Fast Methods with Sieve

Matthew G Knepley

Mathematics and Computer Science Division Argonne National Laboratory

August 12, 2008 Workshop on Scientific Computing Simula Research, Oslo, Norway

A (10) A (10)

- Can we establish good interfaces for all levels of the hierarchy?
- Do we need language extensions for more sophisticated problems?
- What information is required from each component?
- Is inter-language programming effective?
- Can we develop a general framework for boundary conditions?

Outline

Spatial Decomposition

- 2 Data Decomposition
- 3 Serial Implementation
- 4 Parallel Spatial Decomposition
- 5 Parallel Performance

< 17 ▶

- The Quadtree is a Sieve
 with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections
- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

A (10) A (10) A (10)

Quadtree Implementation

- We use binary scheme to label cells (or vertices)
- Relevant relations can be determined implicitly
 - cone()
 - neighbors
 - parent
 - interaction list
- When vertices are not used, we can directly connect cells
 - cone () becomes neighbor method

Tree Interface

- locateBlob(blob)
 - Locate point in the tree
- fillNeighbors()
 - Compute the neighbor section
- findInteractionList()
 - Compute the interaction list cell section, allocate value section
- fillInteractionList(level)
 - Compute the interaction list value section
- fill(blobs)
 - Compute the blob section
- dump()
 - Produces a verifiable repesentation of the tree

< A >

- N

Outline

Spatial Decomposition

- 2 Data Decomposition
- 3 Serial Implementation
- 4 Parallel Spatial Decomposition
- 5 Parallel Performance

< 17 ▶

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

A (10) A (10)

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

< 17 ▶

→ ∃ →

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

A .

FMM requires data over the Quadtree distributed by:

- box
 - Box centers, Neighbors
- box + neighbors
 - Blobs
- box + interaction list
 - Interaction list cells and values
 - Multipole and local coefficients

Notice this is multiscale since data is divided at each level

Outline

- Spatial Decomposition
- 2 Data Decomposition
- 3 Serial Implementation
- 4 Parallel Spatial Decomposition
- 5 Parallel Performance

Evaluator Interface

• initializeExpansions(tree, blobInfo)

- · Generate multipole expansions on the lowest level
- Requires loop over cells
- *O*(*p*)
- upwardSweep(tree)
 - Translate multipole expansions to intermediate levels
 - Requires loop over cells and children (support)
 - O(p²)
- downwardSweep(tree)
 - Convert multipole to local expansions and translate local expansions on intermediate levels
 - Requires loop over cells and parent (cone)
 - $O(p^2)$

Evaluator Interface

• evaluateBlobs(tree, blobInfo)

- Evaluate direct and local field interactions on lowest level
- Requires loop over cells and neighbors (in section)
- *O*(*p*²)
- evaluate(tree, blobs, blobInfo)
 - Calculate the complete interaction (multipole + direct)

Kernel Interface

Method	Description
P2M(t)	Multipole expansion coefficients
L2P(t)	Local expansion coefficients
M2M(t)	Multipole-to-multipole translation
M2L(t)	Multipole-to-local translation
L2L(t)	Local-to-local translation
evaluate(blobs)	Direct interaction

- Evaluator is templated over Kernel
- There are alternative kernel-independent methods
 - kifmm3d

Outline

- Spatial Decomposition
- 2 Data Decomposition
- 3 Serial Implementation
- Parallel Spatial Decomposition
- 5 Parallel Performance

< 17 ▶

Parallel Tree Implementation

- Divide tree into a root and local trees
- Distribute local trees among processes
- Provide communication pattern for local sections (overlap)
 - Both neighbor and interaction list overlaps
 - Sieve generates MPI from high level description

Parallel Tree Implementation How should we distribute trees?

- Multiple local trees per process allows good load balance
- Partition weighted graph
 - Minimize load imbalance and communication
 - Computation estimate:

Leaf $N_i p$ (P2M) + $n_l p^2$ (M2L) + $N_i p$ (L2P) + $3^d N_i^2$ (P2P) Interior $n_c p^2$ (M2M) + $n_l p^2$ (M2L) + $n_c p^2$ (L2L)

• Communication estimate:

Diagonal $n_c(L-k-1)$ Lateral $2^{d} \frac{2^{m(L-k-1)}-1}{2^m-1}$ for incidence dimesion *m*

Leverage existing work on graph partitioning

• ParMetis

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Parallel Tree Implementation Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms for parallel adaptive N-body simulation, SIAM J. Sci. Comput., **19**(2), 1998.

- Good partitions exist for non-uniform distributions
 2D O (√n(log n)^{3/2}) edgecut
 3D O (n^{2/3}(log n)^{4/3}) edgecut
- As scalable as regular grids
- As efficient as uniform distributions
- ParMetis will find a nearly optimal partition

Parallel Tree Implementation Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning, Supercomputing, 1995.

- Good partitions exist for non-uniform distributions 2D $C_i = 1.24^i C_0$ for random matching 3D $C_i = 1.21^i C_0$?? for random matching
- 3D proof needs assurance that averge degree does not increase
- Efficient in practice

Parallel Tree Implementation

Simplicity

- Complete serial code reuse
- Provably good performance and scalability

THE 1 AT 1

< 17 ▶

Parallel Tree Implementation

Simplicity

• Complete serial code reuse

Provably good performance and scalability

THE 1 AT 1

4 A N

Parallel Tree Implementation

- Simplicity
- Complete serial code reuse
- Provably good performance and scalability

< A >

Parallel Tree Interface

- fillNeighbors()
 - Compute neighbor overlap, and send neighbors
- findInteractionList()
 - Compute the interaction list overlap
- fillInteractionList(level)
 - Complete and copy into local interaction sections
- fill(blobs)
 - Now must scatter blobs to local trees
 - Uses scatterBlobs() and gatherBlobs()

Parallel Data Movement

Complete neighbor section

Opward sweep

- Upward sweep on local trees
- Ø Gather to root tree
- Opward sweep on root tree
- Omplete interaction list section
- Oownward sweep
 - Downward sweep on root tree
 - Scatter to local trees
 - Ownward sweep on local trees

Parallel Evaluator Interface

- initializeExpansions(local trees, blobInfo)
 - Evaluate each local tree
- upwardSweep(local trees, partition, root tree)
 - Evaluate each local tree and then gather to root tree
- downwardSweep(local trees, partition, root tree)
 - Scatter from root tree and then evaluate each local tree
- evaluateBlobs(local trees, blobInfo)
 - Evaluate on all local trees
- evaluate(tree, blobs, blobInfo)
 - Identical

э.

∃ ► < ∃ ►</p>

Outline

- Spatial Decomposition
- 2 Data Decomposition
- 3 Serial Implementation
- 4 Parallel Spatial Decomposition
- 5 Parallel Performance

< 17 ▶

Recursive Parallel

- For large problems, a single root can be a bottleneck
- We can recursively assign roots to subtrees
 - Bandwidth to root is controlled
 - What about utilization?
- Root computation is similar to MG coarse solve