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Scientific Computing

Problems

The biggest problem in scientific computing is programmability:
Lack of usable implementations of modern algorithms

Unstructured Multigrid
Fast Multipole Method

Lack of comparison among classes of algorithms
Meshes
Discretizations

We should reorient thinking from
characterizing the solution (FEM)

“what is the convergence rate (in h) of this finite element?”

to
characterizing the computation (FErari)

“how many digits of accuracy per flop for this finite element?”
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Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages
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Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems
Datamining

Programming Languages
Code Generation
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Scientific Computing

Future Compilers

I think compilers are victims of their own success (ala Rob Pike)

Efforts to modularize compilers retain the same primtives
compiling on the fly (JIT)
Low Level Virtual Machine

Raise the level of abstraction
Fenics Form Compiler (variational form compiler)
Mython (Domain Specific Language generator)
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Scientific Computing

Spiral

Spiral Team, http://www.spiral.net
Uses an intermediate language, SPL, and then generates C
Works by circumscribing the algorithmic domain
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Scientific Computing

FLAME & FLASH
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Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

Algorithm-by-blocks on four T10 processors
CUBLAS sgemm on a single T10 processor

MKL sgemm on Intel Xeon QuadCore (4 cores)

Robert van de Geijn, http://www.cs.utexas.edu/users/flame
FLAME is an Algorithm-By-Blocks interface
FLASH/SuperMatrix is a runtime system
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Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Spiral Project:
Discrete Fourier Transform (DSP)

Fast Fourier Transform (SPL)

C Implementation (SPL Compiler)

Each level demands a strong abstraction layer
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Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FLAME Project:
Abstract LA (PME/Invariants)

Basic LA (FLAME/FLASH)

Scheduling (SuperMatrix)

Each level demands a strong abstraction layer
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Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FEniCS Project:
Navier-Stokes (FFC)

Finite Element (FIAT)

Integration/Assembly (FErari)

Each level demands a strong abstraction layer
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Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Treecodes:
Kernels with decay (Coulomb)

Treecodes (PetFMM)

Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer
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Hierarchy

Outline

1 Scientific Computing

2 Hierarchy
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Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap
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Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to Rn:

Transition maps provide a mechanism to connect the pieces.
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Hierarchy

Example: FEM

The Finite Element Method does computation in a local basis:
7/17/15, 8:51 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Overlap/FEMExample.svg

T

Ah uh=fh

The operator T maps between the local and global bases.
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Hierarchy

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)
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Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary
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Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface
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Hierarchy

Why Optimal Algorithms?

The more powerful the computer,
the greater the importance of optimality
Example:

Suppose Alg1 solves a problem in time CN2, N is the input size
Suppose Alg2 solves the same problem in time CN
Suppose Alg1 and Alg2 are able to use 10,000 processors

In constant time compared to serial,
Alg1 can run a problem 100X larger
Alg2 can run a problem 10,000X larger

Alternatively, filling the machine’s memory,
Alg1 requires 100X time
Alg2 runs in constant time
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Hierarchy

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . . )

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation
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Hierarchy

Doublet Mesh
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Hierarchy
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Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
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join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214



Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
meet(0,1) = {4}
join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214



Hierarchy

Doublet Section
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Hierarchy

Doublet Mesh Distribution

process 1process 0

process 0 process 1

2,1

1,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

P

T

M. Knepley (ANL,TTU) Theory Simula ’08 21 / 214



Hierarchy

Doublet Mesh Distribution

process 1process 0

process 0 process 1

1,21,10,2 0,5 1,51,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

2,1

��
��
��

��
��
��
1,1

��
��
��

��
��
��
1,5

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

P

T

1,3 1,4

1,2 1,3 1,40,2 0,5

M. Knepley (ANL,TTU) Theory Simula ’08 21 / 214



Hierarchy

Doublet Mesh Distribution
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Hierarchy

Restriction

Localization
Restrict to patches (here an edge closure)
Compute locally
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Hierarchy

Delta

Delta
Restrict further to the overlap
Overlap now carries twice the data
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Hierarchy

Fusion

Merge/reconcile data on the overlap
Addition (FEM)
Replacement (FD)
Coordinate transform (Sphere)
Linear transform (MG)

M. Knepley (ANL,TTU) Theory Simula ’08 22 / 214



Hierarchy

Update

Update
Update local patch data
Completion = restrict −→ fuse −→ update, in parallel
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Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix
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Conclusions

Benefits

Better mathematical abstractions
bring concrete benefits

Vast reduction in complexity
Declarative, rather than imperative, specification
Dimension independent code

Opportunites for optimization
Higher level operations missed by traditional compilers
Single communication routine to optimize

Expansion of capabilities
Easy model definition
Arbitrary elements
Complex geometries and embedded boundaries
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Part II

Global Computation: Theory
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Hierarchy

Outline

3 Hierarchy

4 Representing Topology

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves
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Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap
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Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary
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Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley (ANL,TTU) Theory Simula ’08 28 / 214



Hierarchy

What Is Optimal?

I will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
hierarchy generation
assembly on subdomains
restriction and prolongation

M. Knepley (ANL,TTU) Theory Simula ’08 29 / 214



Hierarchy

Why Optimal Algorithms?

The more powerful the computer,
the greater the importance of optimality
Example:

Suppose Alg1 solves a problem in time CN2, N is the input size
Suppose Alg2 solves the same problem in time CN
Suppose Alg1 and Alg2 are able to use 10,000 processors

In constant time compared to serial,
Alg1 can run a problem 100X larger
Alg2 can run a problem 10,000X larger

Alternatively, filling the machine’s memory,
Alg1 requires 100X time
Alg2 runs in constant time

M. Knepley (ANL,TTU) Theory Simula ’08 30 / 214



Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to Rn:

Transition maps provide a mechanism to connect the pieces.
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Hierarchy

Example: FEM

The Finite Element Method does computation in a local basis:
7/17/15, 8:51 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Overlap/FEMExample.svg

T

Ah uh=fh

The operator T maps between the local and global bases.

