Nonlinear Preconditioning in PETSc

Matthew Knepley \in PETSc Team

Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center

FoaLab Seminar Oxford University March 21, 2014

The PETSc Team

Bill Gropp

Jed Brown

Hong Zhang

M. Knepley (UC)

Barry Smith

Matt Knepley

Mark Adams

Satish Balay

Lisandro Dalcin

Toby Issac

FoaLab 3/37

Outline

2 Experiments

M. Knepley (UC)

FoaLab

Out prototypical nonlinear equation is:

$$\mathcal{F}(\vec{x}) = \vec{b} \tag{1}$$

and we define the residual as

$$\vec{r}(\vec{x}) = \mathcal{F}(\vec{x}) - \vec{b}$$
 (2)

FoaLab

Out prototypical nonlinear equation is:

$$\mathcal{F}(\vec{x}) = \vec{b} \tag{1}$$

and we define the (linear) residual as

$$\vec{r}(\vec{x}) = A\vec{x} - \vec{b} \tag{3}$$

FoaLab

Algorithmics

Linear Left Preconditioning

The modified equation becomes

$$P^{-1}\left(A\vec{x}-\vec{b}\right)=0$$
 (4)

Algorithmics

Linear Left Preconditioning

The modified defect correction equation becomes

$$P^{-1}\left(A\vec{x}_{i}-\vec{b}\right)=\vec{x}_{i+1}-\vec{x}_{i}$$
(5)

Unlike the linear case, we must define

• the solution \vec{x}

AND

• the residual \vec{r}

in both the inner and outer solvers.

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (\alpha P^{-1} + \beta Q^{-1})(A\vec{x}_i - \vec{b})$$
 (6)

Additive Combination

The linear iteration

$$\vec{\mathbf{x}}_{i+1} = \vec{\mathbf{x}}_i - (\alpha \boldsymbol{P}^{-1} + \beta \boldsymbol{Q}^{-1})\vec{\mathbf{r}}_i$$
(7)

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (\alpha P^{-1} + \beta Q^{-1})\vec{r}_i$$
 (7)

FoaLab

8/37

$$\vec{x}_{i+1} = \vec{x}_i + \alpha (\mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b}) - \vec{x}_i) + \beta (\mathcal{M}(\mathcal{F}, \vec{x}_i, \vec{b}) - \vec{x}_i)$$
 (8)

Nonlinear Left Preconditioning

From the additive combination, we have

$$P^{-1}\vec{r} \Longrightarrow \vec{x}_i - \mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b})$$
 (9)

so we define the preconditioning operation as

$$\vec{r}_L \equiv \vec{x} - \mathcal{N}(\mathcal{F}, \vec{x}, \vec{b})$$
 (10)

FoaLab

Multiplicative Combination

The linear iteration

$$\vec{x}_{i+1} = \vec{x}_i - (P^{-1} + Q^{-1} - Q^{-1}AP^{-1})\vec{r}_i$$
 (11)

Multiplicative Combination

The linear iteration

$$\vec{x}_{i+1/2} = \vec{x}_i - P^{-1} \vec{r}_i$$
 (12)
 $\vec{x}_i = \vec{x}_{i+1/2} - Q^{-1} \vec{r}_{i+1/2}$ (13)

Multiplicative Combination

The linear iteration

$$\vec{x}_{i+1/2} = \vec{x}_i - P^{-1} \vec{r}_i$$
 (12)
 $\vec{x}_i = \vec{x}_{i+1/2} - Q^{-1} \vec{r}_{i+1/2}$ (13)

$$\vec{x}_{i+1} = \mathcal{M}(\mathcal{F}, \mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b}), \vec{b})$$
 (14)

Nonlinear Right Preconditioning

For the linear case, we have

$$AP^{-1}\vec{y} = \vec{b}$$
(15)
$$\vec{x} = P^{-1}\vec{y}$$
(16)

so we define the preconditioning operation as

$$\vec{y} = \mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F}, \cdot, \vec{b})), \vec{x}_i, \vec{b})$$
(17)
$$\vec{x} = \mathcal{N}(\mathcal{F}, \vec{y}, \vec{b})$$
(18)

