
Theoretical Foundations

Dmitry Karpeev 1,2, Matthew Knepley 1,2, and Robert Kirby 3

1Mathematics and Computer Science Division 2Computation Institute
Argonne National Laboratory University of Chicago

3Department of Computer Science
Texas Tech University

Foundations of Finite Element Computing
Simula Research, Oslo, Norway

August 3-10, 2008

M. Knepley (ANL,TTU) Theory Simula ’08 1 / 214

Part I

Introduction

M. Knepley (ANL,TTU) Theory Simula ’08 2 / 214

Scientific Computing

Outline

1 Scientific Computing

2 Hierarchy

M. Knepley (ANL,TTU) Theory Simula ’08 4 / 214

Scientific Computing

Problems

The biggest problem in scientific computing is programmability:
Lack of usable implementations of modern algorithms

Unstructured Multigrid
Fast Multipole Method

Lack of comparison among classes of algorithms
Meshes
Discretizations

We should reorient thinking from
characterizing the solution (FEM)

“what is the convergence rate (in h) of this finite element?”

to
characterizing the computation (FErari)

“how many digits of accuracy per flop for this finite element?”

M. Knepley (ANL,TTU) Theory Simula ’08 5 / 214

Scientific Computing

Problems

The biggest problem in scientific computing is programmability:
Lack of widespread implementations of modern algorithms

Unstructured Multigrid
Fast Multipole Method

Lack of comparison among classes of algorithms
Meshes
Discretizations

We should reorient thinking from
characterizing the solution (FEM)

“what is the convergence rate (in h) of this finite element?”

to
characterizing the computation (FErari)

“how many digits of accuracy per flop for this finite element?”

M. Knepley (ANL,TTU) Theory Simula ’08 5 / 214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems Database Systems

Programming Languages

M. Knepley (ANL,TTU) Theory Simula ’08 6 / 214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems

Programming Languages

M. Knepley (ANL,TTU) Theory Simula ’08 6 / 214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems
Datamining

Programming Languages

M. Knepley (ANL,TTU) Theory Simula ’08 6 / 214

Scientific Computing

Interaction with Systems

We have to bridge the gap with Systems
to enable Scientific Computing

Operating Systems
Distributed Computing

Database Systems
Datamining

Programming Languages
Code Generation

M. Knepley (ANL,TTU) Theory Simula ’08 6 / 214

Scientific Computing

Future Compilers

I think compilers are victims of their own success (ala Rob Pike)

Efforts to modularize compilers retain the same primtives
compiling on the fly (JIT)
Low Level Virtual Machine

Raise the level of abstraction
Fenics Form Compiler (variational form compiler)
Mython (Domain Specific Language generator)

M. Knepley (ANL,TTU) Theory Simula ’08 7 / 214

http://llvm.org

Scientific Computing

Spiral

Spiral Team, http://www.spiral.net
Uses an intermediate language, SPL, and then generates C
Works by circumscribing the algorithmic domain

M. Knepley (ANL,TTU) Theory Simula ’08 8 / 214

http://www.spiral.net

Scientific Computing

FLAME & FLASH

0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000

G
F

LO
P

S

Matrix size

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

Algorithm-by-blocks on four T10 processors
CUBLAS sgemm on a single T10 processor

MKL sgemm on Intel Xeon QuadCore (4 cores)

Robert van de Geijn, http://www.cs.utexas.edu/users/flame
FLAME is an Algorithm-By-Blocks interface
FLASH/SuperMatrix is a runtime system

M. Knepley (ANL,TTU) Theory Simula ’08 9 / 214

http://www.cs.utexas.edu/users/flame

Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Spiral Project:
Discrete Fourier Transform (DSP)

Fast Fourier Transform (SPL)

C Implementation (SPL Compiler)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Theory Simula ’08 10 / 214

http://www.spiral.net

Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Spiral Project:
Discrete Fourier Transform (DSP)

Fast Fourier Transform (SPL)

C Implementation (SPL Compiler)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Theory Simula ’08 10 / 214

http://www.spiral.net

Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FLAME Project:
Abstract LA (PME/Invariants)

Basic LA (FLAME/FLASH)

Scheduling (SuperMatrix)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Theory Simula ’08 10 / 214

http://www.cs.utexas.edu/users/flame

Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FEniCS Project:
Navier-Stokes (FFC)

Finite Element (FIAT)

Integration/Assembly (FErari)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Theory Simula ’08 10 / 214

http://www.fenics.org

Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Treecodes:
Kernels with decay (Coulomb)

Treecodes (PetFMM)

Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Theory Simula ’08 10 / 214

Scientific Computing

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Treecodes:
Kernels with decay (Coulomb)

Treecodes (PetFMM)

Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (ANL,TTU) Theory Simula ’08 10 / 214

Hierarchy

Outline

1 Scientific Computing

2 Hierarchy

M. Knepley (ANL,TTU) Theory Simula ’08 11 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 12 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 12 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 12 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 12 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 12 / 214

Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to Rn:

Transition maps provide a mechanism to connect the pieces.

M. Knepley (ANL,TTU) Theory Simula ’08 13 / 214

Hierarchy

Example: FEM

The Finite Element Method does computation in a local basis:
7/17/15, 8:51 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Overlap/FEMExample.svg

T

Ah uh=fh

The operator T maps between the local and global bases.

M. Knepley (ANL,TTU) Theory Simula ’08 14 / 214

Hierarchy

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL,TTU) Theory Simula ’08 15 / 214

Hierarchy

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL,TTU) Theory Simula ’08 15 / 214

Hierarchy

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL,TTU) Theory Simula ’08 15 / 214

Hierarchy

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL,TTU) Theory Simula ’08 15 / 214

Hierarchy

Global and Local

Local (analytical)
Discretization/Approximation

FEM integrals
FV fluxes

Boundary conditions
Largely dim dependent
(e.g. quadrature)

Global (topological)
Data management

Sections (local pieces)
Completions (assembly)

Boundary definition
Multiple meshes

Mesh hierarchies

Largely dim independent
(e.g. mesh traversal)

M. Knepley (ANL,TTU) Theory Simula ’08 15 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 16 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 16 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 16 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 16 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley (ANL,TTU) Theory Simula ’08 16 / 214

Hierarchy

Why Optimal Algorithms?

The more powerful the computer,
the greater the importance of optimality
Example:

Suppose Alg1 solves a problem in time CN2, N is the input size
Suppose Alg2 solves the same problem in time CN
Suppose Alg1 and Alg2 are able to use 10,000 processors

In constant time compared to serial,
Alg1 can run a problem 100X larger
Alg2 can run a problem 10,000X larger

Alternatively, filling the machine’s memory,
Alg1 requires 100X time
Alg2 runs in constant time

M. Knepley (ANL,TTU) Theory Simula ’08 17 / 214

Hierarchy

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . .)

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula ’08 18 / 214

Hierarchy

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . .)

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula ’08 18 / 214

Hierarchy

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . .)

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula ’08 18 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
meet(0,1) = {4}
join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
meet(0,1) = {4}
join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula ’08 19 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
restrictStar(7) = {v0e0e1e4e5f0}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
restrictStar(7) = {v0e0e1e4e5f0}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
restrictStar(7) = {v0e0e1e4e5f0}

M. Knepley (ANL,TTU) Theory Simula ’08 20 / 214

Hierarchy

Doublet Mesh Distribution

process 1process 0

process 0 process 1

2,1

1,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

P

T

M. Knepley (ANL,TTU) Theory Simula ’08 21 / 214

Hierarchy

Doublet Mesh Distribution

process 1process 0

process 0 process 1

1,21,10,2 0,5 1,51,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

2,1

��
��
��

��
��
��
1,1

��
��
��

��
��
��
1,5

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

P

T

1,3 1,4

1,2 1,3 1,40,2 0,5

M. Knepley (ANL,TTU) Theory Simula ’08 21 / 214

Hierarchy

Doublet Mesh Distribution

process 1process 0

process 0 process 1

1,41,3

1,21,10,2 0,5 1,5

0,51,1 1,20,2

2,1

1,3 1,40,3 0,4 0,5

0,1 0,50,4

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

1,1

P

T

1,3 1,4

1,2 1,3 1,40,2 0,51,1 1,5

0,30,2

0,6

M. Knepley (ANL,TTU) Theory Simula ’08 21 / 214

Hierarchy

Restriction

Localization
Restrict to patches (here an edge closure)
Compute locally

M. Knepley (ANL,TTU) Theory Simula ’08 22 / 214

Hierarchy

Delta

Delta
Restrict further to the overlap
Overlap now carries twice the data

M. Knepley (ANL,TTU) Theory Simula ’08 22 / 214

Hierarchy

Fusion

Merge/reconcile data on the overlap
Addition (FEM)
Replacement (FD)
Coordinate transform (Sphere)
Linear transform (MG)

M. Knepley (ANL,TTU) Theory Simula ’08 22 / 214

Hierarchy

Update

Update
Update local patch data
Completion = restrict −→ fuse −→ update, in parallel

M. Knepley (ANL,TTU) Theory Simula ’08 22 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Hierarchy

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 23 / 214

Conclusions

Benefits

Better mathematical abstractions
bring concrete benefits

Vast reduction in complexity
Declarative, rather than imperative, specification
Dimension independent code

Opportunites for optimization
Higher level operations missed by traditional compilers
Single communication routine to optimize

Expansion of capabilities
Easy model definition
Arbitrary elements
Complex geometries and embedded boundaries

M. Knepley (ANL,TTU) Theory Simula ’08 24 / 214

Part II

Global Computation: Theory

M. Knepley (ANL,TTU) Theory Simula ’08 25 / 214

Hierarchy

Outline

3 Hierarchy

4 Representing Topology

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 26 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 27 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 27 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 27 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 27 / 214

Hierarchy

Hierarchical Design

Big Idea: Hierarchy

Multilevel Method
Solve local problems

Locality of operations is key for efficient implementation
Should enable reuse of serial implementation

Stitch together to form a global solution
Manifold or Domain Decomposition idea: local pieces w/ overlap
Global complexity is encoded in the (small) Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 27 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 28 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 28 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 28 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

M. Knepley (ANL,TTU) Theory Simula ’08 28 / 214

Hierarchy

Payoff

Why should I care?

1 Current algorithms do not efficiently utilize modern machines
2 Processor flops are increasing much faster than bandwidth
3 Multicore processors are the future
4 Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

M. Knepley (ANL,TTU) Theory Simula ’08 28 / 214

Hierarchy

What Is Optimal?

I will define optimal as an O(N) solution algorithm

These are generally hierarchical, so we need
hierarchy generation
assembly on subdomains
restriction and prolongation

M. Knepley (ANL,TTU) Theory Simula ’08 29 / 214

Hierarchy

Why Optimal Algorithms?

The more powerful the computer,
the greater the importance of optimality
Example:

Suppose Alg1 solves a problem in time CN2, N is the input size
Suppose Alg2 solves the same problem in time CN
Suppose Alg1 and Alg2 are able to use 10,000 processors

In constant time compared to serial,
Alg1 can run a problem 100X larger
Alg2 can run a problem 10,000X larger

Alternatively, filling the machine’s memory,
Alg1 requires 100X time
Alg2 runs in constant time

M. Knepley (ANL,TTU) Theory Simula ’08 30 / 214

Hierarchy

Example: Manifold

Manifolds are locally homeomorphic to Rn:

Transition maps provide a mechanism to connect the pieces.

