\_type gmres
-mg\_levels\_fieldsplit\_1\_pc\_type none -mg\_levels\_fieldsplit\_ksp\_max\_it 5

Schur complement action: Use only the lower diagonal part of A00

-mg\_levels\_fieldsplit\_0\_ksp\_type preonly
-mg\_levels\_fieldsplit\_0\_pc\_type sor
-mg\_levels\_fieldsplit\_0\_pc\_sor\_forward

イロン イ理 とく ヨン イヨン 二 ヨー

# Programming with Options

## ex55: Allen-Cahn problem in 2D

## Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg\_levels\_ksp\_type fgmres -mg\_levels\_pc\_fieldsplit\_detect\_saddle\_point -mg\_levels\_ksp\_max\_it 2 -mg\_levels\_pc\_type fieldsplit -mg\_levels\_pc\_fieldsplit\_type schur -mg\_levels\_pc\_fieldsplit\_factorization\_type full -mg\_levels\_pc\_fieldsplit\_schur\_precondition diag

## Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg\_levels\_fieldsplit\_1\_ksp\_type gmres
-mg\_levels\_fieldsplit\_1\_pc\_type none -mg\_levels\_fieldsplit\_ksp\_max\_it 5

#### Schur complement action: Use only the lower diagonal part of A00

```
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward
```

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●