M. Knepley (ANL,TTU) Theory Simula ’08 32 / 214



Representing Topology

Outline

3 Hierarchy

4 Representing Topology
Mesh Distribution

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves
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Representing Topology

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . . )

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation
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Representing Topology

Basic Operations

We begin with a basic covering operation:

cone()
and then add its dual: support()

followed by the transitive closures: closure(), star()
and finally lattice operations: meet(), join()
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Representing Topology

Sieve Definition

Definition
A Sieve consists of points, and arrows.
Each arrow connects a point to another which it covers.

cone(p) sequence of points which cover a given point p
closure(p) transitive closure of cone
support(p) sequence of points which are covered by a given point p
star(p) transitive closure of support
meet(p,q) minimal separator of closure(p) and closure(q)
join(p,q) minimal separator of star(p) and star(q)
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Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}
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Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}
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Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
meet(0,1) = {4}
join(8,9) = {4}
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Representing Topology

Doublet Mesh
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Representing Topology

The Mesh Dual

Construct mesh dual by
reversing sieve arrows
taking the support() of each face
taking the meet() of each cell pair
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Representing Topology Mesh Distribution

Outline

4 Representing Topology
Mesh Distribution
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Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
distributing the topology (Sieve)

distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!
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Representing Topology Mesh Distribution

Mesh Partition

3rd party packages construct a vertex partition

For FEM, partition dual graph vertices

For FVM, construct hyperpgraph dual with faces as vertices

Assign closure(v) and star(v) to same partition
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Representing Topology Mesh Distribution

Doublet Mesh Distribution

process 1process 0

process 0 process 1

2,1

1,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

P

T
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Representing Topology Mesh Distribution

Doublet Mesh Distribution
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Representing Topology Mesh Distribution

Doublet Mesh Distribution

process 1process 0

process 0 process 1

1,41,3

1,21,10,2 0,5 1,5

0,51,1 1,20,2

2,1

1,3 1,40,3 0,4 0,5

0,1 0,50,4

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

1,1

P

T

1,3 1,4

1,2 1,3 1,40,2 0,51,1 1,5

0,30,2

0,6
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Representing Topology Mesh Distribution

Section Distribution

Section distribution consists of

Creation of the local Section

Distribution of the Atlas (layout Section)

Completion of the Section
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Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves
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Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves
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Representing Topology Mesh Distribution

2D Example

A simple triangular mesh
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Representing Topology Mesh Distribution

2D Example

Sieve for the mesh
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Representing Topology Mesh Distribution

2D Example

Local sieve on process 0
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Representing Topology Mesh Distribution

2D Example

Partition Overlap
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Representing Topology Mesh Distribution

2D Example

Partition Section
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Representing Topology Mesh Distribution

2D Example

Updated Sieve Overlap
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Representing Topology Mesh Distribution

2D Example

Cone Section
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Representing Topology Mesh Distribution

2D Example

Distributed Sieve
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Representing Topology Mesh Distribution

2D Example

Coordinate Section
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Representing Topology Mesh Distribution

2D Example

Distributed Coordinate Section
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Representing Topology Mesh Distribution

2D Example

Distributed Mesh
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Representing Topology Mesh Distribution

3D Example

A simple hexahedral mesh
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Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

Its complicated!
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Representing Topology Mesh Distribution

3D Example

Partition Overlap
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Representing Topology Mesh Distribution

3D Example

Partition Section
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Representing Topology Mesh Distribution

3D Example

Distributed Mesh

Notice cells are ghosted
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Representing Functions

Outline

3 Hierarchy

4 Representing Topology

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves
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Representing Functions

Sections

Sections associate data to submeshes

Name comes from section of a fiber bundle
Generalizes linear algebra paradigm

Define restrict(),update()
Define complete()

Assembly routines take a Sieve and several Sections
This is called a Bundle
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Representing Functions

Basic Operations

We begin with a simple mapping operation:

restrictPoint()
and then add its converse: updatePoint()

followed by topological versions: restrictClosure()
which appear as dual to covering, updateClosure()

and finally a consistency operation: complete()
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Representing Functions
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Representing Functions

Duality

Need picture of sieve (graph) <–> mesh (picture) maybe doublet

Show both traversals (closure and restriction), perhaps an
animated FEM integral
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Representing Functions

Doublet Section
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Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}
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Representing Functions

Doublet Section
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Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
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Mapping Interpretation

Mapping

Since we have a single relation,

we can see all our objects merely as mappings:
Section

point −→ real

Sieve
point of S −→ {points of S}

Overlap
point of S −→ {points of S’}
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Mapping Interpretation

Composition

We may compose mappings to generate
restrictClosure()

closure() ◦ restrictPoint()

updateMeet()
meet() ◦ updatePoint()

and can even compose across an Overlap

complete() looks like a
restriction to the overlap
copy between adjacent sieves
fusion of values in the overlap sections
update to original section
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Connecting Sieves
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Connecting Sieves

Sieves of Sieves

We can connect two Sieves by identifying points
This can be seen as nonlocal covering

This relation is then encapsulated in an Overlap,
which is just another Sieve.

Sections may be defined over the Overlap
Data movement follows the arrows

Enforcing consistency across an Overlap gives completion()
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Connecting Sieves

Restriction

Localization
Restrict to patches (here an edge closure)
Compute locally
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Connecting Sieves

Delta

Delta
Restrict further to the overlap
Overlap now carries twice the data

M. Knepley (ANL,TTU) Theory Simula ’08 57 / 214



Connecting Sieves

Fusion

Merge/reconcile data on the overlap
Addition (FEM)
Replacement (FD)
Coordinate transform (Sphere)
Linear transform (MG)
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Connecting Sieves

Update

Update
Update local patch data
Completion = restrict −→ fuse −→ update, in parallel
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Connecting Sieves

Completion

A ubiquitous parallel form of restrict −→ fuse −→ update
Operates on Sections

Sieves can be "downcast" to Sections
Based on two operations

Data exchange through overlap
Fusion of shared data
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Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix
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Part III

Global Computation: Implementation
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Interfaces
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Interfaces

Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD
Software interfaces do not adequately reflect this

PETSc DA is too specialized
Basically 1D methods applied to Cartesian products

PETSc Index Sets and VecScatters are too fine
User “does everything”, no abstraction

PETSc Linear Algebra (Vec & Mat) is too coarse
No access to the underlying connectivity structure

M. Knepley (ANL,TTU) Theory Simula ’08 62 / 214



Interfaces

Unstructured Interface (before)

Explicit references to element type
getVertices(edgeID), getVertices(faceID)
getAdjacency(edgeID, VERTEX)
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions

Have to recode for meshes with different
dimension
shapes
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Interfaces

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

Abstract to a relation, covering, on sieve points
Points can represent any mesh element
Covering can be thought of as adjacency
Relation can be expressed in a DAG (Hasse Diagram)