Nonlinear Preconditioning

Туре	Sym	Statement	Abbreviation
Additive	+	$ec{m{x}}+lpha(\mathcal{M}(\mathcal{F},ec{m{x}},ec{m{b}})-ec{m{x}})$	$\mathcal{M} + \mathcal{N}$
		$+ eta(\mathcal{N}(\mathcal{F},ec{x},ec{b}) - ec{x})$	
Multiplicative	*	$\mathcal{M}(\mathcal{F},\mathcal{N}(\mathcal{F},ec{x},ec{b}),ec{b})$	$\mathcal{M} * \mathcal{N}$
Left Prec.	-L	$\mathcal{M}(ec{x} - \mathcal{N}(\mathcal{F}, ec{x}, ec{b}), ec{x}, ec{b})$	$\mathcal{M}L \mathcal{N}$
Right Prec.	-R	$\mathcal{M}(\mathcal{F}(\mathcal{N}(\mathcal{F},ec{x},ec{b})),ec{x},ec{b})$	$\mathcal{M}{R} \mathcal{N}$
Inner Lin. Inv.		$\vec{y} = \vec{J}(\vec{x})^{-1}\vec{r}(\vec{x}) = K(\vec{J}(\vec{x}), \vec{y}_0, \vec{b})$	$ \mathcal{N} \setminus K$

- E

Nonlinear Richardson

- 1: procedure NRICH($\vec{F}, \vec{x}_i, \vec{b}$) 2: $\vec{d} = -\vec{r}(\vec{x}_i)$ 3: $\vec{x}_{i+1} = \vec{x}_i + \lambda \vec{d}$ 4: end procedure
- 5: return \vec{x}_{i+1}

 $\triangleright \; \lambda$ determined by line search

FoaLab

Line Search

Equivalent to NRICH $-_L \mathcal{N}$:

NRICH $-_L \mathcal{N}$

- 4 ∃ →

Line Search

Equivalent to NRICH $-_L \mathcal{N}$:

NRICH $-_L \mathcal{N}$ NRICH $(\vec{x} - \mathcal{N}(\mathcal{F}, \vec{x}, \vec{b}), \vec{x}, \vec{b})$

Line Search

Equivalent to NRICH $-_L \mathcal{N}$:

$$\begin{aligned} \mathsf{NRICH} &-_L \mathcal{N} \\ \mathsf{NRICH}(\vec{x} - \mathcal{N}(\mathcal{F}, \vec{x}, \vec{b}), \vec{x}, \vec{b}) \\ \vec{x}_{i+1} &= \vec{x}_i - \lambda \vec{r}_L \end{aligned}$$

Equivalent to NRICH $-_L \mathcal{N}$:

NRICH
$$-_L \mathcal{N}$$

NRICH $(\vec{x} - \mathcal{N}(\mathcal{F}, \vec{x}, \vec{b}), \vec{x}, \vec{b})$
 $\vec{x}_{i+1} = \vec{x}_i - \lambda \vec{r}_L$
 $\vec{x}_{i+1} = \vec{x}_i + \lambda (\mathcal{N}(\mathcal{F}, \vec{x}_i, \vec{b}) - \vec{x}_i)$

PETSc Line Search

BT Standard cubic back-tracking

- Defaults to full step when Wolfe conditions satisfied
- No more work than necessary
- May stagnate
- $\bullet\,$ Can be badly scaled apart from ${\cal N}\,$
- L2 Secant minimization of residual
 - Optimal damping in the residual direction
 - Minimize $||\vec{r}(\vec{x} + \lambda \delta \vec{x})||_2$
- CP Secant minimization of energy
 - Appropriate when ${\mathcal F}$ is the gradient of an energy function
 - Looks for roots of $\delta \vec{x}^T \mathcal{F}(\vec{x} + \lambda \delta \vec{x})$