M. Knepley (ANL,TTU) Theory Simula ’08 31 / 214

Hierarchy

Example: FEM

The Finite Element Method does computation in a local basis:
7/17/15, 8:51 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Overlap/FEMExample.svg

T

Ah uh=fh

The operator T maps between the local and global bases.

M. Knepley (ANL,TTU) Theory Simula ’08 32 / 214

Representing Topology

Outline

3 Hierarchy

4 Representing Topology
Mesh Distribution

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 33 / 214

Representing Topology

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . .)

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula ’08 34 / 214

Representing Topology

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . .)

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula ’08 34 / 214

Representing Topology

Sieve Overview

Hierarchy is the centerpiece
Strip out unneeded complexity (dimension, shape, . . .)

Single relation, covering, handles all hierarchy
Rich enough for FEM

Single operation, completion, for parallelism
Enforces consistency of the relation

M. Knepley (ANL,TTU) Theory Simula ’08 34 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation:

cone()
and then add its dual: support()

followed by the transitive closures: closure(), star()
and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()

and then add its dual: support()
followed by the transitive closures: closure(), star()

and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()
and then add its dual:

support()
followed by the transitive closures: closure(), star()

and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()
and then add its dual: support()

followed by the transitive closures: closure(), star()
and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()
and then add its dual: support()

followed by the transitive closures:

closure(), star()
and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()
and then add its dual: support()

followed by the transitive closures: closure(), star()

and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()
and then add its dual: support()

followed by the transitive closures: closure(), star()
and finally lattice operations:

meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Basic Operations

We begin with a basic covering operation: cone()
and then add its dual: support()

followed by the transitive closures: closure(), star()
and finally lattice operations: meet(), join()

M. Knepley (ANL,TTU) Theory Simula ’08 35 / 214

Representing Topology

Sieve Definition

Definition
A Sieve consists of points, and arrows.
Each arrow connects a point to another which it covers.

cone(p) sequence of points which cover a given point p
closure(p) transitive closure of cone
support(p) sequence of points which are covered by a given point p
star(p) transitive closure of support
meet(p,q) minimal separator of closure(p) and closure(q)
join(p,q) minimal separator of star(p) and star(q)

M. Knepley (ANL,TTU) Theory Simula ’08 36 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
cone(0) = {2,3,4}
support(7) = {2,3}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
closure(0) = {0,2,3,4,7,8,9}
star(7) = {7,2,3,0}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
meet(0,1) = {4}
join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

Doublet Mesh

0

7

8

6

5

2

3

0 149 10

2 3 4 5 6

98 107

1

Incidence/covering arrows
meet(0,1) = {4}
join(8,9) = {4}

M. Knepley (ANL,TTU) Theory Simula ’08 37 / 214

Representing Topology

The Mesh Dual

Construct mesh dual by
reversing sieve arrows
taking the support() of each face
taking the meet() of each cell pair

M. Knepley (ANL,TTU) Theory Simula ’08 38 / 214

Representing Topology Mesh Distribution

Outline

4 Representing Topology
Mesh Distribution

M. Knepley (ANL,TTU) Theory Simula ’08 39 / 214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
distributing the topology (Sieve)

distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!

M. Knepley (ANL,TTU) Theory Simula ’08 40 / 214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
distributing the topology (Sieve)

distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!

M. Knepley (ANL,TTU) Theory Simula ’08 40 / 214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
distributing the topology (Sieve)

distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!

M. Knepley (ANL,TTU) Theory Simula ’08 40 / 214

Representing Topology Mesh Distribution

Mesh Distribution

Distributing a mesh means
distributing the topology (Sieve)

distributing data (Section)

However, a Sieve can be interpreted as a Section of cone()s!

M. Knepley (ANL,TTU) Theory Simula ’08 40 / 214

Representing Topology Mesh Distribution

Mesh Partition

3rd party packages construct a vertex partition

For FEM, partition dual graph vertices

For FVM, construct hyperpgraph dual with faces as vertices

Assign closure(v) and star(v) to same partition

M. Knepley (ANL,TTU) Theory Simula ’08 41 / 214

Representing Topology Mesh Distribution

Doublet Mesh Distribution

process 1process 0

process 0 process 1

2,1

1,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

P

T

M. Knepley (ANL,TTU) Theory Simula ’08 42 / 214

Representing Topology Mesh Distribution

Doublet Mesh Distribution

process 1process 0

process 0 process 1

1,21,10,2 0,5 1,51,3 1,40,3 0,4 0,5 0,6 1,5

0,30,1 0,2 1,41,30,50,41,1 1,2

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

2,1

��
��
��

��
��
��
1,1

��
��
��

��
��
��
1,5

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

��
��
��

P

T

1,3 1,4

1,2 1,3 1,40,2 0,5

M. Knepley (ANL,TTU) Theory Simula ’08 42 / 214

Representing Topology Mesh Distribution

Doublet Mesh Distribution

process 1process 0

process 0 process 1

1,41,3

1,21,10,2 0,5 1,5

0,51,1 1,20,2

2,1

1,3 1,40,3 0,4 0,5

0,1 0,50,4

2,12,0

0,1 0,2 1,1 1,2 1,41,30,50,3 0,4 0,6 1,5

1,1

P

T

1,3 1,4

1,2 1,3 1,40,2 0,51,1 1,5

0,30,2

0,6

M. Knepley (ANL,TTU) Theory Simula ’08 42 / 214

Representing Topology Mesh Distribution

Section Distribution

Section distribution consists of

Creation of the local Section

Distribution of the Atlas (layout Section)

Completion of the Section

M. Knepley (ANL,TTU) Theory Simula ’08 43 / 214

Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 44 / 214

Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 44 / 214

Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 44 / 214

Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 44 / 214

Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 44 / 214

Representing Topology Mesh Distribution

Sieve Distribution

1 Construct local mesh from partition
2 Construct partition overlap
3 Complete() the partition section

This distributes the cells
4 Update Overlap with new points
5 Complete() the cone section

This distributes the remaining sieve points
6 Update local Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 44 / 214

Representing Topology Mesh Distribution

2D Example

A simple triangular mesh

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Sieve for the mesh

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Local sieve on process 0

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Partition Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Partition Section

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Updated Sieve Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Cone Section

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Distributed Sieve

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Coordinate Section

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Distributed Coordinate Section

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

2D Example

Distributed Mesh

M. Knepley (ANL,TTU) Theory Simula ’08 45 / 214

Representing Topology Mesh Distribution

3D Example

A simple hexahedral mesh

M. Knepley (ANL,TTU) Theory Simula ’08 46 / 214

Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

Its complicated!
M. Knepley (ANL,TTU) Theory Simula ’08 46 / 214

Representing Topology Mesh Distribution

3D Example

Sieve for the mesh

Its complicated!
M. Knepley (ANL,TTU) Theory Simula ’08 46 / 214

Representing Topology Mesh Distribution

3D Example

Partition Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 46 / 214

Representing Topology Mesh Distribution

3D Example

Partition Section

M. Knepley (ANL,TTU) Theory Simula ’08 46 / 214

Representing Topology Mesh Distribution

3D Example

Distributed Mesh

Notice cells are ghosted
M. Knepley (ANL,TTU) Theory Simula ’08 46 / 214

Representing Functions

Outline

3 Hierarchy

4 Representing Topology

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 47 / 214

Representing Functions

Sections

Sections associate data to submeshes

Name comes from section of a fiber bundle
Generalizes linear algebra paradigm

Define restrict(),update()
Define complete()

Assembly routines take a Sieve and several Sections
This is called a Bundle

M. Knepley (ANL,TTU) Theory Simula ’08 48 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation:

restrictPoint()
and then add its converse: updatePoint()

followed by topological versions: restrictClosure()
which appear as dual to covering, updateClosure()

and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()

and then add its converse: updatePoint()
followed by topological versions: restrictClosure()

which appear as dual to covering, updateClosure()
and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()
and then add its converse:

updatePoint()
followed by topological versions: restrictClosure()

which appear as dual to covering, updateClosure()
and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()
and then add its converse: updatePoint()

followed by topological versions: restrictClosure()
which appear as dual to covering, updateClosure()

and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()
and then add its converse: updatePoint()

followed by topological versions:

restrictClosure()

which appear as dual to covering,

updateClosure()
and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()
and then add its converse: updatePoint()

followed by topological versions: restrictClosure()
which appear as dual to covering, updateClosure()

and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()
and then add its converse: updatePoint()

followed by topological versions: restrictClosure()
which appear as dual to covering, updateClosure()

and finally a consistency operation:

complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Basic Operations

We begin with a simple mapping operation: restrictPoint()
and then add its converse: updatePoint()

followed by topological versions: restrictClosure()
which appear as dual to covering, updateClosure()

and finally a consistency operation: complete()

M. Knepley (ANL,TTU) Theory Simula ’08 49 / 214

Representing Functions

Duality

Need picture of sieve (graph) <–> mesh (picture) maybe doublet

Show both traversals (closure and restriction), perhaps an
animated FEM integral

M. Knepley (ANL,TTU) Theory Simula ’08 50 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Section interface
restrict(0) = {f0}
restrict(2) = {v0}
restrict(6) = {e0,e1}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
restrictStar(7) = {v0e0e1e4e5f0}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
restrictStar(7) = {v0e0e1e4e5f0}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Representing Functions

Doublet Section

v0 2

v1
3

v2
4

v35

e0

e1
6

e2

e3

7

e4

e5
8

e6

e7
9

e8

e9
10

f00 f1 1

e0 e1

6

e2 e3

7

e4 e5

8
e6 e7

9

e8 e9

10
v0

2

v1

3

v2

4

v3

5

f0

0

f1

1

Topological traversals: follow connectivity
restrictClosure(0) = {f0e0e1e2e3e4e5v0v1v2}
restrictStar(7) = {v0e0e1e4e5f0}

M. Knepley (ANL,TTU) Theory Simula ’08 51 / 214

Mapping Interpretation

Outline

3 Hierarchy

4 Representing Topology

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 52 / 214

Mapping Interpretation

Mapping

Since we have a single relation,

we can see all our objects merely as mappings:
Section

point −→ real

Sieve
point of S −→ {points of S}

Overlap
point of S −→ {points of S’}

M. Knepley (ANL,TTU) Theory Simula ’08 53 / 214

Mapping Interpretation

Composition

We may compose mappings to generate
restrictClosure()

closure() ◦ restrictPoint()

updateMeet()
meet() ◦ updatePoint()

and can even compose across an Overlap

complete() looks like a
restriction to the overlap
copy between adjacent sieves
fusion of values in the overlap sections
update to original section

M. Knepley (ANL,TTU) Theory Simula ’08 54 / 214

Connecting Sieves

Outline

3 Hierarchy

4 Representing Topology

5 Representing Functions

6 Mapping Interpretation

7 Connecting Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 55 / 214

Connecting Sieves

Sieves of Sieves

We can connect two Sieves by identifying points
This can be seen as nonlocal covering

This relation is then encapsulated in an Overlap,
which is just another Sieve.

