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Challenges

Can we establish good interfaces for all levels of the hierarchy?
Do we need language extensions for more sophisticated
problems?
What information is required from each component?
Is inter-language programming effective?
Can we develop a general framework for boundary conditions?
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Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List
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Spatial Decomposition

Quadtree Implementation

We use binary scheme to label cells (or vertices)

Relevant relations can be determined implicitly
cone()
neighbors
parent
interaction list

When vertices are not used, we can directly connect cells
cone() becomes neighbor method
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Spatial Decomposition

Tree Interface

locateBlob(blob)
Locate point in the tree

fillNeighbors()
Compute the neighbor section

findInteractionList()
Compute the interaction list cell section, allocate value section

fillInteractionList(level)
Compute the interaction list value section

fill(blobs)
Compute the blob section

dump()
Produces a verifiable repesentation of the tree

M. Knepley Fast Methods with Sieve SciComp08 Simula 6 / 23



Data Decomposition
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Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level
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Serial Implementation
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Serial Implementation

Evaluator Interface

initializeExpansions(tree, blobInfo)
Generate multipole expansions on the lowest level
Requires loop over cells
O(p)

upwardSweep(tree)
Translate multipole expansions to intermediate levels
Requires loop over cells and children (support)
O(p2)

downwardSweep(tree)
Convert multipole to local expansions and translate local
expansions on intermediate levels
Requires loop over cells and parent (cone)
O(p2)
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Serial Implementation

Evaluator Interface

evaluateBlobs(tree, blobInfo)
Evaluate direct and local field interactions on lowest level
Requires loop over cells and neighbors (in section)
O(p2)

evaluate(tree, blobs, blobInfo)
Calculate the complete interaction (multipole + direct)
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Serial Implementation

Kernel Interface

Method Description
P2M(t) Multipole expansion coefficients
L2P(t) Local expansion coefficients
M2M(t) Multipole-to-multipole translation
M2L(t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate(blobs) Direct interaction

Evaluator is templated over Kernel
There are alternative kernel-independent methods

kifmm3d
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Parallel Spatial Decomposition

Parallel Tree Implementation

Divide tree into a root and local trees

Distribute local trees among processes

Provide communication pattern for local sections (overlap)
Both neighbor and interaction list overlaps

Sieve generates MPI from high level description
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Parallel Spatial Decomposition

Parallel Tree Implementation
How should we distribute trees?

Multiple local trees per process allows good load balance
Partition weighted graph

Minimize load imbalance and communication

Computation estimate:
Leaf Nip (P2M) + nIp2 (M2L) + Nip (L2P) + 3d N2

i (P2P)
Interior ncp2 (M2M) + nIp2 (M2L) + ncp2 (L2L)

Communication estimate:
Diagonal nc(L − k − 1)

Lateral 2d 2m(L−k−1)−1
2m−1 for incidence dimesion m

Leverage existing work on graph partitioning
ParMetis

M. Knepley Fast Methods with Sieve SciComp08 Simula 15 / 23

http://www.cs.umn.edu/parmetis


Parallel Spatial Decomposition

Parallel Tree Implementation
Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

Good partitions exist for non-uniform distributions
2D O

(√
n(log n)3/2

)
edgecut

3D O
(
n2/3(log n)4/3

)
edgecut

As scalable as regular grids

As efficient as uniform distributions

ParMetis will find a nearly optimal partition
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http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842


Parallel Spatial Decomposition

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

Good partitions exist for non-uniform distributions
2D Ci = 1.24iC0 for random matching
3D Ci = 1.21iC0?? for random matching

3D proof needs assurance that averge degree does not increase

Efficient in practice
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Parallel Spatial Decomposition

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability
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Parallel Spatial Decomposition

Parallel Tree Interface

fillNeighbors()
Compute neighbor overlap, and send neighbors

findInteractionList()
Compute the interaction list overlap

fillInteractionList(level)
Complete and copy into local interaction sections

fill(blobs)
Now must scatter blobs to local trees
Uses scatterBlobs() and gatherBlobs()

M. Knepley Fast Methods with Sieve SciComp08 Simula 19 / 23



Parallel Spatial Decomposition

Parallel Data Movement

1 Complete neighbor section

2 Upward sweep
1 Upward sweep on local trees
2 Gather to root tree
3 Upward sweep on root tree

3 Complete interaction list section

4 Downward sweep
1 Downward sweep on root tree
2 Scatter to local trees
3 Downward sweep on local trees
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Parallel Spatial Decomposition

Parallel Evaluator Interface

initializeExpansions(local trees, blobInfo)
Evaluate each local tree

upwardSweep(local trees, partition, root tree)
Evaluate each local tree and then gather to root tree

downwardSweep(local trees, partition, root tree)
Scatter from root tree and then evaluate each local tree

evaluateBlobs(local trees, blobInfo)
Evaluate on all local trees

evaluate(tree, blobs, blobInfo)
Identical
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Parallel Performance
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Parallel Performance

Recursive Parallel

For large problems, a single root can be a bottleneck

We can recursively assign roots to subtrees
Bandwidth to root is controlled
What about utilization?

Root computation is similar to MG coarse solve
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