Algorithmics

Nonlinear GMRES

- 1: procedure NGMRES($\mathcal{F}, \vec{x}_i \cdots \vec{x}_{i-m+1}, \vec{b}$)
- 2: $\vec{d}_i = -\vec{r}(\vec{x}_i)$
- 3: $\vec{x}_i^M = \vec{x}_i + \lambda \vec{d}_i$ 4: $\mathcal{F}_i^M = \vec{r}(\vec{x}_i^M)$
- minimize $\|\vec{r}((1-\sum_{k=i-m}^{i-1}\alpha_i)\vec{x}_i^M + \sum_{k=i-m}^{i-1}\alpha_k\vec{x}_k)\|_2$ over 5: k=i-m $\{\alpha_1, \ldots, \alpha_{n-1}\}$

6:
$$\vec{x}_i^A = (1 - \sum_{k=i-m}^{i-1} \alpha_i) \vec{x}^M + \sum_{k=i-m}^{i-1} \alpha_k \vec{x}_k$$

- $\vec{x}_{i+1} = \vec{x}_i^A$ or \vec{x}_i^M if \vec{x}_i^A is insufficient. 7:
- 8: end procedure
- 9: return \vec{x}_{i+1}

Algorithmics

Nonlinear GMRES

- 1: procedure NGMRES($\mathcal{F}, \vec{x}_i \cdots \vec{x}_{i-m+1}, \vec{b}$)
- 2: $\vec{d}_i = -\vec{r}(\vec{x}_i)$
- 3: $\vec{x}_i^M = \vec{x}_i + \lambda \vec{d}_i$ 4: $\mathcal{F}_i^M = \vec{r}(\vec{x}_i^M)$
- minimize $\|\vec{r}((1 \sum_{k=i-m}^{i-1} \alpha_i)\vec{x}_i^M + \sum_{k=i-m}^{i-1} \alpha_k \vec{x}_k)\|_2$ over 5: k=i-m $\{\alpha_1, \ldots, \alpha_{n-1}\}$

6:
$$\vec{x}_{i}^{A} = (1 - \sum_{k=i-m}^{i-1} \alpha_{i})\vec{x}^{M} + \sum_{k=i-m}^{i-1} \alpha_{k}\vec{x}_{k}$$

- $\vec{x}_{i+1} = \vec{x}_i^A$ or \vec{x}_i^M if \vec{x}_i^A is insufficient. 7:
- 8: end procedure
- 9: return \vec{x}_{i+1}

Can emulate Anderson mixing and DIIS

Newton-Krylov

1: procedure
$$\mathcal{N} \setminus \mathsf{K}(\vec{F}, \vec{x}_i, \vec{b})$$

2: $\vec{d} = \vec{J}(\vec{x}_i)^{-1}\vec{r}(\vec{x}_i, \vec{b})$
3: $\vec{x}_{i+1} = \vec{x}_i + \lambda \vec{d}$
4: and procedure

4: end procedure 5: return \vec{x}_{i+1} \triangleright solve by Krylov method $\triangleright \lambda$ determined by line search

Algorithmics

Left Preconditioned Newton-Krylov

1: procedure
$$\mathcal{N} \setminus \mathsf{K}(\vec{x} - \vec{M}(\mathcal{F}, \vec{x}, \vec{b}), \vec{x}_i, 0)$$

2: $\vec{d} = \frac{\partial (\vec{x}_i - \mathcal{M}(\mathcal{F}, \vec{x}_i, \vec{b}))}{\partial \vec{x}_i}^{-1} (\vec{x}_i - \mathcal{M}(\mathcal{F}, \vec{x}_i, \vec{b}))$

3:
$$\vec{x}_{i+1} = \vec{x}_i + \lambda d$$

- 4: end procedure
- 5: return \vec{x}_{i+1}

- 4 ∃ →

Jacobian Computation

$$rac{\partial (ec{x} - \mathcal{M}(\mathcal{F}, ec{x}_i, ec{b}))}{ec{x}_i} = I - rac{\partial \mathcal{M}(\mathcal{F}, ec{x}_i, ec{b})}{\partial ec{x}_i},$$

Direct differencing would require

• one inner nonlinear iteration

per Krylov iteration.