Sections may be defined over the Overlap
Data movement follows the arrows

Enforcing consistency across an Overlap gives completion()

M. Knepley (ANL,TTU) Theory Simula ’08 56 / 214

Connecting Sieves

Restriction

Localization
Restrict to patches (here an edge closure)
Compute locally

M. Knepley (ANL,TTU) Theory Simula ’08 57 / 214

Connecting Sieves

Delta

Delta
Restrict further to the overlap
Overlap now carries twice the data

M. Knepley (ANL,TTU) Theory Simula ’08 57 / 214

Connecting Sieves

Fusion

Merge/reconcile data on the overlap
Addition (FEM)
Replacement (FD)
Coordinate transform (Sphere)
Linear transform (MG)

M. Knepley (ANL,TTU) Theory Simula ’08 57 / 214

Connecting Sieves

Update

Update
Update local patch data
Completion = restrict −→ fuse −→ update, in parallel

M. Knepley (ANL,TTU) Theory Simula ’08 57 / 214

Connecting Sieves

Completion

A ubiquitous parallel form of restrict −→ fuse −→ update
Operates on Sections

Sieves can be "downcast" to Sections
Based on two operations

Data exchange through overlap
Fusion of shared data

M. Knepley (ANL,TTU) Theory Simula ’08 58 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Connecting Sieves

Uses

Completion has many uses:

FEM accumulating integrals on shared faces
FVM accumulating fluxes on shared cells
FDM setting values on ghost vertices

distributing mesh entities after partition
redistributing mesh entities and data for load balance
accumlating matvec for a partially assembled matrix

M. Knepley (ANL,TTU) Theory Simula ’08 59 / 214

Part III

Global Computation: Implementation

M. Knepley (ANL,TTU) Theory Simula ’08 60 / 214

Interfaces

Outline

8 Interfaces

9 Mapping

10 Completion

11 Optimization and the Sieve Programming Model

12 Finite Elements

13 Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula ’08 61 / 214

Interfaces

Hierarchical Interfaces

Global/Local Dichotomy is the Heart of DD
Software interfaces do not adequately reflect this

PETSc DA is too specialized
Basically 1D methods applied to Cartesian products

PETSc Index Sets and VecScatters are too fine
User “does everything”, no abstraction

PETSc Linear Algebra (Vec & Mat) is too coarse
No access to the underlying connectivity structure

M. Knepley (ANL,TTU) Theory Simula ’08 62 / 214

Interfaces

Unstructured Interface (before)

Explicit references to element type
getVertices(edgeID), getVertices(faceID)
getAdjacency(edgeID, VERTEX)
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions

Have to recode for meshes with different
dimension
shapes

M. Knepley (ANL,TTU) Theory Simula ’08 63 / 214

Interfaces

Unstructured Interface (before)

Explicit references to element type
getVertices(edgeID), getVertices(faceID)
getAdjacency(edgeID, VERTEX)
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions

Have to recode for meshes with different
dimension
shapes

M. Knepley (ANL,TTU) Theory Simula ’08 63 / 214

Interfaces

Unstructured Interface (before)

Explicit references to element type
getVertices(edgeID), getVertices(faceID)
getAdjacency(edgeID, VERTEX)
getAdjacency(edgeID, dim = 0)

No interface for transitive closure
Awkward nested loops to handle different dimensions

Have to recode for meshes with different
dimension
shapes

M. Knepley (ANL,TTU) Theory Simula ’08 63 / 214

Interfaces

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

Abstract to a relation, covering, on sieve points
Points can represent any mesh element
Covering can be thought of as adjacency
Relation can be expressed in a DAG (Hasse Diagram)

Simple query set:
provides a general API for geometric algorithms
leads to simpler implementations
can be more easily optimized

M. Knepley (ANL,TTU) Theory Simula ’08 64 / 214

Interfaces

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

Abstract to a relation, covering, on sieve points
Points can represent any mesh element
Covering can be thought of as adjacency
Relation can be expressed in a DAG (Hasse Diagram)

Simple query set:
provides a general API for geometric algorithms
leads to simpler implementations
can be more easily optimized

M. Knepley (ANL,TTU) Theory Simula ’08 64 / 214

Interfaces

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

Abstract to a relation, covering, on sieve points
Points can represent any mesh element
Covering can be thought of as adjacency
Relation can be expressed in a DAG (Hasse Diagram)

Simple query set:
provides a general API for geometric algorithms
leads to simpler implementations
can be more easily optimized

M. Knepley (ANL,TTU) Theory Simula ’08 64 / 214

Interfaces

Unstructured Interface (after)

NO explicit references to element type
A point may be any mesh element
getCone(point): adjacent (d-1)-elements
getSupport(point): adjacent (d+1)-elements

Transitive closure
closure(cell): The computational unit for FEM

Algorithms independent of mesh
dimension
shape (even hybrid)
global topology
data layout

M. Knepley (ANL,TTU) Theory Simula ’08 65 / 214

Interfaces

Unstructured Interface (after)

NO explicit references to element type
A point may be any mesh element
getCone(point): adjacent (d-1)-elements
getSupport(point): adjacent (d+1)-elements

Transitive closure
closure(cell): The computational unit for FEM

Algorithms independent of mesh
dimension
shape (even hybrid)
global topology
data layout

M. Knepley (ANL,TTU) Theory Simula ’08 65 / 214

Interfaces

Unstructured Interface (after)

NO explicit references to element type
A point may be any mesh element
getCone(point): adjacent (d-1)-elements
getSupport(point): adjacent (d+1)-elements

Transitive closure
closure(cell): The computational unit for FEM

Algorithms independent of mesh
dimension
shape (even hybrid)
global topology
data layout

M. Knepley (ANL,TTU) Theory Simula ’08 65 / 214

Interfaces

Hierarchy Abstractions

Generalize to a set of linear spaces
Sieve provides topology, can also model Mat
Section generalizes Vec
Spaces interact through an Overlap (just a Sieve)

Basic operations
Restriction to finer subspaces, restrict()/update()
Assembly to the subdomain, complete()

Allow reuse of geometric and multilevel algorithms

M. Knepley (ANL,TTU) Theory Simula ’08 66 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 67 / 214

Interfaces

Multigrid in Sieve
7/17/15, 8:56 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/MG/structuredInterpolation.svg

1

2 3

10 11

1

2 3 10 11

Overlap

Sieves represent coarse and fine meshes
Sections represent coarse and fine fields
An Overlap matches coarse and fine cells
Interpolation and restriction are completion over the overlap

Fusion is a linear transformation

M. Knepley (ANL,TTU) Theory Simula ’08 68 / 214

Mapping

Outline

8 Interfaces

9 Mapping

10 Completion

11 Optimization and the Sieve Programming Model

12 Finite Elements

13 Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula ’08 69 / 214

Mapping

Traversal

Sequences:
http://en.wikipedia.org/wiki/Iterator_pattern
State is held by the iterator
Special classes are unnecessary

const sequence& cells = mesh.heightStratum(0);

for(sequence::iterator c_iter = cells.begin();
c_iter != cells.end(); ++c_iter) {
point_type p = *c_iter;

}

M. Knepley (ANL,TTU) Theory Simula ’08 70 / 214

http://en.wikipedia.org/wiki/Iterator_pattern

Mapping

Traversal

Visitors:
http://en.wikipedia.org/wiki/Visitor_pattern
State is split between sieve and visitor
User controls allocation

PrintVisitor pV;

sieve.cone(p, pV);

M. Knepley (ANL,TTU) Theory Simula ’08 71 / 214

http://en.wikipedia.org/wiki/Visitor_pattern

Mapping

Visitor Composition

Visitors can be composed by chaining visit() calls
Final template parameter is child visitor type

closure() is accomplished by composition
Oriented traversal uses the variant visit(point, orient)

Composition can also proceed by slicing
Discussed later by Dmitry

M. Knepley (ANL,TTU) Theory Simula ’08 72 / 214

Completion

Outline

8 Interfaces

9 Mapping

10 Completion

11 Optimization and the Sieve Programming Model

12 Finite Elements

13 Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula ’08 73 / 214

Completion

Section Distribution

Section distribution consists of

Creation of the local Section

Distribution of the Atlas (layout Section)

Completion of the Section

M. Knepley (ANL,TTU) Theory Simula ’08 74 / 214

Completion

Section Completion

Completion can be broken into 4 phases:
1 restrict() to an overlap section
2 copy() data to the remote overlap section
3 fuse() data with existing point data
4 update() remote section with fused overlap section data

It is common to combine phases 1 & 2, and also 3 & 4
Data is moved directly between communication buffers and
storage

M. Knepley (ANL,TTU) Theory Simula ’08 75 / 214

Completion

Section Completion

7/17/15, 9:38 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionI.svg

2

4

0

3

1

Overlap

3

0

4

2
1

0

2

1

3

4

Mesh

5
17
2

10
7

16
2
3

19
12

Process 0 Process 1

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214

Completion

Section Completion

7/17/15, 9:38 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionII.svg

2

4

0

3

1

Overlap

3

0

44

22
1

00

2

1

33

4

Mesh

5
17
2

10
7

16
2
3

19
12

2
7

16
19

Process 0 Process 1

Restrict

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214

Completion

Section Completion

7/17/15, 9:39 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionIII.svg

5
17
2

10
7

16
2
3

19
12

2
7

16
19

2
7

22

44

0

3

11

Overlap

3

0

4

2
1

0

2

1

3

4

Mesh

Process 0 Process 1

Copy

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214

Completion

Section Completion

7/17/15, 9:40 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionIV.svg

22

44

00

33

1

Overlap

3

0

4

2
1

0

2

1

3

4

Mesh

5
17
2

10
7

16
2
3

19
12

2
7

18
26

2
7

Process 0 Process 1

Fuse

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214

Completion

Section Completion

7/17/15, 9:40 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/Completion/completionV.svg

22

44

00

3

1

Overlap

3

0

4

2
1

0

2

1

3

4

Mesh

5
17
2

10
7

18
2
3

26
12

2
7

18
26

2
7

Process 0 Process 1

Update

M. Knepley (ANL,TTU) Theory Simula ’08 76 / 214

Completion

Section Hierarchy

We have a hierarchy of section types of increasing complexity
GeneralSection

An arbitrary number of values for each domain point
Constrain arbitrary values
Atlas is a UniformSection

UniformSection
A fixed number of values for each domain point
Atlas is a ConstantSection

ConstantSection
The same single value for all domain points
Only the domain must be completed

M. Knepley (ANL,TTU) Theory Simula ’08 77 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Completion

Example: Balanced Matrix-Vector Product

If a mesh has a highly graded degree sequence,
like a power-law (small world) graph,

MatMult() can be very unbalanced
since all edges for a vertex must be on one process.

We can balance edges in local matrices
by leaving the partition boundary unassembled.