Simple query set:
provides a general API for geometric algorithms
leads to simpler implementations
can be more easily optimized
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Interfaces

Unstructured Interface (after)

NO explicit references to element type
A point may be any mesh element
getCone(point): adjacent (d-1)-elements
getSupport(point): adjacent (d+1)-elements

Transitive closure
closure(cell): The computational unit for FEM

Algorithms independent of mesh
dimension
shape (even hybrid)
global topology
data layout
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Interfaces

Hierarchy Abstractions

Generalize to a set of linear spaces
Sieve provides topology, can also model Mat
Section generalizes Vec
Spaces interact through an Overlap (just a Sieve)

Basic operations
Restriction to finer subspaces, restrict()/update()
Assembly to the subdomain, complete()

Allow reuse of geometric and multilevel algorithms
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Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List
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Interfaces

Multigrid in Sieve
7/17/15, 8:56 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/MG/structuredInterpolation.svg
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Overlap

Sieves represent coarse and fine meshes
Sections represent coarse and fine fields
An Overlap matches coarse and fine cells
Interpolation and restriction are completion over the overlap

Fusion is a linear transformation
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Mapping
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Mapping

Traversal

Sequences:
http://en.wikipedia.org/wiki/Iterator_pattern
State is held by the iterator
Special classes are unnecessary

const sequence& cells = mesh.heightStratum(0);

for(sequence::iterator c_iter = cells.begin();
c_iter != cells.end(); ++c_iter) {
point_type p = *c_iter;

}
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Mapping

Traversal

Visitors:
http://en.wikipedia.org/wiki/Visitor_pattern
State is split between sieve and visitor
User controls allocation

PrintVisitor pV;

sieve.cone(p, pV);

M. Knepley (ANL,TTU) Theory Simula ’08 71 / 214
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Mapping

Visitor Composition

Visitors can be composed by chaining visit() calls
Final template parameter is child visitor type

closure() is accomplished by composition
Oriented traversal uses the variant visit(point, orient)

Composition can also proceed by slicing
Discussed later by Dmitry
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Completion
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Completion

Section Distribution

Section distribution consists of

Creation of the local Section

Distribution of the Atlas (layout Section)

Completion of the Section
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Completion

Section Completion

Completion can be broken into 4 phases:
1 restrict() to an overlap section
2 copy() data to the remote overlap section
3 fuse() data with existing point data
4 update() remote section with fused overlap section data

It is common to combine phases 1 & 2, and also 3 & 4
Data is moved directly between communication buffers and
storage
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Completion

Section Completion

7/17/15, 9:38 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionI.svg
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Completion

Section Completion

7/17/15, 9:38 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionII.svg
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Completion

Section Completion

7/17/15, 9:39 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionIII.svg

5
17
2

10
7

16
2
3

19
12

2
7

16
19

2
7

22

44

0

3

11

Overlap

3

0

4

2
1

0

2

1

3

4

Mesh

Process 0 Process 1

Copy

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214



Completion

Section Completion

7/17/15, 9:40 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionIV.svg

22

44

00

33

1

Overlap

3

0

4

2
1

0

2

1

3

4

Mesh

5
17
2

10
7

16
2
3

19
12

2
7

18
26

2
7

Process 0 Process 1

Fuse

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214



Completion

Section Completion

7/17/15, 9:40 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionV.svg
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Completion

Section Hierarchy

We have a hierarchy of section types of increasing complexity
GeneralSection

An arbitrary number of values for each domain point
Constrain arbitrary values
Atlas is a UniformSection

UniformSection
A fixed number of values for each domain point
Atlas is a ConstantSection

ConstantSection
The same single value for all domain points
Only the domain must be completed
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Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation
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Optimization and the Sieve Programming Model
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Optimization and the Sieve Programming Model Automation
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Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
Facilitates code reuse
Reduces code complexity
Reduces work of optimization (?)
Needs correct abstractions

Dual to introducing common software structures
Kernels operate on common structures

Must enable automatic selection of algorithmic variants
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Optimization and the Sieve Programming Model Automation

Dense Linear Algebra

Dense linear algebra is too rich:
Rich structure allow many different organizations
BLAS/LAPACK chooses certain kernel operations

Consider only reuse, not optimization

LAPACK choose a single variant of each algorithm
LAPACK fixes the structure implementation in the interface

FLAME allows new kernels to be created
Abstracts among implementations (layouts)
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Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
Abstract model from algorithms
Allows different implementations for common structures
Automates algorithm selection
Incorporates performance feedback

Unfortunately, DFT is simpler than our common operations.
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Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
Don’t specify our algorithms at the FLAME level

Without a PME, cannot move between variants automatically
Can be built from Sieve completion operations

Completion of operator gives assembled matrix
Completion of output gives matrix-free application

VecScatter should be generalized to an Overlap
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Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:
1 Memory layout controls performance (Goto)

Must be able to switch layouts for different algorithmic variants
Bad LAPACK interface truncates ATLAS search space

Example: GEPP kernel for DGEMM
2 Must understand data dependencies

OpenMP cannot express this
Can be encapsulated in a DAG

SuperMatrix
Sieve

Enables variants switching (loop fusion)

M. Knepley (ANL,TTU) Theory Simula ’08 85 / 214



Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:
1 Memory layout controls performance (Goto)

Must be able to switch layouts for different algorithmic variants
Bad LAPACK interface truncates ATLAS search space

Example: GEPP kernel for DGEMM
2 Must understand data dependencies

OpenMP cannot express this
Can be encapsulated in a DAG

SuperMatrix
Sieve

Enables variants switching (loop fusion)

M. Knepley (ANL,TTU) Theory Simula ’08 85 / 214



Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
Hierarchy

Reduces complexity and enables code reuse with
common components (sieve)
operations (completion)

Separates global and local concerns
Maps well to multiresolution algorithms

Dependency
Allows tranformation between different algorithmic variants
Applies at many levels

algorithm selection
serial scheduling
parallel coordination

Key advance over Map-Reduce paradigm
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Optimization and the Sieve Programming Model Parallelism

Outline

11 Optimization and the Sieve Programming Model
Automation
Parallelism
Completion
Interval Sieves
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Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)
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Optimization and the Sieve Programming Model Parallelism