Jacobian Computation

$$\frac{\partial(\vec{x} - \mathcal{M}(\mathcal{F}, \vec{x}_i, \vec{b}))}{\vec{x}_i} = I - \frac{\partial \mathcal{M}(\mathcal{F}, \vec{x}_i, \vec{b})}{\partial \vec{x}_i},$$

Direct differencing would require

• one inner nonlinear iteration

per Krylov iteration.

Jacobian Computation

Impractical!

$$rac{\partial (ec{x} - \mathcal{M}(\mathcal{F}, ec{x}_i, ec{b}))}{ec{x}_i} = I - rac{\partial \mathcal{M}(\mathcal{F}, ec{x}_i, ec{b})}{\partial ec{x}_i},$$

Direct differencing would require

• one inner nonlinear iteration

per Krylov iteration.

FoaLab

Jacobian Computation Approximation for NASM

$$\frac{\partial(\vec{x} - \mathcal{M}(\mathcal{F}, \vec{x}, \vec{b}))}{\partial \vec{x}} = \frac{\partial(\vec{x} - (\vec{x} - \sum_{b} J_{b}(\vec{x}_{b})^{-1} \mathcal{F}_{b}(\vec{x}_{b})))}{\partial \vec{x}}$$
$$\approx \sum_{b} J_{b}(\vec{x}_{b*})^{-1} J(\vec{x})$$

This would require

- one inner nonlinear iteration
- small number of block solves

per outer nonlinear iteration.

X.-C. Cai and D. E. Keyes, SIAM J. Sci. Comput., 24 (2002), pp. 183-200

Algorithmics

Right Preconditioned Newton-Krylov

1: procedure NK(
$$\vec{F}(\vec{M}(\vec{F},\cdot,\vec{b})), \vec{y}_i, \vec{b})$$

2: $\vec{x}_i = \vec{M}(\vec{F}, \vec{y}_i, \vec{b})$

3:
$$\vec{d} = \vec{J}(\vec{x})^{-1}\vec{r}(\vec{x}_i)$$

$$4: \quad \vec{x}_{i+1} = \vec{x}_i + \lambda \vec{d}$$

- 5: end procedure
- 6: return \vec{x}_{i+1}

 $\triangleright \; \lambda$ determined by line search

Jacobian Computation First-Order Approximation

Only the action of the original Jacobian is needed at first order:

$$\begin{split} \vec{y}_{i+1} &= \vec{y}_i - \lambda \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i}^{-1} J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i)) \\ \mathcal{M}(\mathcal{F}, \vec{y}_{i+1}) &= \mathcal{M}(\mathcal{F}, \vec{y}_i - \lambda \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i}^{-1} J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i))) \\ &\approx \mathcal{M}(\mathcal{F}, \vec{y}_i) \\ &- \lambda \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i} \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i}^{-1} J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i))) \\ &= \mathcal{M}(\mathcal{F}, \vec{y}_i) - \lambda J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i)) \\ &\vec{x}_{i+1} &= \vec{x}_i - \lambda J(\vec{x}_i)^{-1} \mathcal{F}(\vec{x}_i) \end{split}$$

 $\mathcal{N} \setminus K -_R \vec{M}$ is equivalent to $\mathcal{N} \setminus K * \vec{M}$ at first order

Jacobian Computation First-Order Approximation

Only the action of the original Jacobian is needed at first order:

$$\begin{split} \vec{y}_{i+1} &= \vec{y}_i - \lambda \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i}^{-1} J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i)) \\ \mathcal{M}(\mathcal{F}, \vec{y}_{i+1}) &= \mathcal{M}(\mathcal{F}, \vec{y}_i - \lambda \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i}^{-1} J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i))) \\ &\approx \mathcal{M}(\mathcal{F}, \vec{y}_i) \\ &- \lambda \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i} \frac{\partial \mathcal{M}(\mathcal{F}, \vec{y}_i)}{\partial \vec{y}_i}^{-1} J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i))) \\ &= \mathcal{M}(\mathcal{F}, \vec{y}_i) - \lambda J(\mathcal{M}(\mathcal{F}, \vec{y}_i))^{-1} \mathcal{F}(\mathcal{M}(\mathcal{F}, \vec{y}_i)) \\ &\vec{x}_{i+1} &= \vec{x}_i - \lambda J(\vec{x}_i)^{-1} \mathcal{F}(\vec{x}_i) \end{split}$$

