
Optimal Solvers in PETSc

Matthew Knepley

Mathematics and Computer Science Division
Argonne National Laboratory

Monash AuScope Simulation & Modelling Victoria
Monash University, Victoria

Feb 15, 2008

M. Knepley (ANL) Optimal Auscope ’08 1 / 67

What the Heck is PETSc?

Outline

1 What the Heck is PETSc?
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?

2 Optimal Algorithms

3 Multigrid for Structured Meshes

4 Multigrid for Unstructured Meshes

M. Knepley (ANL) Optimal Auscope ’08 2 / 67

What the Heck is PETSc? What is PETSc?

Outline

1 What the Heck is PETSc?
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?

M. Knepley (ANL) Optimal Auscope ’08 3 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and
and Unstructured
Triangles and
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and
and Unstructured
Triangles and
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and Finite Element
and Unstructured
Triangles and
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and Finite Element
Structured and Unstructured
Triangles and
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and Finite Element
Structured and Unstructured
Triangles and Hexes
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and Finite Element
Structured and Unstructured
Triangles and Hexes
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

PETSc Capabilities

Serial (laptop) and Parallel (Cray XT4)
Linear and Nonlinear
Finite Difference, Finite Volume, and Finite Element
Structured and Unstructured
Triangles and Hexes
Optimal Solvers

Item in red not yet finished

M. Knepley (ANL) Optimal Auscope ’08 4 / 67

What the Heck is PETSc? What is PETSc?

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries

M. Knepley (ANL) Optimal Auscope ’08 5 / 67

http://amzn.com/0521602866

What the Heck is PETSc? What is PETSc?

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

M. Knepley (ANL) Optimal Auscope ’08 6 / 67

http://www.mcs.anl.gov/~bsmith

What the Heck is PETSc? What is PETSc?

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks
like. You wouldn’t start with a bunch of tiles and say.
“Well I’ll put this tile down on the ground, and then I’ll
find a tile to go next to it.” But all too many people try to
build their parallel programs by creating the smallest
possible tiles and then trying to have the structure of
their code emerge from the chaos of all these little
pieces. You have to have an organizing principle if
you’re going to survive making your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

M. Knepley (ANL) Optimal Auscope ’08 7 / 67

http://www.rce-cast.com/Podcast/rce-28-mpich2.html

What the Heck is PETSc? What is PETSc?

What is PETSc?

A freely available and supported research
code for the parallel solution of nonlinear
algebraic equations

Free
Download from http://www.mcs.anl.gov/petsc
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley (ANL) Optimal Auscope ’08 8 / 67

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

What the Heck is PETSc? What is PETSc?

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

SciDAC, MICS Program, AMR Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

M. Knepley (ANL) Optimal Auscope ’08 9 / 67

What the Heck is PETSc? What is PETSc?

Timeline

1991 1995 2000 2005 2010

PETSc-1

MPI-1
MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

Lisandro
Jed
Shri

Peter

M. Knepley (ANL) Optimal Auscope ’08 10 / 67

What the Heck is PETSc? What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (ANL) Optimal Auscope ’08 11 / 67

https://hpgmg.org/

What the Heck is PETSc? What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (ANL) Optimal Auscope ’08 11 / 67

https://hpgmg.org/

What the Heck is PETSc? What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (ANL) Optimal Auscope ’08 11 / 67

https://hpgmg.org/

What the Heck is PETSc? Who uses and develops PETSc?

Outline

1 What the Heck is PETSc?
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?

M. Knepley (ANL) Optimal Auscope ’08 12 / 67

What the Heck is PETSc? Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

Earth Science
PyLith (CIG)
Underworld (Monash)
Magma Dynamics (LDEO, Columbia, Oxford)

Subsurface Flow and Porous Media
STOMP (DOE)
PFLOTRAN (DOE)

M. Knepley (ANL) Optimal Auscope ’08 13 / 67

http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
http://www.bu.edu/pasi/files/2011/01/MarcSpiegelman4-11-1000.pdf
http://stomp.pnnl.gov/
http://ees.lanl.gov/pflotran/