Hierarchy in MPI

MPI communicator should be imbued with hierarchy:
Single relation is easy to add

Could be implemented using attributes
Can easily code hierarchical algorithms

FMM, MG, . . .
Can express data dependencies

Communicator could represent a thread group
Scheduling could be done inside MPI interface (SuperMatrix)

Enables large and small scale parallelism
Domain decomposition
Master-slave

Could be proposed in MPI-3
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Optimization and the Sieve Programming Model Completion

Outline
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Optimization and the Sieve Programming Model Completion

Completion Optimization

A Section with unchanged structure need not recomplete its Atlas
The Overlap could store the packing information and buffers

A VecScatter could be created between buffers

For simple fusers, the Overlap maps directly to section storage
A VecScatter could be created between the arrays
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Optimization and the Sieve Programming Model Interval Sieves
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Optimization and the Sieve Programming Model Interval Sieves

Interval Sieves and Sections

We can demand that our chart be an interval:
Membership is O(1)

cone() is O(1)

restrict() is O(1)

Formerly, all point queries were O(log n)

Moreover, no storage is needed for a search structure:
STL sets require 20 bytes/int

We can always achieve this in a static setting with local renumbering
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Optimization and the Sieve Programming Model Interval Sieves

ISieve

ISieve

Separate AIJ structures for cones and supports
Also store AIJ orientations
Must call allocate() before setting cones
Some support for dynamic insertion
Cones and supports unconnected

Use symmetrize() to automate arrow reversal

Has converter from standard Sieve

Visitors for all traversals
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Optimization and the Sieve Programming Model Interval Sieves

ISection

ISection

AIJ structure for values
Same allocate() call before setting values
Some support for dynamic insertion
Completion must still send chart explicitly

Can amortize across similar completions
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Finite Elements
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>
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Finite Elements

Integration
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
realCoords = J*refCoords[q] + v0;
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
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<Update output vector>
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Finite Elements

Integration
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<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
elemVec[f] += basis[q,f]*rhsFunc(realCoords);
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
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}
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
for(d = 0; d < dim; ++d)
for(e) testDerReal[d] += invJ[e,d]*basisDer[q,f,e];

for(g = 0; g < numBasisFuncs; ++g) {
for(d = 0; d < dim; ++d)
for(e) basisDerReal[d] += invJ[e,d]*basisDer[q,g,e]
elemMat[f,g] += testDerReal[d]*basisDerReal[d]

elemVec[f] += elemMat[f,g]*inputVec[g];
}
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
elemVec[f] += basis[q,f]*lambda*exp(inputVec[f]);
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
mesh->updateAdd(F, c, elemVec);

}
<Aggregate updates>
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Finite Elements

Integration

cells = mesh->heightStratum(0);
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Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
Distribution<Mesh>::completeSection(mesh, F);
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Boundary Conditions

Boundary Conditions

Dirichlet conditions may be expressed as

u|Γ = g

and implemented by constraints on dofs in a Section
The user provides a function.

Neumann conditions may be expressed as

∇u · n̂|Γ = h

and implemented by explicit integration along the boundary
The user provides a weak form.
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Boundary Conditions

Dual Basis Application

We would like the action of a dual basis vector (functional)

< Ni , f >=

∫
ref

Ni(x)f (x)dV

Projection onto P
Code is generated from FIAT specification

Python code generation package inside PETSc

Common interface for all elements
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Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
unknowns in the interior (I)
unknowns on the boundary (Γ)

so that we obtain (
AII AIΓ
AΓI AΓΓ

)(
uI
uΓ

)
=

(
fI
fΓ

)
However uΓ is known, so we may reduce this to

AIIuI = fI − AIΓuΓ

We will show that our scheme automatically constructs this extra term.
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:47 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyI.svg
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:48 AM
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly 7/17/15, 9:48 AM
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:49 AM
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly 7/17/15, 9:49 AM
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Boundary Conditions

Dirichlet Values

Topological boundary is marked during generation
Cells bordering boundary are marked using
markBoundaryCells()

To set values:
1 Loop over boundary cells
2 Loop over the element closure
3 For each boundary point i , apply the functional Ni to the function g

The functionals are generated with the quadrature information
Section allocation applies Dirichlet conditions automatically

Values are stored in the Section
restrict() behaves normally, update() ignores constraints
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Boundary Conditions

Complex BC

We may want to constrain a dof not in the global basis:
7/17/15, 10:06 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/normalFlowCondition.svg

n

u 1

u 2

u3

v 1

v3

v 2

For instance, no flow normal to a boundary

n̂ · v = 0

when the global basis follows the coordinate directions.
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Boundary Conditions

Complex BC

In order to constrain the value we
rotate the storage coordinates to the n − τ frame
project out the normal coordinate (freeze the value)

This rotation is also needed for restriction
and any action accessing section storage

In general, we need
a transformation to BC coordinates
a projection onto free variables (trivial)

Transformation might involve all element variables
which would be an action on the closure
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Part IV

Local Computation: Theory
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Models of Local Computation

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇φi(x) · ∇φj(x)dx (1)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dx (2)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dx (3)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂φi (ξ)
∂ξβ

∂φj (ξ)
∂ξγ

dx (4)

= Gβγ(T )K ij
βγ (5)

Coefficients are also put into the geometric part.
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Models of Local Computation

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T φi(x) ·

(
φk (x)∇φj(x)

)
dA (6)

=
∫
T φ

β
i (x)

(
φαk (x)

∂φβj (x)

∂xα

)
dA (7)

=
∫
Tref
φβi (ξ)φαk (ξ)

∂ξγ
∂xα

∂φβj (ξ)

∂ξγ
|J|dA (8)

=
∂ξγ
∂xα |J|

∫
Tref
φβi (ξ)φαk (ξ)

∂φβj (ξ)

∂ξγ
dA (9)

= Gαγ(T )K ijk
αγ (10)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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Models of Local Computation

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇φi(x) · ∇φj(x)dA (11)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dA (12)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dA (13)

= |J|
∫
Tref
φkJβαk

∂φi (ξ)
∂ξβ

φlJ
γα
l

∂φj (ξ)
∂ξγ

dA (14)

= Jβαk Jγαl |J|
∫
Tref
φk

∂φi (ξ)
∂ξβ

φl
∂φj (ξ)
∂ξγ

dA (15)

= Gβγ
kl (T )K ijkl

βγ (16)