We need only complete() the output section
due to the linearity of the operation

M. Knepley (ANL,TTU) Theory Simula ’08 78 / 214

Optimization and the Sieve Programming Model

Outline

8 Interfaces

9 Mapping

10 Completion

11 Optimization and the Sieve Programming Model
Automation
Parallelism
Completion
Interval Sieves

12 Finite Elements

13 Boundary Conditions
M. Knepley (ANL,TTU) Theory Simula ’08 79 / 214

Optimization and the Sieve Programming Model Automation

Outline

11 Optimization and the Sieve Programming Model
Automation
Parallelism
Completion
Interval Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 80 / 214

Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
Facilitates code reuse
Reduces code complexity
Reduces work of optimization (?)
Needs correct abstractions

Dual to introducing common software structures
Kernels operate on common structures

Must enable automatic selection of algorithmic variants

M. Knepley (ANL,TTU) Theory Simula ’08 81 / 214

Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
Facilitates code reuse
Reduces code complexity
Reduces work of optimization (?)
Needs correct abstractions

Dual to introducing common software structures
Kernels operate on common structures

Must enable automatic selection of algorithmic variants

M. Knepley (ANL,TTU) Theory Simula ’08 81 / 214

Optimization and the Sieve Programming Model Automation

Kernels Approach

Reducing operations to kernels is widespread in scientific computing:
Facilitates code reuse
Reduces code complexity
Reduces work of optimization (?)
Needs correct abstractions

Dual to introducing common software structures
Kernels operate on common structures

Must enable automatic selection of algorithmic variants

M. Knepley (ANL,TTU) Theory Simula ’08 81 / 214

Optimization and the Sieve Programming Model Automation

Dense Linear Algebra

Dense linear algebra is too rich:
Rich structure allow many different organizations
BLAS/LAPACK chooses certain kernel operations

Consider only reuse, not optimization

LAPACK choose a single variant of each algorithm
LAPACK fixes the structure implementation in the interface

FLAME allows new kernels to be created
Abstracts among implementations (layouts)

M. Knepley (ANL,TTU) Theory Simula ’08 82 / 214

Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
Abstract model from algorithms
Allows different implementations for common structures
Automates algorithm selection
Incorporates performance feedback

Unfortunately, DFT is simpler than our common operations.

M. Knepley (ANL,TTU) Theory Simula ’08 83 / 214

Optimization and the Sieve Programming Model Automation

DFT

Spiral allows both reuse and optimization:
Abstract model from algorithms
Allows different implementations for common structures
Automates algorithm selection
Incorporates performance feedback

Unfortunately, DFT is simpler than our common operations.

M. Knepley (ANL,TTU) Theory Simula ’08 83 / 214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
Don’t specify our algorithms at the FLAME level

Without a PME, cannot move between variants automatically
Can be built from Sieve completion operations

Completion of operator gives assembled matrix
Completion of output gives matrix-free application

VecScatter should be generalized to an Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 84 / 214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
Don’t specify our algorithms at the FLAME level

Without a PME, cannot move between variants automatically
Can be built from Sieve completion operations

Completion of operator gives assembled matrix
Completion of output gives matrix-free application

VecScatter should be generalized to an Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 84 / 214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
Don’t specify our algorithms at the FLAME level

Without a PME, cannot move between variants automatically
Can be built from Sieve completion operations

Completion of operator gives assembled matrix
Completion of output gives matrix-free application

VecScatter should be generalized to an Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 84 / 214

Optimization and the Sieve Programming Model Automation

Sparse Linear Algebra

Sparse linear algebra has a single kernel (SpMV):
Don’t specify our algorithms at the FLAME level

Without a PME, cannot move between variants automatically
Can be built from Sieve completion operations

Completion of operator gives assembled matrix
Completion of output gives matrix-free application

VecScatter should be generalized to an Overlap

M. Knepley (ANL,TTU) Theory Simula ’08 84 / 214

Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:
1 Memory layout controls performance (Goto)

Must be able to switch layouts for different algorithmic variants
Bad LAPACK interface truncates ATLAS search space

Example: GEPP kernel for DGEMM
2 Must understand data dependencies

OpenMP cannot express this
Can be encapsulated in a DAG

SuperMatrix
Sieve

Enables variants switching (loop fusion)

M. Knepley (ANL,TTU) Theory Simula ’08 85 / 214

Optimization and the Sieve Programming Model Automation

Performance Insights

There are two key insights for automatic performance tuning:
1 Memory layout controls performance (Goto)

Must be able to switch layouts for different algorithmic variants
Bad LAPACK interface truncates ATLAS search space

Example: GEPP kernel for DGEMM
2 Must understand data dependencies

OpenMP cannot express this
Can be encapsulated in a DAG

SuperMatrix
Sieve

Enables variants switching (loop fusion)

M. Knepley (ANL,TTU) Theory Simula ’08 85 / 214

Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
Hierarchy

Reduces complexity and enables code reuse with
common components (sieve)
operations (completion)

Separates global and local concerns
Maps well to multiresolution algorithms

Dependency
Allows tranformation between different algorithmic variants
Applies at many levels

algorithm selection
serial scheduling
parallel coordination

Key advance over Map-Reduce paradigm

M. Knepley (ANL,TTU) Theory Simula ’08 86 / 214

Optimization and the Sieve Programming Model Automation

Sieve and Overlap

Sieve and Overlap can structure computation by expression of
Hierarchy

Reduces complexity and enables code reuse with
common components (sieve)
operations (completion)

Separates global and local concerns
Maps well to multiresolution algorithms

Dependency
Allows tranformation between different algorithmic variants
Applies at many levels

algorithm selection
serial scheduling
parallel coordination

Key advance over Map-Reduce paradigm

M. Knepley (ANL,TTU) Theory Simula ’08 86 / 214

Optimization and the Sieve Programming Model Parallelism

Outline

11 Optimization and the Sieve Programming Model
Automation
Parallelism
Completion
Interval Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 87 / 214

Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)

M. Knepley (ANL,TTU) Theory Simula ’08 88 / 214

Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)

M. Knepley (ANL,TTU) Theory Simula ’08 88 / 214

Optimization and the Sieve Programming Model Parallelism

MPICH-G2

Early Attempt at Hierarchy

Communicator hierarchy, topology depth

Only exposed to the user through Comm attributes
Still have to support flat model

Hierarchy information is buried too deep
Only really accessible in the implementation (collectives)

M. Knepley (ANL,TTU) Theory Simula ’08 88 / 214

Optimization and the Sieve Programming Model Parallelism

Hierarchy in MPI

MPI communicator should be imbued with hierarchy:
Single relation is easy to add

Could be implemented using attributes
Can easily code hierarchical algorithms

FMM, MG, . . .
Can express data dependencies

Communicator could represent a thread group
Scheduling could be done inside MPI interface (SuperMatrix)

Enables large and small scale parallelism
Domain decomposition
Master-slave

Could be proposed in MPI-3

M. Knepley (ANL,TTU) Theory Simula ’08 89 / 214

Optimization and the Sieve Programming Model Completion

Outline

11 Optimization and the Sieve Programming Model
Automation
Parallelism
Completion
Interval Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 90 / 214

Optimization and the Sieve Programming Model Completion

Completion Optimization

A Section with unchanged structure need not recomplete its Atlas
The Overlap could store the packing information and buffers

A VecScatter could be created between buffers

For simple fusers, the Overlap maps directly to section storage
A VecScatter could be created between the arrays

M. Knepley (ANL,TTU) Theory Simula ’08 91 / 214

Optimization and the Sieve Programming Model Interval Sieves

Outline

11 Optimization and the Sieve Programming Model
Automation
Parallelism
Completion
Interval Sieves

M. Knepley (ANL,TTU) Theory Simula ’08 92 / 214

Optimization and the Sieve Programming Model Interval Sieves

Interval Sieves and Sections

We can demand that our chart be an interval:
Membership is O(1)

cone() is O(1)

restrict() is O(1)

Formerly, all point queries were O(log n)

Moreover, no storage is needed for a search structure:
STL sets require 20 bytes/int

We can always achieve this in a static setting with local renumbering

M. Knepley (ANL,TTU) Theory Simula ’08 93 / 214

Optimization and the Sieve Programming Model Interval Sieves

ISieve

ISieve

Separate AIJ structures for cones and supports
Also store AIJ orientations
Must call allocate() before setting cones
Some support for dynamic insertion
Cones and supports unconnected

Use symmetrize() to automate arrow reversal

Has converter from standard Sieve

Visitors for all traversals

M. Knepley (ANL,TTU) Theory Simula ’08 94 / 214

Optimization and the Sieve Programming Model Interval Sieves

ISection

ISection

AIJ structure for values
Same allocate() call before setting values
Some support for dynamic insertion
Completion must still send chart explicitly

Can amortize across similar completions

M. Knepley (ANL,TTU) Theory Simula ’08 95 / 214

Finite Elements

Outline

8 Interfaces

9 Mapping

10 Completion

11 Optimization and the Sieve Programming Model

12 Finite Elements

13 Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula ’08 96 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
coords = mesh->restrict(coordinates, c);
v0, J, invJ, detJ = computeGeometry(coords);
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
inputVec = mesh->restrict(U, c);
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
realCoords = J*refCoords[q] + v0;
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
elemVec[f] += basis[q,f]*rhsFunc(realCoords);
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
for(d = 0; d < dim; ++d)
for(e) testDerReal[d] += invJ[e,d]*basisDer[q,f,e];

for(g = 0; g < numBasisFuncs; ++g) {
for(d = 0; d < dim; ++d)
for(e) basisDerReal[d] += invJ[e,d]*basisDer[q,g,e]
elemMat[f,g] += testDerReal[d]*basisDerReal[d]

elemVec[f] += elemMat[f,g]*inputVec[g];
}
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
elemVec[f] += basis[q,f]*lambda*exp(inputVec[f]);
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
mesh->updateAdd(F, c, elemVec);

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
<Aggregate updates>

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Finite Elements

Integration

cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
<Compute cell geometry>
<Retrieve values from input vector>
for(q = 0; q < numQuadPoints; ++q) {
<Transform coordinates>
for(f = 0; f < numBasisFuncs; ++f) {
<Constant term>
<Linear term>
<Nonlinear term>
elemVec[f] *= weight[q]*detJ;

}
}
<Update output vector>

}
Distribution<Mesh>::completeSection(mesh, F);

M. Knepley (ANL,TTU) Theory Simula ’08 97 / 214

Boundary Conditions

Outline

8 Interfaces

9 Mapping

10 Completion

11 Optimization and the Sieve Programming Model

12 Finite Elements

13 Boundary Conditions

M. Knepley (ANL,TTU) Theory Simula ’08 98 / 214

Boundary Conditions

Boundary Conditions

Dirichlet conditions may be expressed as

u|Γ = g

and implemented by constraints on dofs in a Section
The user provides a function.

Neumann conditions may be expressed as

∇u · n̂|Γ = h

and implemented by explicit integration along the boundary
The user provides a weak form.

M. Knepley (ANL,TTU) Theory Simula ’08 99 / 214

Boundary Conditions

Dual Basis Application

We would like the action of a dual basis vector (functional)

< Ni , f >=

∫
ref

Ni(x)f (x)dV

Projection onto P
Code is generated from FIAT specification

Python code generation package inside PETSc

Common interface for all elements

M. Knepley (ANL,TTU) Theory Simula ’08 100 / 214

Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
unknowns in the interior (I)
unknowns on the boundary (Γ)

so that we obtain (
AII AIΓ
AΓI AΓΓ

)(
uI
uΓ

)
=

(
fI
fΓ

)
However uΓ is known, so we may reduce this to

AIIuI = fI − AIΓuΓ

We will show that our scheme automatically constructs this extra term.