What the Heck is PETSc? Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

CFD
Firedrake
Fluidity
OpenFOAM
freeCFD
OpenFVM

MicroMagnetics
MagPar

Fusion
XGC
BOUT++
NIMROD

M. Knepley (ANL) Optimal Auscope ’08 14 / 67

http://firedrakeproject.org/
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://www.openfoam.com/
http://www.freecfd.com/
http://openfvm.sourceforge.net/
http://www.magpar.net/
http://w3.physics.lehigh.edu/~xgc/
https://bout.llnl.gov/
http://www.nimrodteam.org/

What the Heck is PETSc? Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

Iterative methods
Deflated GMRES
LGMRES
QCG
SpecEst

Preconditioning researchers
Prometheus (Adams)
ParPre (Eijkhout)
FETI-DP (Klawonn and Rheinbach)

M. Knepley (ANL) Optimal Auscope ’08 15 / 67

http://www.columbia.edu/~ma2325/prom_intro.html
http://www.columbia.edu/~ma2325/
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/
http://www.uni-due.de/numerik/klawonn.shtml
http://www.uni-due.de/numerik/rheinbach.shtml

What the Heck is PETSc? Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

Finite Elements
libMesh
MOOSE
PETSc-FEM
Deal II
OOFEM

Other Solvers
Fast Multipole Method (PetFMM)
Radial Basis Function Interpolation (PetRBF)
Eigensolvers (SLEPc)
Optimization (TAO)

M. Knepley (ANL) Optimal Auscope ’08 16 / 67

http://libmesh.sourceforge.net/
http://mooseframework.org/
http://www.cimec.org.ar/petscfem
http://www.dealii.org/
http://www.oofem.org/
http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetRBF.html
http://www.grycap.upv.es/slepc/
http://www.mcs.anl.gov/tao

What the Heck is PETSc? Who uses and develops PETSc?

The PETSc Team

Bill Gropp Barry Smith Satish Balay

Jed Brown Matt Knepley Lisandro Dalcin

Hong Zhang Mark Adams Toby Issac
M. Knepley (ANL) Optimal Auscope ’08 17 / 67

What the Heck is PETSc? How can I get PETSc?

Outline

1 What the Heck is PETSc?
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?

M. Knepley (ANL) Optimal Auscope ’08 18 / 67

What the Heck is PETSc? How can I get PETSc?

Downloading PETSc

The latest tarball is on the PETSc site:
http://www.mcs.anl.gov/petsc/download

There is a Debian package (aptitude install petsc-dev)

There is a Git development repository

M. Knepley (ANL) Optimal Auscope ’08 19 / 67

http://www.mcs.anl.gov/petsc/download
https://packages.debian.org/search?keywords=petsc
http://git-scm.com/
https://bitbucket.org/petsc/petsc/

What the Heck is PETSc? How can I get PETSc?

Cloning PETSc

The full development repository is open to the public
https://bitbucket.org/petsc/petsc/

Why is this better?
You can clone to any release (or any specific ChangeSet)
You can easily rollback changes (or releases)
You can get fixes from us the same day

All releases are just tags:
Source at tag v3.4.4

M. Knepley (ANL) Optimal Auscope ’08 20 / 67

https://bitbucket.org/petsc/petsc/
https://bitbucket.org/petsc/petsc/src/a071802d3efee8b987703a6ce2cf5d9a25fa8160/?at=v3.4.4

What the Heck is PETSc? How can I get PETSc?

Automatic Downloads

Starting in 2.2.1, some packages are automatically
Downloaded
Configured and Built (in $PETSC_DIR/externalpackages)
Installed with PETSc

Currently works for
petsc4py
PETSc documentation utilities (Sowing, lgrind, c2html)
BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
MPICH, MPE, OpenMPI
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
BLOPEX, FFTW, SPRNG
Prometheus, HYPRE, ML, SPAI
Sundials
Triangle, TetGen
FIAT, FFC, Generator
Boost

M. Knepley (ANL) Optimal Auscope ’08 21 / 67

Optimal Algorithms

Outline

1 What the Heck is PETSc?

2 Optimal Algorithms

3 Multigrid for Structured Meshes

4 Multigrid for Unstructured Meshes

M. Knepley (ANL) Optimal Auscope ’08 22 / 67

Optimal Algorithms

Necessity Of Simulation

Lasers and Energy
Combustion, NIF, ICF
Experiments are expensive

Engineering
Aerodynamics, crash testing
Experiments are difficult to instrument

Applied Physics
Radiation transport, supernovae
Experiments are impossible or prohibited

Environment
Global climate, contaminant transport
Experiments are impossible or dangerous

Biology
Drug design, ion channels
Experiments are controversial

M. Knepley (ANL) Optimal Auscope ’08 23 / 67

Optimal Algorithms

What Is Optimal?