A different space could also be used for Jacobians
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Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
unknowns in the interior (I)
unknowns on the boundary (Γ)

so that we obtain (
AII AIΓ
AΓI AΓΓ

)(
uI
uΓ

)
=

(
fI
fΓ

)
However uΓ is known, so we may reduce this to

AIIuI = fI − AIΓuΓ

We will show that our scheme automatically constructs this extra term.
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly
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Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly
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Boundary Conditions
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Boundary Conditions

Dirichlet Values

Topological boundary is marked during generation
Cells bordering boundary are marked using
markBoundaryCells()

To set values:
1 Loop over boundary cells
2 Loop over the element closure
3 For each boundary point i , apply the functional Ni to the function g

The functionals are generated with the quadrature information
Section allocation applies Dirichlet conditions automatically

Values are stored in the Section
restrict() behaves normally, update() ignores constraints
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Boundary Conditions

Complex BC

We may want to constrain a dof not in the global basis:
7/17/15, 10:06 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/normalFlowCondition.svg

n

u 1

u 2

u3

v 1

v3

v 2

For instance, no flow normal to a boundary

n̂ · v = 0

when the global basis follows the coordinate directions.
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Boundary Conditions

Complex BC

In order to constrain the value we
rotate the storage coordinates to the n − τ frame
project out the normal coordinate (freeze the value)

This rotation is also needed for restriction
and any action accessing section storage

In general, we need
a transformation to BC coordinates
a projection onto free variables (trivial)

Transformation might involve all element variables
which would be an action on the closure
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Weak Form Languages

FFC

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

a((τ,w), (σ, u)) = L((τ,w)) ∀(τ,w) ∈ V

where

a((τ,w), (σ, u)) =

∫
Ω
τσ −∇ · τu + w∇ · u dx

L((τ,w)) =

∫
Ω

wf dx
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Weak Form Languages

FFC
Mixed Poisson

shape = " t r i a n g l e "

BDM1 = Fin i teE lement ( " Brezzi−Douglas−Mar in i " , shape , 1 )
DG0 = Fin i teE lement ( " Discont inuous Lagrange " , shape , 0 )

element = BDM1 + DG0
( tau , w) = TestFunct ions ( element )
( sigma , u ) = T r i a l F u n c t i o n s ( element )

a = ( dot ( tau , sigma ) − d iv ( tau ) * u + w* d iv ( sigma ) ) * dx

f = Funct ion (DG0)
L = w* f * dx
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Weak Form Languages

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:

a(v ,u) = L(v) ∀v ∈ V

where

a(v ,u) =

∫
Ω
∇u · ∇v dx

+
∑

S

∫
S
− < ∇v > ·[[u]]n − [[v ]]n· < ∇u > −(α/h)vu dS

+

∫
∂Ω
−∇v · [[u]]n − [[v ]]n · ∇u − (γ/h)vu ds

L(v) =

∫
Ω

vf dx
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Weak Form Languages

FFC
DG Poisson

DG1 = Fin i teE lement ( " Discont inuous Lagrange " , shape , 1 )
v = TestFunct ions (DG1)
u = T r i a l F u n c t i o n s (DG1)
f = Funct ion (DG1)
g = Funct ion (DG1)
n = FacetNormal ( " t r i a n g l e " )
h = MeshSize ( " t r i a n g l e " )
a = dot ( grad ( v ) , grad ( u ) ) * dx
− dot ( avg ( grad ( v ) ) , jump ( u , n ) ) * dS
− dot ( jump ( v , n ) , avg ( grad ( u ) ) ) * dS
+ alpha / h* dot ( jump ( v , n ) + jump ( u , n ) ) * dS
− dot ( grad ( v ) , jump ( u , n ) ) * ds
− dot ( jump ( v , n ) , grad ( u ) ) * ds
+ gamma/ h* v *u* ds

L = v * f * dx + v *g* ds
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Part V

Local Computation: Implementation
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Serial Performance
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Serial Performance

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
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Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (17)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (18)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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Serial Performance

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (19)

which is a dismal 8.8% of peak.

Can improve performance by
Blocking
Multiple vectors

but operation issue limitations take over.
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Serial Performance

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (19)

which is a dismal 8.8% of peak.

Better approaches:
Unassembled operator application (Spectral elements, FMM)

N data, N2 computation
Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

N data, Nk computation
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Serial Performance

Performance Tradeoffs

We must balance storage, bandwidth, and cycles

Assembled Operator Action
Trades cycles and storage for bandwidth in application

Unassembled Operator Action
Trades bandwidth and storage for cycles in application
For high orders, storage is impossible
Can make use of FErari decomposition to save calculation
Could storage element matrices to save cycles

Partial assembly gives even finer control over tradeoffs
Also allows introduction of parallel costs (load balance, . . . )
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FIAT

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project

M. Knepley (ANL,TTU) Theory Simula ’08 131 / 214
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FIAT

FIAT Integration

The quadrature.fiat file contains:
An element (usually a family and degree) defined by FIAT
A quadrature rule

It is run
automatically by make, or
independently by the user

It can take arguments
-element_family and -element_order, or
make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:
Quadrature points and weights
Basis function and derivative evaluations at the quadrature points
Integration against dual basis functions over the cell
Local dofs for Section allocation
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FIAT Implementation
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FIAT Optimization

Outline
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FErari

Outline

19 Serial Performance

20 FIAT

21 FErari
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

22 Scheduling and Asynchronous Computation

M. Knepley (ANL,TTU) Theory Simula ’08 135 / 214



FErari

FErari

Finite Element rearragement to automaically reduce instructions

Open source implementation http://www.fenics.org/wiki/FErari
Build tensor blocks K ij

m,m′ as vectors using FIAT

Discover dependencies
Represented as a DAG
Can also use hypergraph model

Use minimal spanning tree to construct computation
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FErari Problem Statement
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FErari Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇φi(x) · ∇φj(x)dx (20)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dx (21)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dx (22)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂φi (ξ)
∂ξβ

∂φj (ξ)
∂ξγ

dx (23)

= Gβγ(T )K ij
βγ (24)

Coefficients are also put into the geometric part.
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FErari Problem Statement

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T φi(x) ·

(
φk (x)∇φj(x)

)
dA (25)

=
∫
T φ

β
i (x)

(
φαk (x)

∂φβj (x)

∂xα

)
dA (26)

=
∫
Tref
φβi (ξ)φαk (ξ)

∂ξγ
∂xα

∂φβj (ξ)

∂ξγ
|J|dA (27)