 $\mathcal{N} \setminus \mathsf{K} -_{R} \vec{M}$ is equivalent to $\mathcal{N} \setminus \mathsf{K} * \vec{M}$ at first order

Jacobian Computation Direct Approximation

$$egin{aligned} \mathcal{F}(\mathcal{M}(\mathcal{F},ec{y}_i,ec{b})) &= J(\mathcal{M}(\mathcal{F},ec{y}_i,ec{b})) rac{\partial \mathcal{M}(\mathcal{F},ec{y}_i,ec{b})}{\partial ec{y}_i}(ec{y}_{i+1}-ec{y}_i) \ &pprox J(\mathcal{M}(\mathcal{F},ec{y}_i,ec{b}))(\mathcal{M}(\mathcal{F},ec{y}_i+ec{d},ec{b})-ec{x}_i) \end{aligned}$$

- Solve for \vec{d}
- Requires inner nonlinear solve for each Krylov iterate
- Needs FGMRES

P. Birken and A. Jameson, J. Num. Meth. in Fluids, 62 (2010), pp. 565-573

Algorithmics

Full Approximation Scheme (FAS) Nonlinear Multigrid

1: procedure FAS(
$$\vec{F}, \vec{x}_i, \vec{b}$$
)
2: $\vec{x}_s = \mathcal{M}_s(\mathcal{F}, \vec{x}_i, \vec{b})$
3: $\vec{x}_c = \hat{\mathbf{R}}\vec{x}_s$
4: $\vec{b}_c = \mathcal{F}_c(\vec{x}_c) - \mathbf{R}[\mathcal{F}(\vec{x}_s) - \vec{b}]$
5: $\vec{x}_s = \vec{x}_s + \mathbf{P}[FAS(\vec{F}_c, \vec{x}_c, \vec{b}_c) - \vec{x}_c]$
6: $\vec{x}_{i+1} = \mathcal{M}_s(\mathcal{F}, \vec{x}_s, \vec{b})$
7: end procedure

8: return \vec{x}_{i+1}

- 4 ∃ →

Other Nonlinear Solvers

NASM Nonlinear Additive Schwarz

NGS Nonlinear Gauss-Siedel

NCG Nonlinear Conjugate Gradients

QN Quasi-Newton methods

Outline

- Composition
- Multilevel

- (E - E -

Composition

Outline

$$\int_{\Omega} \boldsymbol{F} \cdot \boldsymbol{S} : \nabla \boldsymbol{v} \, \boldsymbol{d}\Omega + \int_{\Omega} \text{loading } \boldsymbol{e}_{\boldsymbol{y}} \cdot \boldsymbol{v} \, \boldsymbol{d}\Omega = \boldsymbol{0} \tag{19}$$

- F Deformation gradient
- S Second Piola-Kirchhoff tensor

Saint Venant-Kirchhoff model of hyperelasticity

- Ω -arc angle subsection of a cylindrical shell
 - -height *thickness* -rad *inner radius* -width *width*

Composition

Large Deformation Elasticity

Composition

Large Deformation Elasticity

Composition

Large Deformation Elasticity

Composition

Large Deformation Elasticity

SNES example 16:

```
cd src/snes/examples/tutorials
make ex16
./ex16 -da_grid_x 401 -da_grid_y 9 -da_grid_z 9
   -height 3 -width 3
   -rad 100 -young 100 -poisson 0.2
   -loading -1 -ploading 0
```

Plain SNES Convergence

$(\mathcal{N} \backslash K - MG)$ and NCG

M. Knepley (UC)

Image: A matrix

FoaLab 31 / 37

Plain SNES Convergence

Solver	T	N. It	L. It	Func	Jac	PC	NPC
NCG	53.05	4495	0	8991	_	_	_
$(\mathcal{N} \setminus K - MG)$	23.43	27	1556	91	27	1618	_

イロト イヨト イヨト

Composed SNES Convergence

 $NCG(10) + (\mathcal{N} \setminus K - MG)$ and $NCG(10) * (\mathcal{N} \setminus K - MG)$