I will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
hierarchy generation
assembly on subdomains
restriction and prolongation

M. Knepley (ANL) Optimal Auscope ’08 24 / 67

Optimal Algorithms

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL) Optimal Auscope ’08 25 / 67

Optimal Algorithms

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL) Optimal Auscope ’08 25 / 67

Optimal Algorithms

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL) Optimal Auscope ’08 25 / 67

Optimal Algorithms

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL) Optimal Auscope ’08 25 / 67

Optimal Algorithms

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley (ANL) Optimal Auscope ’08 25 / 67

Optimal Algorithms

Why Optimal Algorithms?

The more powerful the computer,
the greater the importance of optimality
Example:

Suppose Alg1 solves a problem in time CN2, N is the input size
Suppose Alg2 solves the same problem in time CN
Suppose Alg1 and Alg2 are able to use 10,000 processors

In constant time compared to serial,
Alg1 can run a problem 100X larger
Alg2 can run a problem 10,000X larger

Alternatively, filling the machine’s memory,
Alg1 requires 100X time
Alg2 runs in constant time

M. Knepley (ANL) Optimal Auscope ’08 26 / 67

Optimal Algorithms

Multigrid

Multigrid is optimal in that is does O(N) work for ||r || < ε

Brandt, Briggs, Wan & Chan & Smith
Constant work per level

Sufficiently strong solver
Need a constant factor decrease in the residual

Constant factor decrease in dof
Log number of levels

Sufficiently good interpolation
Preserves low modes
Cannot dump too much energy into high modes

M. Knepley (ANL) Optimal Auscope ’08 27 / 67

http://www.wisdom.weizmann.ac.il/~achi/classics.pdf
https://www.math.ust.hk/~mawang/teaching/math532/mgtut.pdf
https://www.math.ust.hk/~mawang/teaching/math532/mgtut.pdf

Optimal Algorithms

Linear Convergence of the Poisson Problem

Convergence to ||r || < 10−9||b|| using GMRES(30)/ILU

Elements Iterations
128 10
256 17
512 24

1024 34
2048 67
4096 116
8192 167

16384 329
32768 558
65536 920

131072 1730

M. Knepley (ANL) Optimal Auscope ’08 28 / 67

Optimal Algorithms

Linear Convergence of the Poisson Problem

Convergence to ||r || < 10−9||b|| using GMRES(30)/MG

Elements Iterations
128 5
256 7
512 6

1024 7
2048 6
4096 7
8192 6

16384 7
32768 6
65536 7

131072 6

M. Knepley (ANL) Optimal Auscope ’08 29 / 67

Multigrid for Structured Meshes

Outline

1 What the Heck is PETSc?

2 Optimal Algorithms

3 Multigrid for Structured Meshes

4 Multigrid for Unstructured Meshes

M. Knepley (ANL) Optimal Auscope ’08 30 / 67

Multigrid for Structured Meshes

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function
Evaluation Postprocessing

Jacobian
Evaluation

Application
Initialization

Main Routine

PETSc

M. Knepley (ANL) Optimal Auscope ’08 31 / 67

Multigrid for Structured Meshes

SNES Paradigm

The SNES interface is based upon callback functions
FormFunction(), set by SNESSetFunction()

FormJacobian(), set by SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual F (x),
Solver calls the user’s function

User function gets application state through the ctx variable
PETSc never sees application data