=
∂ξγ
∂xα |J|

∫
Tref
φβi (ξ)φαk (ξ)

∂φβj (ξ)

∂ξγ
dA (28)

= Gαγ(T )K ijk
αγ (29)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.
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FErari Problem Statement

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇φi(x) · ∇φj(x)dA (30)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dA (31)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dA (32)

= |J|
∫
Tref
φkJβαk

∂φi (ξ)
∂ξβ

φlJ
γα
l

∂φj (ξ)
∂ξγ

dA (33)

= Jβαk Jγαl |J|
∫
Tref
φk

∂φi (ξ)
∂ξβ

φl
∂φj (ξ)
∂ξγ

dA (34)

= Gβγ
kl (T )K ijkl

βγ (35)

A different space could also be used for Jacobians
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FErari Problem Statement

Element Matrix Formation

Element matrix K is now made up of small tensors
Contract all tensor elements with each the geometry tensor G(T )

3 0
0 0

0 -1
0 0

1 1
0 0

-4 -4
0 0

0 4
0 0

0 0
0 0

0 0
-1 0

0 0
0 3

0 0
1 1

0 0
0 0

0 0
4 0

0 0
-4 -4

1 0
1 0

0 1
0 1

3 3
3 3

-4 0
-4 0

0 0
0 0

0 -4
0 -4

-4 0
-4 0

0 0
0 0

-4 -4
0 0

8 4
4 8

0 -4
-4 -8

0 4
4 0

0 0
4 0

0 4
0 0

0 0
0 0

0 -4
-4 -8

8 4
4 8

-8 -4
-4 0

0 0
0 0

0 -4
0 -4

0 0
-4 -4

0 4
4 0

-8 -4
-4 0

8 4
4 8
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FErari Problem Statement

Element Matrix Computation

Element matrix K can be precomputed
FFC
SyFi

Can be extended to nonlinearities and curved geometry

Many redundancies among tensor elements of K
Could try to optimize the tensor contraction. . .
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FErari Problem Statement

Abstract Problem

Given vectors vi ∈ Rm, minimize flops(vT g) for arbitrary g ∈ Rm

The set vi is not at all random

Not a traditional compiler optimization

How to formulate as an optimization problem?
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FErari Plan of Attack
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FErari Plan of Attack

Complexity Reducing Relations

If vT
i g is known, is flops(vT

j g) < 2m − 1?

We can use binary relations among the vectors:
Equality

If vj = vi , then flops(vT
j g) = 0

Colinearity
If vj = αvi , then flops(vT

j g) = 1

Hamming distance
If distH(vj , vi ) = k , then flops(vT

j g) = 2k
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FErari Plan of Attack

Algorithm for Binary Relations

Construct a weighted graph on vi
The weight w(i , j) is flops(vT

j g) given vT
i g

With the above relations, the graph is symmetric

Find a minimum spanning tree
Use Prim or Kruskal for worst case O(n2 log n)

Traverse the MST, using the appropriate calculation for each edge
Roots require a full dot product
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FErari Plan of Attack

Coplanarity

Ternary relation
If vk = αvi + βvj , then flops(vT

k g) = 3
Does not fit our undirected graph paradigm

SVD for vector triples is expensive
Use a randomized projection into a few R3s

Use a hypergraph?
MST algorithm available

Appeal to geometry?
Incidence structures
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FErari Results

Preliminary Results

Order Entries Base MAPs FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867
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FErari Mixed Integer Linear Programming
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FErari Mixed Integer Linear Programming

Modeling the Problem

Objective is cost of dot products (tensor contractions in FEM)
Set of vectors V with a given arbitrary vector g

The original MINLP has a nonconvex, nonlinear objective

Reformulate to obtain a MILP using auxiliary binary variables
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FErari Mixed Integer Linear Programming

Modeling the Problem

Variables

αij = Basis expansion coefficients
yi = Binary variable indicating membership in the basis
sij = Binary variable indicating nonzero coefficient αij

zij = Binary variable linearizes the objective function (equivalent to yiyj )
U = Upper bound on coefficients

Constraints

Eq. (36b) : Basis expansion
Eq. (36c) : Exclude nonbasis vector from the expansion
Eq. (36d) : Remove offdiagonal coefficients for basis vectors

Eq. (7c) : Exclude vanishing coefficients from cost
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FErari Mixed Integer Linear Programming

Original Formulation

MINLP Model

minimize
n∑

i=1

yi(2m − 1) + (1− yi)

2
n∑

j=1,j 6=i

yj − 1

 (36a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(36b)

− Uyj ≤ αij ≤ Uyj i , j = 1, . . . ,n
(36c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(36d)

yi ∈ {0,1} i = 1, . . . ,n.
(36e)
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FErari Mixed Integer Linear Programming

Original Formulation

Equivalent MILP Model: zij = yi · yj

minimize 2m
n∑

i=1

yi + 2
n∑

i=1

n∑
j=1,j 6=i

(yj − zij)− n (36a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(36b)

− Uyj ≤ αij ≤ Uyj i , j = 1, . . . ,n
(36c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(36d)

zij ≤ yi , zij ≤ yj , zij ≥ yi + yj − 1, i , j = 1, . . . ,n
(36e)

yi ∈ {0,1}, zij ∈ {0,1} i , j = 1, . . . ,n.
(36f)M. Knepley (ANL,TTU) Theory Simula ’08 152 / 214



FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

Take advantage of sparsity of αij coefficient

Introduce binary variables sij to model existence of αij

Add constraints −Usij ≤ αij ≤ Usij

M. Knepley (ANL,TTU) Theory Simula ’08 153 / 214



FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

MINLP Model

minimize
n∑

i=1

yi(2m − 1) + (1− yi)

2
n∑

j=1,j 6=i

sij − 1

 (37a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(37b)

− Usij ≤ αij ≤ Usij i , j = 1, . . . ,n
(37c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(37d)

sij ≤ yj i , j = 1, . . . ,n
(37e)

yi ∈ {0,1}, sij ∈ {0,1} i , j = 1, . . . ,n.
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FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

Equivalent MILP Model

minimize 2m
n∑

i=1

yi + 2
n∑

i=1

n∑
j=1,j 6=i

(sij − zij)− n (37a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(37b)