M. Knepley (ANL,TTU) Theory Simula ’08 101 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:47 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyI.svg

5 1 73u

f 5 0 00

M. Knepley (ANL,TTU) Theory Simula ’08 102 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:48 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyII.svg

5 1 73u

f 5 0 00

Restrict

5

1

3

M. Knepley (ANL,TTU) Theory Simula ’08 102 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly 7/17/15, 9:48 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyIII.svg

5 1 73u

f 5 0 00

Compute

=
0.5 -0.5

-0.5 -0.5

-0.50.5

0.0

0.0

1.0

5

1

3

1

-1

0
M. Knepley (ANL,TTU) Theory Simula ’08 102 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:49 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyIV.svg

5 1 73u

f 5 0 00

Compute

=
5

1

3

1

-1

0 } This piece containsrhs interior values
ΓΓA

AIIAIΓ

AΓI

M. Knepley (ANL,TTU) Theory Simula ’08 102 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly 7/17/15, 9:49 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyV.svg

5 1 73u

f 5 -1 00

Update

1

-1

0
M. Knepley (ANL,TTU) Theory Simula ’08 102 / 214

Boundary Conditions

Dirichlet Values

Topological boundary is marked during generation
Cells bordering boundary are marked using
markBoundaryCells()

To set values:
1 Loop over boundary cells
2 Loop over the element closure
3 For each boundary point i , apply the functional Ni to the function g

The functionals are generated with the quadrature information
Section allocation applies Dirichlet conditions automatically

Values are stored in the Section
restrict() behaves normally, update() ignores constraints

M. Knepley (ANL,TTU) Theory Simula ’08 103 / 214

Boundary Conditions

Complex BC

We may want to constrain a dof not in the global basis:
7/17/15, 10:06 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/normalFlowCondition.svg

n

u 1

u 2

u3

v 1

v3

v 2

For instance, no flow normal to a boundary

n̂ · v = 0

when the global basis follows the coordinate directions.

M. Knepley (ANL,TTU) Theory Simula ’08 104 / 214

Boundary Conditions

Complex BC

In order to constrain the value we
rotate the storage coordinates to the n − τ frame
project out the normal coordinate (freeze the value)

This rotation is also needed for restriction
and any action accessing section storage

In general, we need
a transformation to BC coordinates
a projection onto free variables (trivial)

Transformation might involve all element variables
which would be an action on the closure

M. Knepley (ANL,TTU) Theory Simula ’08 105 / 214

Part IV

Local Computation: Theory

M. Knepley (ANL,TTU) Theory Simula ’08 106 / 214

FIAT

Outline

14 FIAT

15 Models of Local Computation

16 Dof Kinds

17 Boundary Conditions

18 Weak Form Languages

M. Knepley (ANL,TTU) Theory Simula ’08 107 / 214

Models of Local Computation

Outline

14 FIAT

15 Models of Local Computation

16 Dof Kinds

17 Boundary Conditions

18 Weak Form Languages

M. Knepley (ANL,TTU) Theory Simula ’08 108 / 214

Models of Local Computation

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇φi(x) · ∇φj(x)dx (1)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dx (2)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dx (3)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂φi (ξ)
∂ξβ

∂φj (ξ)
∂ξγ

dx (4)

= Gβγ(T)K ij
βγ (5)

Coefficients are also put into the geometric part.

M. Knepley (ANL,TTU) Theory Simula ’08 109 / 214

Models of Local Computation

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T φi(x) ·

(
φk (x)∇φj(x)

)
dA (6)

=
∫
T φ

β
i (x)

(
φαk (x)

∂φβj (x)

∂xα

)
dA (7)

=
∫
Tref
φβi (ξ)φαk (ξ)

∂ξγ
∂xα

∂φβj (ξ)

∂ξγ
|J|dA (8)

=
∂ξγ
∂xα |J|

∫
Tref
φβi (ξ)φαk (ξ)

∂φβj (ξ)

∂ξγ
dA (9)

= Gαγ(T)K ijk
αγ (10)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (ANL,TTU) Theory Simula ’08 110 / 214

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

Models of Local Computation

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇φi(x) · ∇φj(x)dA (11)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dA (12)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dA (13)

= |J|
∫
Tref
φkJβαk

∂φi (ξ)
∂ξβ

φlJ
γα
l

∂φj (ξ)
∂ξγ

dA (14)

= Jβαk Jγαl |J|
∫
Tref
φk

∂φi (ξ)
∂ξβ

φl
∂φj (ξ)
∂ξγ

dA (15)

= Gβγ
kl (T)K ijkl

βγ (16)

A different space could also be used for Jacobians

M. Knepley (ANL,TTU) Theory Simula ’08 111 / 214

Dof Kinds

Outline

14 FIAT

15 Models of Local Computation

16 Dof Kinds

17 Boundary Conditions

18 Weak Form Languages

M. Knepley (ANL,TTU) Theory Simula ’08 112 / 214

Boundary Conditions

Outline

14 FIAT

15 Models of Local Computation

16 Dof Kinds

17 Boundary Conditions

18 Weak Form Languages

M. Knepley (ANL,TTU) Theory Simula ’08 113 / 214

Boundary Conditions

Assembly with Dirichlet Conditions

The original equation may be partitioned into
unknowns in the interior (I)
unknowns on the boundary (Γ)

so that we obtain (
AII AIΓ
AΓI AΓΓ

)(
uI
uΓ

)
=

(
fI
fΓ

)
However uΓ is known, so we may reduce this to

AIIuI = fI − AIΓuΓ

We will show that our scheme automatically constructs this extra term.

M. Knepley (ANL,TTU) Theory Simula ’08 114 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:47 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyI.svg

5 1 73u

f 5 0 00

M. Knepley (ANL,TTU) Theory Simula ’08 115 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:48 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyII.svg

5 1 73u

f 5 0 00

Restrict

5

1

3

M. Knepley (ANL,TTU) Theory Simula ’08 115 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly 7/17/15, 9:48 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyIII.svg

5 1 73u

f 5 0 00

Compute

=
0.5 -0.5

-0.5 -0.5

-0.50.5

0.0

0.0

1.0

5

1

3

1

-1

0
M. Knepley (ANL,TTU) Theory Simula ’08 115 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly

7/17/15, 9:49 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyIV.svg

5 1 73u

f 5 0 00

Compute

=
5

1

3

1

-1

0 } This piece containsrhs interior values
ΓΓA

AIIAIΓ

AΓI

M. Knepley (ANL,TTU) Theory Simula ’08 115 / 214

Boundary Conditions

Assembly with Dirichlet Conditions
Residual Assembly 7/17/15, 9:49 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/dirichletAssemblyV.svg

5 1 73u

f 5 -1 00

Update

1

-1

0
M. Knepley (ANL,TTU) Theory Simula ’08 115 / 214

Boundary Conditions

Dirichlet Values

Topological boundary is marked during generation
Cells bordering boundary are marked using
markBoundaryCells()

To set values:
1 Loop over boundary cells
2 Loop over the element closure
3 For each boundary point i , apply the functional Ni to the function g

The functionals are generated with the quadrature information
Section allocation applies Dirichlet conditions automatically

Values are stored in the Section
restrict() behaves normally, update() ignores constraints

M. Knepley (ANL,TTU) Theory Simula ’08 116 / 214

Boundary Conditions

Complex BC

We may want to constrain a dof not in the global basis:
7/17/15, 10:06 AM

Page 1 of 1file:///PETSc3/presentations-git/figures/FEM/normalFlowCondition.svg

n

u 1

u 2

u3

v 1

v3

v 2

For instance, no flow normal to a boundary

n̂ · v = 0

when the global basis follows the coordinate directions.

M. Knepley (ANL,TTU) Theory Simula ’08 117 / 214

Boundary Conditions

Complex BC

In order to constrain the value we
rotate the storage coordinates to the n − τ frame
project out the normal coordinate (freeze the value)

This rotation is also needed for restriction
and any action accessing section storage

In general, we need
a transformation to BC coordinates
a projection onto free variables (trivial)

Transformation might involve all element variables
which would be an action on the closure

M. Knepley (ANL,TTU) Theory Simula ’08 118 / 214

Weak Form Languages

Outline

14 FIAT

15 Models of Local Computation

16 Dof Kinds

17 Boundary Conditions

18 Weak Form Languages

M. Knepley (ANL,TTU) Theory Simula ’08 119 / 214

Weak Form Languages

FFC

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

a((τ,w), (σ, u)) = L((τ,w)) ∀(τ,w) ∈ V

where

a((τ,w), (σ, u)) =

∫
Ω
τσ −∇ · τu + w∇ · u dx

L((τ,w)) =

∫
Ω

wf dx

M. Knepley (ANL,TTU) Theory Simula ’08 120 / 214

Weak Form Languages

FFC
Mixed Poisson

shape = " t r i a n g l e "

BDM1 = Fin i teE lement (" Brezzi−Douglas−Mar in i " , shape , 1)
DG0 = Fin i teE lement (" Discont inuous Lagrange " , shape , 0)

element = BDM1 + DG0
(tau , w) = TestFunct ions (element)
(sigma , u) = T r i a l F u n c t i o n s (element)

a = (dot (tau , sigma) − d iv (tau) * u + w* d iv (sigma)) * dx

f = Funct ion (DG0)
L = w* f * dx

M. Knepley (ANL,TTU) Theory Simula ’08 121 / 214

Weak Form Languages

FFC

Here is a discontinuous Galerkin formulation of the Poisson equation:

a(v ,u) = L(v) ∀v ∈ V

where

a(v ,u) =

∫
Ω
∇u · ∇v dx

+
∑

S

∫
S
− < ∇v > ·[[u]]n − [[v]]n· < ∇u > −(α/h)vu dS

+

∫
∂Ω
−∇v · [[u]]n − [[v]]n · ∇u − (γ/h)vu ds

L(v) =

∫
Ω

vf dx

M. Knepley (ANL,TTU) Theory Simula ’08 122 / 214

Weak Form Languages

FFC
DG Poisson

DG1 = Fin i teE lement (" Discont inuous Lagrange " , shape , 1)
v = TestFunct ions (DG1)
u = T r i a l F u n c t i o n s (DG1)
f = Funct ion (DG1)
g = Funct ion (DG1)
n = FacetNormal (" t r i a n g l e ")
h = MeshSize (" t r i a n g l e ")
a = dot (grad (v) , grad (u)) * dx
− dot (avg (grad (v)) , jump (u , n)) * dS
− dot (jump (v , n) , avg (grad (u))) * dS
+ alpha / h* dot (jump (v , n) + jump (u , n)) * dS
− dot (grad (v) , jump (u , n)) * ds
− dot (jump (v , n) , grad (u)) * ds
+ gamma/ h* v *u* ds

L = v * f * dx + v *g* ds

M. Knepley (ANL,TTU) Theory Simula ’08 123 / 214

Part V

Local Computation: Implementation

M. Knepley (ANL,TTU) Theory Simula ’08 124 / 214

Serial Performance

Outline

19 Serial Performance

20 FIAT

21 FErari

22 Scheduling and Asynchronous Computation

M. Knepley (ANL,TTU) Theory Simula ’08 125 / 214

Serial Performance

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

M. Knepley (ANL,TTU) Theory Simula ’08 126 / 214

http://www.cs.virginia.edu/stream/

Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (17)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (18)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

M. Knepley (ANL,TTU) Theory Simula ’08 127 / 214

http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf

Serial Performance

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (19)

which is a dismal 8.8% of peak.

Can improve performance by
Blocking
Multiple vectors

but operation issue limitations take over.

M. Knepley (ANL,TTU) Theory Simula ’08 128 / 214

Serial Performance

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (19)

which is a dismal 8.8% of peak.