M. Knepley (ANL) Optimal Auscope ’08 32 / 67

Multigrid for Structured Meshes

Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
Structured grid interface

Fixed simple topology
Supports stencils, communication, reordering

Limited idea of operators

Nice for simple finite differences

The PETSc Mesh class is a topology interface.
Unstructured grid interface

Arbitrary topology and element shape

Supports partitioning, distribution, and global orders

M. Knepley (ANL) Optimal Auscope ’08 33 / 67

Multigrid for Structured Meshes

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
Supports multigrid

PCMG combines it with a multigrid preconditioner

Abstracts the logic of multilevel methods

The PetscSection class is a helper class for data layout.
Functions over unstructured grids

Arbitrary layout of degrees of freedom

Enables distribution and assembly

M. Knepley (ANL) Optimal Auscope ’08 34 / 67

Multigrid for Structured Meshes

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1
discretization.

It is used as a template to create
Vectors (functions)
Matrices (linear operators)

M. Knepley (ANL) Optimal Auscope ’08 35 / 67

Multigrid for Structured Meshes

Ghost Values

To evaluate a local function f (x), each process requires
its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring
processes

Local Node
Ghost Node

M. Knepley (ANL) Optimal Auscope ’08 36 / 67

Multigrid for Structured Meshes

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf)(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)

M. Knepley (ANL) Optimal Auscope ’08 37 / 67

Multigrid for Structured Meshes

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx) {
f o r (j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j) {

f o r (i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i) {
u = x [j] [i] ;
i f (i ==0 | | j ==0 | | i == M | | j == N) {

f [j] [i] = 2 . 0 * (hydhx+hxdhy) * u ; cont inue ;
}
u_xx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
u_yy = (2 . 0 * u − x [j −1][i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] = u_xx + u_yy − hx * hy * lambda * exp (u) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley (ANL) Optimal Auscope ’08 38 / 67

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

Multigrid for Structured Meshes

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac)(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

M. Knepley (ANL) Optimal Auscope ’08 39 / 67

Multigrid for Structured Meshes

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)
Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

M. Knepley (ANL) Optimal Auscope ’08 40 / 67

Multigrid for Structured Meshes

DMDA Stencils

Both the box stencil and star stencil are available.

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

M. Knepley (ANL) Optimal Auscope ’08 41 / 67

Multigrid for Structured Meshes

DM Integration with SNES

DM supplies global residual and Jacobian to SNES
User supplies local version to DM
The Rhs_*() and Jac_*() functions in the example

Allows automatic parallelism
Allows grid hierarchy

Enables multigrid once interpolation/restriction is defined
Paradigm is developed in unstructured work

Solve needs scatter into contiguous global vectors (initial guess)

Handle Neumann BC using KSPSetNullSpace()

M. Knepley (ANL) Optimal Auscope ’08 42 / 67

Multigrid for Unstructured Meshes

Outline

1 What the Heck is PETSc?

2 Optimal Algorithms

3 Multigrid for Structured Meshes

4 Multigrid for Unstructured Meshes

M. Knepley (ANL) Optimal Auscope ’08 43 / 67

Multigrid for Unstructured Meshes

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL) Optimal Auscope ’08 44 / 67

Multigrid for Unstructured Meshes

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL) Optimal Auscope ’08 44 / 67

Multigrid for Unstructured Meshes

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL) Optimal Auscope ’08 44 / 67

Multigrid for Unstructured Meshes

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL) Optimal Auscope ’08 44 / 67

Multigrid for Unstructured Meshes

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL) Optimal Auscope ’08 44 / 67

Multigrid for Unstructured Meshes

AMG

Why not use AMG?

Of course we will try AMG
GAMG, -pc_type gamg

ML, -download-ml, -pc_type ml

BoomerAMG, -download-hypre, -pc_type hypre
-pc_hypre_type boomeramg

Problems with
vector character
anisotropy
scalability of setup time

M. Knepley (ANL) Optimal Auscope ’08 45 / 67

Multigrid for Unstructured Meshes

AMG

Why not use AMG?

Of course we will try AMG
GAMG, -pc_type gamg

ML, -download-ml, -pc_type ml

BoomerAMG, -download-hypre, -pc_type hypre
-pc_hypre_type boomeramg

Problems with
vector character
anisotropy
scalability of setup time

M. Knepley (ANL) Optimal Auscope ’08 45 / 67

Multigrid for Unstructured Meshes

AMG

Why not use AMG?