− Usij ≤ αij ≤ Usij i , j = 1, . . . ,n
(37c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(37d)

zij ≤ yi , zij ≤ sij , zij ≥ yi + sij − 1, i , j = 1, . . . ,n
(37e)

yi ∈ {0,1}, zij ∈ {0,1}, sij ∈ {0,1} i , j = 1, . . . ,n.
(37f)

Including Sparsity of vi -Vectors

minimize 2
n∑

i=1

nnz(vi)yi + 2
n∑

i=1

n∑
j=1,j 6=i

(sij − zij)− n

where nnz(vi) is number of nonzeros in vi
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FErari Mixed Integer Linear Programming

Results

Initial Formulation

Initial formulation only had sparsity in the αij

MINTO was not able to produce some optimal solutions
Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element Flops Flops LPs CPU Flops LPs CPU
P1 2D 42 42 33 0.10 34 187 0.43
P2 2D 147 147 2577 37.12 67 6030501 36000
P1 3D 170 166 79 0.49 146 727 3.97
P2 3D 935 935 25283 36000 829 33200 36000
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FErari Mixed Integer Linear Programming

Results

Formulation with Sparse Basis
We can also take account of the sparsity in the basis vectors
Count only the flops for nonzero entries

Significantly decreases the flop count

Sparse Coefficient Sparse Basis
Elements Flops Flops
P1 2D 34 12
P1 3D 146 26
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Part VI

Fast Methods
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The Fast Multipole Method
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The Fast Multipole Method Spatial Decomposition
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The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List
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The Fast Multipole Method Spatial Decomposition

Quadtree Implementation

We use binary scheme to label cells (or vertices)

Relevant relations can be determined implicitly
cone()
neighbors
parent
interaction list

When vertices are not used, we can directly connect cells
cone() becomes neighbor method
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The Fast Multipole Method Spatial Decomposition

Tree Interface

locateBlob(blob)
Locate point in the tree

fillNeighbors()
Compute the neighbor section

findInteractionList()
Compute the interaction list cell section, allocate value section

fillInteractionList(level)
Compute the interaction list value section

fill(blobs)
Compute the blob section

dump()
Produces a verifiable repesentation of the tree
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The Fast Multipole Method Data Decomposition
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The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level
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The Fast Multipole Method Serial Implementation
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The Fast Multipole Method Serial Implementation

Evaluator Interface

initializeExpansions(tree, blobInfo)
Generate multipole expansions on the lowest level
Requires loop over cells
O(p)

upwardSweep(tree)
Translate multipole expansions to intermediate levels
Requires loop over cells and children (support)
O(p2)

downwardSweep(tree)
Convert multipole to local expansions and translate local
expansions on intermediate levels
Requires loop over cells and parent (cone)
O(p2)
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The Fast Multipole Method Serial Implementation

Evaluator Interface

evaluateBlobs(tree, blobInfo)
Evaluate direct and local field interactions on lowest level
Requires loop over cells and neighbors (in section)
O(p2)

evaluate(tree, blobs, blobInfo)
Calculate the complete interaction (multipole + direct)
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The Fast Multipole Method Serial Implementation

Kernel Interface

Method Description
P2M(t) Multipole expansion coefficients
L2P(t) Local expansion coefficients
M2M(t) Multipole-to-multipole translation
M2L(t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate(blobs) Direct interaction

Evaluator is templated over Kernel
There are alternative kernel-independent methods

kifmm3d
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The Fast Multipole Method Parallel Spatial Decomposition
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Divide tree into a root and local trees

Distribute local trees among processes

Provide communication pattern for local sections (overlap)
Both neighbor and interaction list overlaps

Sieve generates MPI from high level description
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
How should we distribute trees?

Multiple local trees per process allows good load balance
Partition weighted graph

Minimize load imbalance and communication

Computation estimate:
Leaf Nip (P2M) + nIp2 (M2L) + Nip (L2P) + 3d N2

i (P2P)
Interior ncp2 (M2M) + nIp2 (M2L) + ncp2 (L2L)

Communication estimate:
Diagonal nc(L − k − 1)

Lateral 2d 2m(L−k−1)−1
2m−1 for incidence dimesion m

Leverage existing work on graph partitioning
ParMetis
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

Good partitions exist for non-uniform distributions
2D O

(√
n(log n)3/2

)
edgecut

3D O
(
n2/3(log n)4/3

)
edgecut

As scalable as regular grids

As efficient as uniform distributions

ParMetis will find a nearly optimal partition

M. Knepley (ANL,TTU) Theory Simula ’08 171 / 214
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

Good partitions exist for non-uniform distributions
2D Ci = 1.24iC0 for random matching
3D Ci = 1.21iC0?? for random matching

3D proof needs assurance that averge degree does not increase

Efficient in practice
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Interface

fillNeighbors()
Compute neighbor overlap, and send neighbors

findInteractionList()
Compute the interaction list overlap

fillInteractionList(level)
Complete and copy into local interaction sections

fill(blobs)
Now must scatter blobs to local trees
Uses scatterBlobs() and gatherBlobs()
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Data Movement

1 Complete neighbor section

2 Upward sweep
1 Upward sweep on local trees
2 Gather to root tree
3 Upward sweep on root tree

3 Complete interaction list section

4 Downward sweep
1 Downward sweep on root tree
2 Scatter to local trees
3 Downward sweep on local trees
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The Fast Multipole Method Parallel Spatial Decomposition

Parallel Evaluator Interface

initializeExpansions(local trees, blobInfo)
Evaluate each local tree

upwardSweep(local trees, partition, root tree)
Evaluate each local tree and then gather to root tree

downwardSweep(local trees, partition, root tree)
Scatter from root tree and then evaluate each local tree

evaluateBlobs(local trees, blobInfo)
Evaluate on all local trees

evaluate(tree, blobs, blobInfo)
Identical
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The Fast Multipole Method Parallel Performance
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The Fast Multipole Method Parallel Performance

Recursive Parallel

For large problems, a single root can be a bottleneck

We can recursively assign roots to subtrees
Bandwidth to root is controlled
What about utilization?

Root computation is similar to MG coarse solve
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Multigrid
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Multigrid Structured
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Multigrid Structured

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1
discretization.