Better approaches:
Unassembled operator application (Spectral elements, FMM)

N data, N2 computation
Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

N data, Nk computation

M. Knepley (ANL,TTU) Theory Simula ’08 128 / 214

Serial Performance

Performance Tradeoffs

We must balance storage, bandwidth, and cycles

Assembled Operator Action
Trades cycles and storage for bandwidth in application

Unassembled Operator Action
Trades bandwidth and storage for cycles in application
For high orders, storage is impossible
Can make use of FErari decomposition to save calculation
Could storage element matrices to save cycles

Partial assembly gives even finer control over tradeoffs
Also allows introduction of parallel costs (load balance, . . .)

M. Knepley (ANL,TTU) Theory Simula ’08 129 / 214

FIAT

Outline

19 Serial Performance

20 FIAT
Implementation
Optimization

21 FErari

22 Scheduling and Asynchronous Computation

M. Knepley (ANL,TTU) Theory Simula ’08 130 / 214

FIAT

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project

M. Knepley (ANL,TTU) Theory Simula ’08 131 / 214

http://fenicsproject.org/about/components.html

FIAT

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands
Reference element shapes (line, triangle, tetrahedron)
Quadrature rules
Polynomial spaces
Functionals over polynomials (dual spaces)
Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K ,P,P ′)

FIAT is part of the FEniCS project

M. Knepley (ANL,TTU) Theory Simula ’08 131 / 214

http://fenicsproject.org/about/components.html

FIAT

FIAT Integration

The quadrature.fiat file contains:
An element (usually a family and degree) defined by FIAT
A quadrature rule

It is run
automatically by make, or
independently by the user

It can take arguments
-element_family and -element_order, or
make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:
Quadrature points and weights
Basis function and derivative evaluations at the quadrature points
Integration against dual basis functions over the cell
Local dofs for Section allocation

M. Knepley (ANL,TTU) Theory Simula ’08 132 / 214

FIAT Implementation

Outline

20 FIAT
Implementation
Optimization

M. Knepley (ANL,TTU) Theory Simula ’08 133 / 214

FIAT Optimization

Outline

20 FIAT
Implementation
Optimization

M. Knepley (ANL,TTU) Theory Simula ’08 134 / 214

FErari

Outline

19 Serial Performance

20 FIAT

21 FErari
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

22 Scheduling and Asynchronous Computation

M. Knepley (ANL,TTU) Theory Simula ’08 135 / 214

FErari

FErari

Finite Element rearragement to automaically reduce instructions

Open source implementation http://www.fenics.org/wiki/FErari
Build tensor blocks K ij

m,m′ as vectors using FIAT

Discover dependencies
Represented as a DAG
Can also use hypergraph model

Use minimal spanning tree to construct computation

M. Knepley (ANL,TTU) Theory Simula ’08 136 / 214

http://www.fenics.org/wiki/FErari
http://www.fenics.org/wiki/FIAT

FErari Problem Statement

Outline

21 FErari
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

M. Knepley (ANL,TTU) Theory Simula ’08 137 / 214

FErari Problem Statement

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇φi(x) · ∇φj(x)dx (20)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dx (21)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dx (22)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂φi (ξ)
∂ξβ

∂φj (ξ)
∂ξγ

dx (23)

= Gβγ(T)K ij
βγ (24)

Coefficients are also put into the geometric part.

M. Knepley (ANL,TTU) Theory Simula ’08 138 / 214

FErari Problem Statement

Form Decomposition

Additional fields give rise to multilinear forms.

∫
T φi(x) ·

(
φk (x)∇φj(x)

)
dA (25)

=
∫
T φ

β
i (x)

(
φαk (x)

∂φβj (x)

∂xα

)
dA (26)

=
∫
Tref
φβi (ξ)φαk (ξ)

∂ξγ
∂xα

∂φβj (ξ)

∂ξγ
|J|dA (27)

=
∂ξγ
∂xα |J|

∫
Tref
φβi (ξ)φαk (ξ)

∂φβj (ξ)

∂ξγ
dA (28)

= Gαγ(T)K ijk
αγ (29)

The index calculus is fully developed by Kirby and Logg in
A Compiler for Variational Forms.

M. Knepley (ANL,TTU) Theory Simula ’08 139 / 214

http://www.fenics.org/pub/documents/ffc/papers/ffc-toms-2005.pdf

FErari Problem Statement

Form Decomposition

Isoparametric Jacobians also give rise to multilinear forms

∫
T ∇φi(x) · ∇φj(x)dA (30)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dA (31)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dA (32)

= |J|
∫
Tref
φkJβαk

∂φi (ξ)
∂ξβ

φlJ
γα
l

∂φj (ξ)
∂ξγ

dA (33)

= Jβαk Jγαl |J|
∫
Tref
φk

∂φi (ξ)
∂ξβ

φl
∂φj (ξ)
∂ξγ

dA (34)

= Gβγ
kl (T)K ijkl

βγ (35)

A different space could also be used for Jacobians

M. Knepley (ANL,TTU) Theory Simula ’08 140 / 214

FErari Problem Statement

Element Matrix Formation

Element matrix K is now made up of small tensors
Contract all tensor elements with each the geometry tensor G(T)

3 0
0 0

0 -1
0 0

1 1
0 0

-4 -4
0 0

0 4
0 0

0 0
0 0

0 0
-1 0

0 0
0 3

0 0
1 1

0 0
0 0

0 0
4 0

0 0
-4 -4

1 0
1 0

0 1
0 1

3 3
3 3

-4 0
-4 0

0 0
0 0

0 -4
0 -4

-4 0
-4 0

0 0
0 0

-4 -4
0 0

8 4
4 8

0 -4
-4 -8

0 4
4 0

0 0
4 0

0 4
0 0

0 0
0 0

0 -4
-4 -8

8 4
4 8

-8 -4
-4 0

0 0
0 0

0 -4
0 -4

0 0
-4 -4

0 4
4 0

-8 -4
-4 0

8 4
4 8

M. Knepley (ANL,TTU) Theory Simula ’08 141 / 214

FErari Problem Statement

Element Matrix Computation

Element matrix K can be precomputed
FFC
SyFi

Can be extended to nonlinearities and curved geometry

Many redundancies among tensor elements of K
Could try to optimize the tensor contraction. . .

M. Knepley (ANL,TTU) Theory Simula ’08 142 / 214

http://www.fenics.org/wiki/SyFi
http://www.fenics.org/wiki/FFC

FErari Problem Statement

Abstract Problem

Given vectors vi ∈ Rm, minimize flops(vT g) for arbitrary g ∈ Rm

The set vi is not at all random

Not a traditional compiler optimization

How to formulate as an optimization problem?

M. Knepley (ANL,TTU) Theory Simula ’08 143 / 214

FErari Plan of Attack

Outline

21 FErari
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

M. Knepley (ANL,TTU) Theory Simula ’08 144 / 214

FErari Plan of Attack

Complexity Reducing Relations

If vT
i g is known, is flops(vT

j g) < 2m − 1?

We can use binary relations among the vectors:
Equality

If vj = vi , then flops(vT
j g) = 0

Colinearity
If vj = αvi , then flops(vT

j g) = 1

Hamming distance
If distH(vj , vi) = k , then flops(vT

j g) = 2k

M. Knepley (ANL,TTU) Theory Simula ’08 145 / 214

FErari Plan of Attack

Algorithm for Binary Relations

Construct a weighted graph on vi
The weight w(i , j) is flops(vT

j g) given vT
i g

With the above relations, the graph is symmetric

Find a minimum spanning tree
Use Prim or Kruskal for worst case O(n2 log n)

Traverse the MST, using the appropriate calculation for each edge
Roots require a full dot product

M. Knepley (ANL,TTU) Theory Simula ’08 146 / 214

FErari Plan of Attack

Coplanarity

Ternary relation
If vk = αvi + βvj , then flops(vT

k g) = 3
Does not fit our undirected graph paradigm

SVD for vector triples is expensive
Use a randomized projection into a few R3s

Use a hypergraph?
MST algorithm available

Appeal to geometry?
Incidence structures

M. Knepley (ANL,TTU) Theory Simula ’08 147 / 214

FErari Results

Outline

21 FErari
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

M. Knepley (ANL,TTU) Theory Simula ’08 148 / 214

FErari Results

Preliminary Results

Order Entries Base MAPs FErari MAPs
1 6 24 7
2 21 84 15
3 55 220 45
4 120 480 176
5 231 924 443
6 406 1624 867

M. Knepley (ANL,TTU) Theory Simula ’08 149 / 214

FErari Mixed Integer Linear Programming

Outline

21 FErari
Problem Statement
Plan of Attack
Results
Mixed Integer Linear Programming

M. Knepley (ANL,TTU) Theory Simula ’08 150 / 214

FErari Mixed Integer Linear Programming

Modeling the Problem

Objective is cost of dot products (tensor contractions in FEM)
Set of vectors V with a given arbitrary vector g

The original MINLP has a nonconvex, nonlinear objective

Reformulate to obtain a MILP using auxiliary binary variables

M. Knepley (ANL,TTU) Theory Simula ’08 151 / 214

FErari Mixed Integer Linear Programming

Modeling the Problem

Variables

αij = Basis expansion coefficients
yi = Binary variable indicating membership in the basis
sij = Binary variable indicating nonzero coefficient αij

zij = Binary variable linearizes the objective function (equivalent to yiyj)
U = Upper bound on coefficients

Constraints

Eq. (36b) : Basis expansion
Eq. (36c) : Exclude nonbasis vector from the expansion
Eq. (36d) : Remove offdiagonal coefficients for basis vectors

Eq. (7c) : Exclude vanishing coefficients from cost

M. Knepley (ANL,TTU) Theory Simula ’08 151 / 214

FErari Mixed Integer Linear Programming

Original Formulation

MINLP Model

minimize
n∑

i=1

yi(2m − 1) + (1− yi)

2
n∑

j=1,j 6=i

yj − 1

 (36a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(36b)

− Uyj ≤ αij ≤ Uyj i , j = 1, . . . ,n
(36c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(36d)

yi ∈ {0,1} i = 1, . . . ,n.
(36e)

M. Knepley (ANL,TTU) Theory Simula ’08 152 / 214

FErari Mixed Integer Linear Programming

Original Formulation

Equivalent MILP Model: zij = yi · yj

minimize 2m
n∑

i=1

yi + 2
n∑

i=1

n∑
j=1,j 6=i

(yj − zij)− n (36a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(36b)

− Uyj ≤ αij ≤ Uyj i , j = 1, . . . ,n
(36c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(36d)

zij ≤ yi , zij ≤ yj , zij ≥ yi + yj − 1, i , j = 1, . . . ,n
(36e)

yi ∈ {0,1}, zij ∈ {0,1} i , j = 1, . . . ,n.
(36f)M. Knepley (ANL,TTU) Theory Simula ’08 152 / 214

FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

Take advantage of sparsity of αij coefficient

Introduce binary variables sij to model existence of αij

Add constraints −Usij ≤ αij ≤ Usij

M. Knepley (ANL,TTU) Theory Simula ’08 153 / 214

FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

MINLP Model

minimize
n∑

i=1

yi(2m − 1) + (1− yi)

2
n∑

j=1,j 6=i

sij − 1

 (37a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(37b)