Of course we will try AMG
GAMG, -pc_type gamg

ML, -download-ml, -pc_type ml

BoomerAMG, -download-hypre, -pc_type hypre
-pc_hypre_type boomeramg

Problems with
vector character
anisotropy
scalability of setup time

M. Knepley (ANL) Optimal Auscope ’08 45 / 67

Multigrid for Unstructured Meshes

Unstructured Meshes

Same DMMG options as the structured case
Mesh refinement

Ruppert algorithm in Triangle and TetGen
Mesh coarsening

Talmor-Miller algorithm in PETSc
More advanced options

-dmmg_refine
-dmmg_hierarchy

Current version only works for linear elements

M. Knepley (ANL) Optimal Auscope ’08 46 / 67

Multigrid for Unstructured Meshes

Coarsening

Users want to control the
mesh

Developed efficient,
topological coarsening

Miller, Talmor, Teng
algorithm

Provably well-shaped
hierarchy

M. Knepley (ANL) Optimal Auscope ’08 47 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Simple Coarsening
1 Compute a spacing function f for the mesh (Koebe)
2 Scale f by a factor C > 1
3 Choose a maximal independent set of vertices for new f
4 Retriangulate

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Simple Coarsening
1 Compute a spacing function f for the mesh (Koebe)
2 Scale f by a factor C > 1
3 Choose a maximal independent set of vertices for new f
4 Retriangulate

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Simple Coarsening
1 Compute a spacing function f for the mesh (Koebe)
2 Scale f by a factor C > 1
3 Choose a maximal independent set of vertices for new f
4 Retriangulate

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Simple Coarsening
1 Compute a spacing function f for the mesh (Koebe)
2 Scale f by a factor C > 1
3 Choose a maximal independent set of vertices for new f
4 Retriangulate

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Caveats
1 Must generate coarsest grid in hierarchy first
2 Must choose boundary vertices first (and protect boundary)
3 Must account for boundary geometry

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Caveats
1 Must generate coarsest grid in hierarchy first
2 Must choose boundary vertices first (and protect boundary)
3 Must account for boundary geometry

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Caveats
1 Must generate coarsest grid in hierarchy first
2 Must choose boundary vertices first (and protect boundary)
3 Must account for boundary geometry

M. Knepley (ANL) Optimal Auscope ’08 48 / 67

Multigrid for Unstructured Meshes

GMG Performance

For simple domains, everything works as expected:
Linear solver iterates are constant as system size increases:

M. Knepley (ANL) Optimal Auscope ’08 49 / 67

Multigrid for Unstructured Meshes

GMG Performance

For simple domains, everything works as expected:
Work to build the preconditioner is constant as system size increases:

M. Knepley (ANL) Optimal Auscope ’08 49 / 67

Multigrid for Unstructured Meshes

Reentrant Problems

Reentrant corners need nonnuiform refinement to maintain
accuracy
Coarsening preserves accuracy in MG without user intervention

M. Knepley (ANL) Optimal Auscope ’08 50 / 67

Multigrid for Unstructured Meshes

Reentrant Problems

Reentrant corners need nonnuiform refinement to maintain
accuracy
Coarsening preserves accuracy in MG without user intervention

M. Knepley (ANL) Optimal Auscope ’08 50 / 67

Multigrid for Unstructured Meshes

Reentrant Problems

Exact Solution for reentrant problem: u(x , y) = r
2
3 sin(2

3θ)

M. Knepley (ANL) Optimal Auscope ’08 50 / 67

Multigrid for Unstructured Meshes

Reentrant Problems

Exact Solution for reentrant problem: u(x , y) = r
2
3 sin(2

3θ)

M. Knepley (ANL) Optimal Auscope ’08 50 / 67

Multigrid for Unstructured Meshes

GMG Performance

Linear solver iterates are constant as system size increases:

M. Knepley (ANL) Optimal Auscope ’08 51 / 67

Multigrid for Unstructured Meshes

GMG Performance

Work to build the preconditioner is constant as system size increases:

M. Knepley (ANL) Optimal Auscope ’08 51 / 67

Multigrid for Unstructured Meshes

References

Documentation: http://www.mcs.anl.gov/petsc/docs
PETSc Users manual
Manual pages
Many hyperlinked examples
FAQ, Troubleshooting info, installation info, etc.