-

Composition

Composed SNES Convergence

Solver	T	N. It	L. It	Func	Jac	PC	NPC
NCG	53.05	4495	0	8991	—	—	_
$(\mathcal{N} ackslash K - MG)$	23.43	27	1556	91	27	1618	—
NCG(10)	14.92	9	459	218	9	479	—
$+(\mathcal{N} \setminus K - MG)$							
NCG(10)	16.34	11	458	251	11	477	—
$*(\mathcal{N} \setminus K - MG)$							

イロト イヨト イヨト

Composition

Peconditioned SNES Convergence

NGMRES $-_{R}(\mathcal{N}\setminus K - MG)$ and NCG $-_{L}(\mathcal{N}\setminus K - MG)$

A D M A A A M M

Composition

Peconditioned SNES Convergence

Solver	Τ	N. It	L. It	Func	Jac	PC	NPC
NCG	53.05	4495	0	8991	_	_	_
$(\mathcal{N} \setminus K - MG)$	23.43	27	1556	91	27	1618	—
NCG(10)	14.92	9	459	218	9	479	—
$+(\mathcal{N} \setminus K - MG)$							
NCG(10)	16.34	11	458	251	11	477	—
$*(\mathcal{N} \setminus K - MG)$							
NGMRES	9.65	13	523	53	13	548	13
${R}(\mathcal{N} ackslash K - MG)$							
NCG	9.84	13	529	53	13	554	13
$L(\mathcal{N} \setminus K - MG)$							

Outline

Multilevel

・ロト ・ 日 ト ・ ヨ ト ・

SNES ex19 **Driven Cavity Flow**

$-\Delta \vec{\mu} + \nabla \times \Omega = 0$

$-\Delta\Omega + \nabla \cdot (\vec{u}\Omega) - GR\nabla_x T = 0$

 $-\Delta T + PR \nabla \cdot (\vec{u}T) = 0$

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

Multilevel

SNES ex19 Driven Cavity Flow

 $-\Delta \vec{u} + \nabla \times \Omega = \mathbf{0}$

 $\nabla \cdot (\vec{u}\Omega) - GR\nabla_x T = 0$

 $-\Delta T + PR\nabla \cdot (\vec{u}T) = 0$

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e2
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e2
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 100
  0 SNES Function norm 768.116
  1 SNES Function norm 658.288
  2 SNES Function norm 529.404
  3 SNES Function norm 377.51
  4 SNES Function norm 304.723
  5 SNES Function norm 0.00942733
  7 SNES Function norm 0.00942733
  7 SNES Function norm 5.20667e-08
Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 7
```

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof le4
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Driven Cavity Problem

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e4
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 10000
  0 SNES Function norm 785.404
  1 SNES Function norm 663.055
  2 SNES Function norm 519.583
  3 SNES Function norm 519.583
  3 SNES Function norm 360.87
  4 SNES Function norm 245.893
  5 SNES Function norm 1.8117
  6 SNES Function norm 0.00468828
  7 SNES Function norm 4.417e-08
Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 7
```

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof le5
  -da_grid_x 16 -da_grid_y 16 -da_refine 2
  -snes_monitor_short -snes_converged_reason -snes_view
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Driven Cavity Problem

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 100000
```

0 SNES Function norm 1809.96 Nonlinear solve did not converge due to DIVERGED_LINEAR_SOLVE iterations (

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Driven Cavity Problem

SNES ex19.c

```
./ex19 -lidvelocity 100 -grashof 1e5
  -da_grid_x 16 -da_grid_y 16 -da_refine 2 -pc_type lu
  -snes_monitor_short -snes_converged_reason -snes_view
lid velocity = 100, prandtl # = 1, grashof # = 100000
  0 SNES Function norm 1809.96
  1 SNES Function norm 1678.37
  2 SNES Function norm 1643.76
  3 SNES Function norm 1559.34
  4 SNES Function norm 1557.6
  5 SNES Function norm 1510.71
  6 SNES Function norm 1500.47
  7 SNES Function norm 1498.93
 8 SNES Function norm 1498.44
  9 SNES Function norm 1498.27
 10 SNES Function norm 1498.18
 11 SNES Function norm 1498.12
 12 SNES Function norm 1498.11
 13 SNES Function norm 1498.11
 14 SNES Function norm 1498.11
```

. . .

E 990

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type newtonls -snes_converged_reason -pc_type lu