− Usij ≤ αij ≤ Usij i , j = 1, . . . ,n
(37c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(37d)

sij ≤ yj i , j = 1, . . . ,n
(37e)

yi ∈ {0,1}, sij ∈ {0,1} i , j = 1, . . . ,n.
(37f)M. Knepley (ANL,TTU) Theory Simula ’08 153 / 214

FErari Mixed Integer Linear Programming

Sparse Coefficient Formulation

Equivalent MILP Model

minimize 2m
n∑

i=1

yi + 2
n∑

i=1

n∑
j=1,j 6=i

(sij − zij)− n (37a)

subject to vi =
n∑

j=1

αijvj i = 1, . . . ,n

(37b)

− Usij ≤ αij ≤ Usij i , j = 1, . . . ,n
(37c)

− U(1− yi) ≤ αij ≤ U(1− yi) i , j = 1, . . . ,n, i 6= j
(37d)

zij ≤ yi , zij ≤ sij , zij ≥ yi + sij − 1, i , j = 1, . . . ,n
(37e)

yi ∈ {0,1}, zij ∈ {0,1}, sij ∈ {0,1} i , j = 1, . . . ,n.
(37f)

Including Sparsity of vi -Vectors

minimize 2
n∑

i=1

nnz(vi)yi + 2
n∑

i=1

n∑
j=1,j 6=i

(sij − zij)− n

where nnz(vi) is number of nonzeros in vi

M. Knepley (ANL,TTU) Theory Simula ’08 153 / 214

FErari Mixed Integer Linear Programming

Results

Initial Formulation

Initial formulation only had sparsity in the αij

MINTO was not able to produce some optimal solutions
Report results after 36000 seconds

Default MILP Sparse Coef. MILP
Element Flops Flops LPs CPU Flops LPs CPU
P1 2D 42 42 33 0.10 34 187 0.43
P2 2D 147 147 2577 37.12 67 6030501 36000
P1 3D 170 166 79 0.49 146 727 3.97
P2 3D 935 935 25283 36000 829 33200 36000

M. Knepley (ANL,TTU) Theory Simula ’08 154 / 214

FErari Mixed Integer Linear Programming

Results

Formulation with Sparse Basis
We can also take account of the sparsity in the basis vectors
Count only the flops for nonzero entries

Significantly decreases the flop count

Sparse Coefficient Sparse Basis
Elements Flops Flops
P1 2D 34 12
P1 3D 146 26

M. Knepley (ANL,TTU) Theory Simula ’08 154 / 214

Scheduling and Asynchronous Computation

Outline

19 Serial Performance

20 FIAT

21 FErari

22 Scheduling and Asynchronous Computation

M. Knepley (ANL,TTU) Theory Simula ’08 155 / 214

Part VI

Fast Methods

M. Knepley (ANL,TTU) Theory Simula ’08 156 / 214

The Fast Multipole Method

Outline

23 The Fast Multipole Method
Spatial Decomposition
Data Decomposition
Serial Implementation
Parallel Spatial Decomposition
Parallel Performance

24 Multigrid

M. Knepley (ANL,TTU) Theory Simula ’08 157 / 214

The Fast Multipole Method Spatial Decomposition

Outline

23 The Fast Multipole Method
Spatial Decomposition
Data Decomposition
Serial Implementation
Parallel Spatial Decomposition
Parallel Performance

M. Knepley (ANL,TTU) Theory Simula ’08 158 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (ANL,TTU) Theory Simula ’08 159 / 214

The Fast Multipole Method Spatial Decomposition

Quadtree Implementation

We use binary scheme to label cells (or vertices)

Relevant relations can be determined implicitly
cone()
neighbors
parent
interaction list

When vertices are not used, we can directly connect cells
cone() becomes neighbor method

M. Knepley (ANL,TTU) Theory Simula ’08 160 / 214

The Fast Multipole Method Spatial Decomposition

Tree Interface

locateBlob(blob)
Locate point in the tree

fillNeighbors()
Compute the neighbor section

findInteractionList()
Compute the interaction list cell section, allocate value section

fillInteractionList(level)
Compute the interaction list value section

fill(blobs)
Compute the blob section

dump()
Produces a verifiable repesentation of the tree

M. Knepley (ANL,TTU) Theory Simula ’08 161 / 214

The Fast Multipole Method Data Decomposition

Outline

23 The Fast Multipole Method
Spatial Decomposition
Data Decomposition
Serial Implementation
Parallel Spatial Decomposition
Parallel Performance

M. Knepley (ANL,TTU) Theory Simula ’08 162 / 214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (ANL,TTU) Theory Simula ’08 163 / 214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (ANL,TTU) Theory Simula ’08 163 / 214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (ANL,TTU) Theory Simula ’08 163 / 214

The Fast Multipole Method Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (ANL,TTU) Theory Simula ’08 163 / 214

The Fast Multipole Method Serial Implementation

Outline

23 The Fast Multipole Method
Spatial Decomposition
Data Decomposition
Serial Implementation
Parallel Spatial Decomposition
Parallel Performance

M. Knepley (ANL,TTU) Theory Simula ’08 164 / 214

The Fast Multipole Method Serial Implementation

Evaluator Interface

initializeExpansions(tree, blobInfo)
Generate multipole expansions on the lowest level
Requires loop over cells
O(p)

upwardSweep(tree)
Translate multipole expansions to intermediate levels
Requires loop over cells and children (support)
O(p2)

downwardSweep(tree)
Convert multipole to local expansions and translate local
expansions on intermediate levels
Requires loop over cells and parent (cone)
O(p2)

M. Knepley (ANL,TTU) Theory Simula ’08 165 / 214

The Fast Multipole Method Serial Implementation

Evaluator Interface

evaluateBlobs(tree, blobInfo)
Evaluate direct and local field interactions on lowest level
Requires loop over cells and neighbors (in section)
O(p2)

evaluate(tree, blobs, blobInfo)
Calculate the complete interaction (multipole + direct)

M. Knepley (ANL,TTU) Theory Simula ’08 166 / 214

The Fast Multipole Method Serial Implementation

Kernel Interface

Method Description
P2M(t) Multipole expansion coefficients
L2P(t) Local expansion coefficients
M2M(t) Multipole-to-multipole translation
M2L(t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate(blobs) Direct interaction

Evaluator is templated over Kernel
There are alternative kernel-independent methods

kifmm3d

M. Knepley (ANL,TTU) Theory Simula ’08 167 / 214

http://www.mrl.nyu.edu/~harper/kifmm3d

The Fast Multipole Method Parallel Spatial Decomposition

Outline

23 The Fast Multipole Method
Spatial Decomposition
Data Decomposition
Serial Implementation
Parallel Spatial Decomposition
Parallel Performance

M. Knepley (ANL,TTU) Theory Simula ’08 168 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation

Divide tree into a root and local trees

Distribute local trees among processes

Provide communication pattern for local sections (overlap)
Both neighbor and interaction list overlaps

Sieve generates MPI from high level description

M. Knepley (ANL,TTU) Theory Simula ’08 169 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
How should we distribute trees?

Multiple local trees per process allows good load balance
Partition weighted graph

Minimize load imbalance and communication

Computation estimate:
Leaf Nip (P2M) + nIp2 (M2L) + Nip (L2P) + 3d N2

i (P2P)
Interior ncp2 (M2M) + nIp2 (M2L) + ncp2 (L2L)

Communication estimate:
Diagonal nc(L − k − 1)

Lateral 2d 2m(L−k−1)−1
2m−1 for incidence dimesion m

Leverage existing work on graph partitioning
ParMetis

M. Knepley (ANL,TTU) Theory Simula ’08 170 / 214

http://www.cs.umn.edu/parmetis

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

Good partitions exist for non-uniform distributions
2D O

(√
n(log n)3/2

)
edgecut

3D O
(
n2/3(log n)4/3

)
edgecut

As scalable as regular grids

As efficient as uniform distributions

ParMetis will find a nearly optimal partition

M. Knepley (ANL,TTU) Theory Simula ’08 171 / 214

http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

Good partitions exist for non-uniform distributions
2D Ci = 1.24iC0 for random matching
3D Ci = 1.21iC0?? for random matching

3D proof needs assurance that averge degree does not increase

Efficient in practice

M. Knepley (ANL,TTU) Theory Simula ’08 172 / 214

http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

M. Knepley (ANL,TTU) Theory Simula ’08 173 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

M. Knepley (ANL,TTU) Theory Simula ’08 173 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

M. Knepley (ANL,TTU) Theory Simula ’08 173 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Tree Interface

fillNeighbors()
Compute neighbor overlap, and send neighbors

findInteractionList()
Compute the interaction list overlap

fillInteractionList(level)
Complete and copy into local interaction sections

fill(blobs)
Now must scatter blobs to local trees
Uses scatterBlobs() and gatherBlobs()

M. Knepley (ANL,TTU) Theory Simula ’08 174 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Data Movement

1 Complete neighbor section

2 Upward sweep
1 Upward sweep on local trees
2 Gather to root tree
3 Upward sweep on root tree

3 Complete interaction list section

4 Downward sweep
1 Downward sweep on root tree
2 Scatter to local trees
3 Downward sweep on local trees

M. Knepley (ANL,TTU) Theory Simula ’08 175 / 214

The Fast Multipole Method Parallel Spatial Decomposition

Parallel Evaluator Interface

initializeExpansions(local trees, blobInfo)
Evaluate each local tree

upwardSweep(local trees, partition, root tree)
Evaluate each local tree and then gather to root tree

downwardSweep(local trees, partition, root tree)
Scatter from root tree and then evaluate each local tree

evaluateBlobs(local trees, blobInfo)
Evaluate on all local trees

evaluate(tree, blobs, blobInfo)
Identical

M. Knepley (ANL,TTU) Theory Simula ’08 176 / 214

The Fast Multipole Method Parallel Performance

Outline

23 The Fast Multipole Method
Spatial Decomposition
Data Decomposition
Serial Implementation
Parallel Spatial Decomposition
Parallel Performance

M. Knepley (ANL,TTU) Theory Simula ’08 177 / 214

The Fast Multipole Method Parallel Performance

Recursive Parallel

For large problems, a single root can be a bottleneck

We can recursively assign roots to subtrees
Bandwidth to root is controlled
What about utilization?

Root computation is similar to MG coarse solve

M. Knepley (ANL,TTU) Theory Simula ’08 178 / 214

Multigrid

Outline

23 The Fast Multipole Method

24 Multigrid
Structured
Unstructured

M. Knepley (ANL,TTU) Theory Simula ’08 179 / 214

Multigrid Structured

Outline

24 Multigrid
Structured
Unstructured

M. Knepley (ANL,TTU) Theory Simula ’08 180 / 214

Multigrid Structured

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1
discretization.