Publications: http://www.mcs.anl.gov/petsc/publications
Research and publications that make use PETSc

MPI Information: http://www.mpi-forum.org
Using MPI (2nd Edition), by Gropp, Lusk, and Skjellum
Domain Decomposition, by Smith, Bjorstad, and Gropp

M. Knepley (ANL) Optimal Auscope ’08 52 / 67

http://www.mcs.anl.gov/petsc/docs
http://www.mcs.anl.gov/petsc/publications
http://www.mpi-forum.org

Multigrid for Unstructured Meshes

Experimentation is Essential!

Proof is not currently enough to examine solvers

N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778–795, 1992.
Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465–469, 1996.

M. Knepley (ANL) Optimal Auscope ’08 53 / 67

The Stokes Problem

Problem Domain

M. Knepley (ANL) Optimal Auscope ’08 54 / 67

The Stokes Problem

The Stokes Problem – Strong Form

−∆u +∇p = f
∇ · u = 0
u|∂Ω = g∫
Ω

p = 0

M. Knepley (ANL) Optimal Auscope ’08 55 / 67

The Stokes Problem

The Stokes Problem – Weak Form

For u, v ∈ V and p,q ∈ Π

< ∇v ,∇u > − < ∇ · v ,p > =< v , f >
< q,∇ · u > = 0

u|∂Ω = g∫
Ω

p = 0

M. Knepley (ANL) Optimal Auscope ’08 56 / 67

The Stokes Problem

Continuity

For all u, v ∈ V and p ∈ Π we have

< ∇v ,∇u > ≤ Ca||u||V ||v ||V (1)
< ∇ · v ,p > ≤ Cb||v ||V ||p||Π (2)

M. Knepley (ANL) Optimal Auscope ’08 57 / 67

The Stokes Problem

Coercivity

For all v ∈ Z ∪ Zh and p ∈ Πh we have

< ∇v ,∇v > ≥ α||v ||2V (3)

sup
u∈Vh

< ∇ · u,p >
||u||V

≥ β||p||Π (4)

M. Knepley (ANL) Optimal Auscope ’08 58 / 67

The Stokes Problem

Coercivity

For all v ∈ Z ∪ Zh and p ∈ Πh we have

sup
u∈Vh

< ∇v ,∇u >

||u||V
≥ α||v ||V (3)

sup
u∈Vh

< ∇ · u,p >
||u||V

≥ β||p||Π (4)

M. Knepley (ANL) Optimal Auscope ’08 58 / 67

The Iterated Penalty Method

Iterated Penalty Formulation

Introduce a penalty term and solve iteratively for un and pn,

< ∇v ,∇un > +r < ∇ · v ,∇ · un > = < v , f > − < ∇ · v ,pn > (5)
pn+1 = pn + ρ∇ · un (6)

Notice that eqn. 5 will be symmetric and coercive if r > 0.

M. Knepley (ANL) Optimal Auscope ’08 59 / 67

The Iterated Penalty Method

Iterated Penalty Formulation

Introduce a penalty term and solve iteratively for un and wn,

< ∇v ,∇un > +r < ∇ · v ,∇ · un > = < v , f > − < ∇ · v ,∇ · wn >(5)
wn+1 = wn + ρun (6)

Notice that eqn. 5 will be symmetric and coercive if r > 0.

M. Knepley (ANL) Optimal Auscope ’08 59 / 67

The Iterated Penalty Method

Iterated Penalty Formulation

Introduce a penalty term and solve iteratively for un and wn,

< ∇v ,∇un > +r < ∇ · v ,∇ · un > = < v , f > − < ∇ · v ,∇ · wn >(5)
wn+1 = wn + ρun (6)

Notice that eqn. 5 will be symmetric and coercive if r > 0.