It is used as a template to create
Vectors (functions)
Matrices (linear operators)
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Multigrid Structured

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

M. Knepley (ANL,TTU) Theory Simula ’08 182 / 214



Multigrid Structured

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf )(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)
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Multigrid Structured

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx ) {
f o r ( j = in fo−>ys ; j < in fo−>ys+ in fo−>ym; ++ j ) {

f o r ( i = in fo−>xs ; i < in fo−>xs+ in fo−>xm; ++ i ) {
u = x [ j ] [ i ] ;
i f ( i ==0 | | j ==0 | | i == M | | j == N) {

f [ j ] [ i ] = 2 . 0 * ( hydhx+hxdhy ) * u ; cont inue ;
}
u_xx = ( 2 . 0 * u − x [ j ] [ i −1] − x [ j ] [ i + 1 ] ) * hydhx ;
u_yy = ( 2 . 0 * u − x [ j −1][ i ] − x [ j + 1 ] [ i ] ) * hxdhy ;
f [ j ] [ i ] = u_xx + u_yy − hx * hy * lambda * exp ( u ) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c
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Multigrid Structured

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac )(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)
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Multigrid Structured

Setting Values on Regular Grids

PETSc provides

Mat SetVa luesStenc i l ( Mat A, m, Mat S t e n c i l idxm [ ] , n , Mat S t e n c i l idxn [ ] ,
PetscScalar values [ ] , InsertMode mode)

Each row or column is actually a MatStencil
This specifies grid coordinates and a component if necessary
Can imagine for unstructured grids, they are vertices

The values are the same logically dense block in row/col
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Multigrid Structured

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)
Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().
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Multigrid Structured

DM Integration with SNES

DM supplies global residual and Jacobian to SNES
User supplies local version to DM
The Rhs_*() and Jac_*() functions in the example

Allows automatic parallelism
Allows grid hierarchy

Enables multigrid once interpolation/restriction is defined
Paradigm is developed in unstructured work

Solve needs scatter into contiguous global vectors (initial guess)

Handle Neumann BC using KSPSetNullSpace()
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Multigrid Structured

Multigrid with DM

Allows multigrid with some simple command line options

-pc_type mg, -pc_mg_levels
-pc_mg_type, -pc_mg_cycle_type, -pc_mg_galerkin
-mg_levels_1_ksp_type, -mg_levels_1_pc_type
-mg_coarse_ksp_type, -mg_coarse_pc_type
-da_refine, -ksp_view

Interface also works with GAMG and 3rd party packages like ML
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Multigrid Unstructured
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Multigrid Unstructured

Unstructured Meshes

Same DMMG options as the structured case
Mesh refinement

Ruppert algorithm in Triangle and TetGen
Mesh coarsening

Talmor-Miller algorithm in PETSc
More advanced options

-dmmg_refine
-dmmg_hierarchy

Current version only works for linear elements
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Multigrid Unstructured

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a
length-scale requirement in order to maintain accuracy:

Clow r1−µ ≤ h ≤ Chighr1−µ

µ ≤ π

θ
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Multigrid Unstructured

The Folly of Uniform Refinement

uniform refinement may fail to eliminate error
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Multigrid Unstructured

Geometric Multigrid

We allow the user to
refine for fidelity

Coarse grids are created
automatically

Could make use of AMG
interpolation schemes
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Multigrid Unstructured

Requirements of Geometric Multigrid

Sufficient conditions for optimal-order convergence:
|Mc | < 2|Mf | in terms of cells
any cell in Mc overlaps a bounded # of cells in Mf
monotonic increase in cell length-scale

Each Mk satisfies the quasi-uniformity condition:

C1hk ≤ hK ≤ C2ρK

hK is the length-scale (longest edge) of any cell K
hk is the maximum length-scale in the mesh Mk
ρK is the diameter of the inscribed ball in K
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Multigrid Unstructured

Function Based Coarsening

(Miller, Talmor, Teng; 1997)
triangulated planar graphs ≡ disk-packings (Koebe; 1934)
define a spacing function S() over the vertices

obvious one: S(v) = dist(NN(v),v)
2
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Multigrid Unstructured

Function Based Coarsening

pick a subset of the vertices such that β(S(v) + S(w)) > dist(v ,w)

for all v ,w ∈ M, with β > 1
dimension independent
provides guarantees on the size/quality of the resulting meshes
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Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later
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Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

vertex neighbors: cone(support(v)) \ v
vertex link: closure(star(v)) \ star(closure(v))

connectivity graph induced by limiting sieve depth
remeshing can be handled as local modifications on the sieve
meshing operations, such as cone construction easy
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Multigrid Unstructured

3D Test Problem

Reentrant corner
−∆u = f
f (x , y , z) = 3 sin(x + y + z)

Exact Solution: u(x , y , z) = sin(x + y + z)
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Multigrid Unstructured

GMG Performance

Linear solver iterates are nearly as system size increases:
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Multigrid Unstructured

GMG Performance

Coarsening work is nearly constant as system size increases:
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Multigrid Unstructured

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, β = 1.45
level cells vertices min(hK )

hk
max hK

ρk
min(hK ) max. overlap

0 19927 10149 0.020451 4.134135 0.001305 -
1 5297 2731 0.016971 4.435928 0.002094 23
2 3028 1572 0.014506 4.295703 0.002603 14
3 1628 856 0.014797 5.295322 0.003339 14
4 863 464 0.011375 6.403574 0.003339 14
5 449 250 0.022317 6.330512 0.007979 13
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Part VII

Sample Application: Fault Mechanics
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Formulation

Reverse-slip Benchmark
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Mesh Handling

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 206 / 214



Mesh Handling

Multiple Mesh Types

Triangular Tetrahedral

Rectangular Hexahedral
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Parallelism
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Parallelism

Parallelism

Function and Operator Assembly
Parallel element integration over multiple materials/models
Assembly uses completion for functions and PETSc Mat for
operators

Algebraic sovlers
Use MUMPS for small problems
PETSc ASM/ILU for large problems
Hope to use unstructured MG when fault support is implemented

Parallel data movement routines do not change for
Different dimension
Different element shapes
Different discretization
Fault inclusion
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Fault Handling

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 210 / 214



Fault Handling

Cohesive Cells

0 2 4

53
Original Mesh

1

0 2

31

2 4

53
0 2 6 4

57
Mesh with Cohesive Cell

31

0 2

31

6 4

57

2 6

73

Exploded view of meshes
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Fault Handling

Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault
Demand complex mesh manipulation

We allow specification of only fault vertices
Must “sew” together on output

Use Lagrange multipliers to enforce constraints
Forces illuminate physics

Allow different fault constitutive models
Simplest is enforced slip
Now have fault constitutive models
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Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape
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