It is used as a template to create
Vectors (functions)
Matrices (linear operators)

M. Knepley (ANL,TTU) Theory Simula ’08 181 / 214

Multigrid Structured

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

M. Knepley (ANL,TTU) Theory Simula ’08 182 / 214

Multigrid Structured

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf)(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)

M. Knepley (ANL,TTU) Theory Simula ’08 183 / 214

Multigrid Structured

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx) {
f o r (j = in fo−>ys ; j < in fo−>ys+ in fo−>ym; ++ j) {

f o r (i = in fo−>xs ; i < in fo−>xs+ in fo−>xm; ++ i) {
u = x [j] [i] ;
i f (i ==0 | | j ==0 | | i == M | | j == N) {

f [j] [i] = 2 . 0 * (hydhx+hxdhy) * u ; cont inue ;
}
u_xx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
u_yy = (2 . 0 * u − x [j −1][i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] = u_xx + u_yy − hx * hy * lambda * exp (u) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley (ANL,TTU) Theory Simula ’08 184 / 214

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

Multigrid Structured

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac)(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

M. Knepley (ANL,TTU) Theory Simula ’08 185 / 214

Multigrid Structured

Setting Values on Regular Grids

PETSc provides

Mat SetVa luesStenc i l (Mat A, m, Mat S t e n c i l idxm [] , n , Mat S t e n c i l idxn [] ,
PetscScalar values [] , InsertMode mode)

Each row or column is actually a MatStencil
This specifies grid coordinates and a component if necessary
Can imagine for unstructured grids, they are vertices

The values are the same logically dense block in row/col

M. Knepley (ANL,TTU) Theory Simula ’08 186 / 214

Multigrid Structured

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)
Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

M. Knepley (ANL,TTU) Theory Simula ’08 187 / 214

Multigrid Structured

DM Integration with SNES

DM supplies global residual and Jacobian to SNES
User supplies local version to DM
The Rhs_*() and Jac_*() functions in the example

Allows automatic parallelism
Allows grid hierarchy

Enables multigrid once interpolation/restriction is defined
Paradigm is developed in unstructured work

Solve needs scatter into contiguous global vectors (initial guess)

Handle Neumann BC using KSPSetNullSpace()

M. Knepley (ANL,TTU) Theory Simula ’08 188 / 214

Multigrid Structured

Multigrid with DM

Allows multigrid with some simple command line options

-pc_type mg, -pc_mg_levels
-pc_mg_type, -pc_mg_cycle_type, -pc_mg_galerkin
-mg_levels_1_ksp_type, -mg_levels_1_pc_type
-mg_coarse_ksp_type, -mg_coarse_pc_type
-da_refine, -ksp_view

Interface also works with GAMG and 3rd party packages like ML

M. Knepley (ANL,TTU) Theory Simula ’08 189 / 214

Multigrid Unstructured

Outline

24 Multigrid
Structured
Unstructured

M. Knepley (ANL,TTU) Theory Simula ’08 190 / 214

Multigrid Unstructured

Unstructured Meshes

Same DMMG options as the structured case
Mesh refinement

Ruppert algorithm in Triangle and TetGen
Mesh coarsening

Talmor-Miller algorithm in PETSc
More advanced options

-dmmg_refine
-dmmg_hierarchy

Current version only works for linear elements

M. Knepley (ANL,TTU) Theory Simula ’08 191 / 214

Multigrid Unstructured

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a
length-scale requirement in order to maintain accuracy:

Clow r1−µ ≤ h ≤ Chighr1−µ

µ ≤ π

θ

M. Knepley (ANL,TTU) Theory Simula ’08 192 / 214

Multigrid Unstructured

The Folly of Uniform Refinement

uniform refinement may fail to eliminate error

M. Knepley (ANL,TTU) Theory Simula ’08 193 / 214

Multigrid Unstructured

Geometric Multigrid

We allow the user to
refine for fidelity

Coarse grids are created
automatically

Could make use of AMG
interpolation schemes

M. Knepley (ANL,TTU) Theory Simula ’08 194 / 214

Multigrid Unstructured

Requirements of Geometric Multigrid

Sufficient conditions for optimal-order convergence:
|Mc | < 2|Mf | in terms of cells
any cell in Mc overlaps a bounded # of cells in Mf
monotonic increase in cell length-scale

Each Mk satisfies the quasi-uniformity condition:

C1hk ≤ hK ≤ C2ρK

hK is the length-scale (longest edge) of any cell K
hk is the maximum length-scale in the mesh Mk
ρK is the diameter of the inscribed ball in K

M. Knepley (ANL,TTU) Theory Simula ’08 195 / 214

Multigrid Unstructured

Requirements of Geometric Multigrid

Sufficient conditions for optimal-order convergence:
|Mc | < 2|Mf | in terms of cells
any cell in Mc overlaps a bounded # of cells in Mf
monotonic increase in cell length-scale

Each Mk satisfies the quasi-uniformity condition:

C1hk ≤ hK ≤ C2ρK

hK is the length-scale (longest edge) of any cell K
hk is the maximum length-scale in the mesh Mk
ρK is the diameter of the inscribed ball in K

M. Knepley (ANL,TTU) Theory Simula ’08 195 / 214

Multigrid Unstructured

Function Based Coarsening

(Miller, Talmor, Teng; 1997)
triangulated planar graphs ≡ disk-packings (Koebe; 1934)
define a spacing function S() over the vertices

obvious one: S(v) = dist(NN(v),v)
2

M. Knepley (ANL,TTU) Theory Simula ’08 196 / 214

Multigrid Unstructured

Function Based Coarsening

pick a subset of the vertices such that β(S(v) + S(w)) > dist(v ,w)

for all v ,w ∈ M, with β > 1
dimension independent
provides guarantees on the size/quality of the resulting meshes

M. Knepley (ANL,TTU) Theory Simula ’08 197 / 214

Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula ’08 198 / 214

Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula ’08 198 / 214

Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula ’08 198 / 214

Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula ’08 198 / 214

Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula ’08 198 / 214

Multigrid Unstructured

Decimation Algorithm

Loop over the vertices
include a vertex in the new mesh
remove colliding adjacent vertices from the mesh
remesh links of removed vertices
repeat until no vertices are removed.

Eventually we have that
every vertex is either included or removed
bounded degree mesh⇒ O(n) time

Remeshing may be performed either during or after coarsening
local Delaunay remeshing can be done in 2D and 3D
faster to connect edges and remesh later

M. Knepley (ANL,TTU) Theory Simula ’08 198 / 214

Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

vertex neighbors: cone(support(v)) \ v
vertex link: closure(star(v)) \ star(closure(v))

connectivity graph induced by limiting sieve depth
remeshing can be handled as local modifications on the sieve
meshing operations, such as cone construction easy

M. Knepley (ANL,TTU) Theory Simula ’08 199 / 214

Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

vertex neighbors: cone(support(v)) \ v
vertex link: closure(star(v)) \ star(closure(v))

connectivity graph induced by limiting sieve depth
remeshing can be handled as local modifications on the sieve
meshing operations, such as cone construction easy

M. Knepley (ANL,TTU) Theory Simula ’08 199 / 214

Multigrid Unstructured

Implementation in Sieve
Peter Brune, 2008

vertex neighbors: cone(support(v)) \ v
vertex link: closure(star(v)) \ star(closure(v))

connectivity graph induced by limiting sieve depth
remeshing can be handled as local modifications on the sieve
meshing operations, such as cone construction easy

M. Knepley (ANL,TTU) Theory Simula ’08 199 / 214

Multigrid Unstructured

3D Test Problem

Reentrant corner
−∆u = f
f (x , y , z) = 3 sin(x + y + z)

Exact Solution: u(x , y , z) = sin(x + y + z)

M. Knepley (ANL,TTU) Theory Simula ’08 200 / 214

Multigrid Unstructured

GMG Performance

Linear solver iterates are nearly as system size increases:

M. Knepley (ANL,TTU) Theory Simula ’08 201 / 214

Multigrid Unstructured

GMG Performance

Coarsening work is nearly constant as system size increases:

M. Knepley (ANL,TTU) Theory Simula ’08 201 / 214

Multigrid Unstructured

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, β = 1.45
level cells vertices min(hK)

hk
max hK

ρk
min(hK) max. overlap

0 19927 10149 0.020451 4.134135 0.001305 -
1 5297 2731 0.016971 4.435928 0.002094 23
2 3028 1572 0.014506 4.295703 0.002603 14
3 1628 856 0.014797 5.295322 0.003339 14
4 863 464 0.011375 6.403574 0.003339 14
5 449 250 0.022317 6.330512 0.007979 13

M. Knepley (ANL,TTU) Theory Simula ’08 202 / 214

Part VII

Sample Application: Fault Mechanics

M. Knepley (ANL,TTU) Theory Simula ’08 203 / 214

Formulation

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 204 / 214

Formulation

Reverse-slip Benchmark

M. Knepley (ANL,TTU) Theory Simula ’08 205 / 214

Mesh Handling

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 206 / 214

Mesh Handling

Multiple Mesh Types

Triangular Tetrahedral

Rectangular Hexahedral

M. Knepley (ANL,TTU) Theory Simula ’08 207 / 214

Parallelism

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 208 / 214

Parallelism

Parallelism

Function and Operator Assembly
Parallel element integration over multiple materials/models
Assembly uses completion for functions and PETSc Mat for
operators

Algebraic sovlers
Use MUMPS for small problems
PETSc ASM/ILU for large problems
Hope to use unstructured MG when fault support is implemented

Parallel data movement routines do not change for
Different dimension
Different element shapes
Different discretization
Fault inclusion

M. Knepley (ANL,TTU) Theory Simula ’08 209 / 214

Fault Handling

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 210 / 214

Fault Handling

Cohesive Cells

0 2 4

53
Original Mesh

1

0 2

31

2 4

53
0 2 6 4

57
Mesh with Cohesive Cell

31

0 2

31

6 4

57

2 6

73

Exploded view of meshes
M. Knepley (ANL,TTU) Theory Simula ’08 211 / 214

Fault Handling

Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault
Demand complex mesh manipulation

We allow specification of only fault vertices
Must “sew” together on output

Use Lagrange multipliers to enforce constraints
Forces illuminate physics

Allow different fault constitutive models
Simplest is enforced slip
Now have fault constitutive models

M. Knepley (ANL,TTU) Theory Simula ’08 212 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Fault Handling

Splitting the Mesh

In order to create a fault, the generator provides
a set of fault vertices, or
a set of fault faces.

Fault vertices, unlike fault faces, must be
combined into faces on a fault mesh, and
oriented

The fault mesh is used to
split vertices along the fault
introduce prism elements between adjacent fault faces

Sieve code works for
any dimension
any element shape

M. Knepley (ANL,TTU) Theory Simula ’08 213 / 214

Coupling

Outline

25 Formulation

26 Mesh Handling

27 Parallelism

28 Fault Handling

29 Coupling

M. Knepley (ANL,TTU) Theory Simula ’08 214 / 214

	Introduction
	Scientific Computing
	Hierarchy
	Hierarchy
	Representing Topology
	Mesh Distribution

	Representing Functions
	Mapping Interpretation
	Connecting Sieves

	Global Computation: Implementation
	Interfaces
	Mapping
	Completion
	Optimization and the Sieve Programming Model
	Automation
	Parallelism
	Completion
	Interval Sieves

	Finite Elements
	Boundary Conditions

	Local Computation: Theory
	FIAT
	Models of Local Computation
	Dof Kinds
	Boundary Conditions
	Weak Form Languages

	Local Computation: Implementation
	Serial Performance
	FIAT
	Implementation
	Optimization

	FErari
	Problem Statement
	Plan of Attack
	Results
	Mixed Integer Linear Programming

	Scheduling and Asynchronous Computation

	Fast Methods
	The Fast Multipole Method
	Spatial Decomposition
	Data Decomposition
	Serial Implementation
	Parallel Spatial Decomposition
	Parallel Performance

	Multigrid
	Structured
	Unstructured

	Sample Application: Fault Mechanics
	Formulation
	Mesh Handling
	Parallelism
	Fault Handling
	Coupling