M. Knepley (ANL) Optimal Auscope ’08 59 / 67

The Iterated Penalty Method

Pressure FE Space

We assume that
Πh = DVh (7)

meaning D has a right-inverse L

D(Lq) = q ∀q ∈ Πh

such that
||Lq||V ≤

1
β
||q||Π

M. Knepley (ANL) Optimal Auscope ’08 60 / 67

The Iterated Penalty Method

Error Estimates

The Iterated Penalty Method (IP) converges for sufficiently large r and
0 < −ρ < 2r . For the case r = −ρ, the convergence rate ρIP is

ρIP =
Ca

(
1
β + Ca

αβ

)2

r
(8)

and we have error estimates

||un − uh||V ≤
(

1
β

+
Ca

αβ

)
||Dun||Π (9)

||pn − ph||Π ≤
(

Ca

β
+

C2
a

αβ
+ rCb

)
||Dun||Π (10)

which provide a stopping criteria.

M. Knepley (ANL) Optimal Auscope ’08 61 / 67

Implementation

Advantages

Single FE Space
Easy layout
No compatiblity condition for spaces
No saddle point
Seems ideal for Multigrid

Control of the divergence residual
On a fixed mesh, can drive ||∇ · u|| → 0

Simple characterization of pressure space

Πh = DVh

M. Knepley (ANL) Optimal Auscope ’08 62 / 67

Implementation

Problems

What is the condition of the IP system?

< ∇,∇ > + < ∇·,∇· >

Can we use simple, local interpolation?
We only have P1 interpolation at present

Is it stable?
We can prove stability for Pk , k > 3
Tests with quadratic elements work

Can I use exotic elements?
Can I estimate the convergence parameters?

M. Knepley (ANL) Optimal Auscope ’08 63 / 67

Implementation

Condition of the Laplacian
2D P1 Lagrange Elements

Num. Elements Longest edge (h) κ

64 1/4 12.6
128

√
2/8 25.2

256 1/8 51.5
512

√
2/16 103.1

256 1/16 207.2
1024

√
2/32 414.3

2048 1/32 829.7
4096

√
2/64 1659.4

8192 1/64 3319.8

Table: 2D P1 Laplacian Condition Number

so we have
κ ≈ 0.8h−2 (11)

M. Knepley (ANL) Optimal Auscope ’08 64 / 67

Implementation

Condition of the Laplacian
2D P2 Lagrange Elements

Num. Elements Longest edge (h) κ

64 1/4 68.1
128

√
2/8 137.2

256 1/8 275.6
512

√
2/16 552.2

256 1/16 1105.6
1024

√
2/32 2212.3

2048 1/32 4425.7
4096

√
2/64 8852.6

8192 1/64 17708.1

Table: 2D P2 Laplacian Condition Number

so we have
κ ≈ 4.3h−2 (12)

M. Knepley (ANL) Optimal Auscope ’08 65 / 67

Implementation

Condition of the IP Operator

Num. Elements Longest edge (h) min κ max κ
8

√
2/2 18.5 18.5

16 1/2 47.3 2497.8
32

√
2/4 120.5 3624.6

64 1/4 2589.7 2593.0
128

√
2/8 3461.5 3573.1

256 1/8 2610.4 2619.6

Table: 2D P2 IP Operator Condition Number, r = 103

M. Knepley (ANL) Optimal Auscope ’08 66 / 67

Implementation

Condition of the IP Operator

Num. Elements Longest edge (h) min κ max κ
8

√
2/2 2.5 2.6

16 1/2 195.5 203.5
32

√
2/4 428.5 435.7

64 1/4 400.4 404.8
128

√
2/8 839.4 841.9

256 1/8 566.5 578.8

Table: 2D P2 IP Operator with SOR(2) Condition Number, r = 103

M. Knepley (ANL) Optimal Auscope ’08 66 / 67

Implementation

Problem Solution

We use Dirichlet conditions from an exact solution

u = x2 − 2xy
v = y2 − 2xy

M. Knepley (ANL) Optimal Auscope ’08 67 / 67

	What the Heck is PETSc?
	What is PETSc?
	Who uses and develops PETSc?
	How can I get PETSc?

	Optimal Algorithms
	Multigrid for Structured Meshes
	Multigrid for Unstructured Meshes