```
lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 1132.29
2 SNES Function norm 925.717
4 SNES Function norm 924.778
5 SNES Function norm 836.867
...
21 SNES Function norm 585.143
22 SNES Function norm 585.142
23 SNES Function norm 585.142
24 SNES Function norm 585.142
...
```

.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes type fas -snes converged reason -fas levels snes type gs -fas levels snes max it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000

- 0 SNES Function norm 1228.95
- 1 SNES Function norm 574,793
- 2 SNES Function norm 513.02
- 3 SNES Function norm 216.721
- 4 SNES Function norm 85,949

Nonlinear solve did not converge due to DIVERGED INNER iterations 4

Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes monitor short
-snes type fas -snes converged reason
-fas_levels_snes_type gs -fas_levels_snes max it 6
 -fas_coarse_snes_converged_reason
```

lid velocity = 100, prandtl # = 1, grashof # = 50000

- 0 SNES Function norm 1228.95 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 12
- 1 SNES Function norm 574,793 Nonlinear solve did not converge due to DIVERGED MAX IT its 50
- 2 SNES Function norm 513.02 Nonlinear solve did not converge due to DIVERGED MAX IT its 50
- 3 SNES Function norm 216.721 Nonlinear solve converged due to CONVERGED_FNORM RELATIVE its 22
- 4 SNES Function norm 85,949

Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH its 42 Nonlinear solve did not converge due to DIVERGED INNER iterations 4

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes monitor short
 -snes type fas -snes converged reason
 -fas_levels_snes_type qs -fas_levels_snes_max_it 6
  -fas coarse snes linesearch type basic
  -fas coarse snes converged reason
lid velocity = 100, prandtl \# = 1, grashof \# = 50000
  0 SNES Function norm 1228.95
    Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
  ٠
 47 SNES Function norm 78,8401
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 5
 48 SNES Function norm 73,1185
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 6
 49 SNES Function norm 78,834
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 5
 50 SNES Function norm 73.1176
    Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 6
  ٠
  •
```

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type nrichardson -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
 -npc_fas_levels_snes_type qs -npc_fas_levels_snes_max_it 6
 -npc fas coarse snes linesearch type basic
```

```
lid velocity = 100, prandtl \# = 1, grashof \# = 50000
  0 SNES Function norm 1228.95
   Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
  1 SNES Function norm 552,271
   Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 27
  2 SNES Function norm 173,45
   Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 45
  :
 43 SNES Function norm 3,45407e-05
   Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 2
 44 SNES Function norm 1.6141e-05
   Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 2
 45 SNES Function norm 9,13386e-06
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 45
```

Nonlinear Preconditioning

./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason -npc_snes_type fas -npc_fas_coarse_snes_converged_reason -npc_fas_levels_snes_type qs -npc_fas_levels_snes_max_it 6 -npc fas coarse snes linesearch type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000 0 SNES Function norm 1228.95 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6 1 SNES Function norm 538,605 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 13 2 SNES Function norm 178,005 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 24 : 27 SNES Function norm 0.000102487 Nonlinear solve converged due to CONVERGED FNORM RELATIVE its 2 28 SNES Function norm 4.2744e-05 Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 2 29 SNES Function norm 1.01621e-05 Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 29

Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da refine 4 -snes monitor short
 -snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason
 -npc_snes_type fas -npc_fas_coarse_snes_converged_reason
 -npc fas levels snes type newtonls -npc fas levels snes max it 6
  -npc fas levels snes linesearch type basic
  -npc fas levels snes max linear solve fail 30
  -npc_fas_levels_ksp_max_it 20 -npc_fas_levels_snes_converged_reason
  -npc_fas_coarse_snes_linesearch_type basic
lid velocity = 100, prandtl \# = 1, grashof \# = 50000
  0 SNES Function norm 1228.95
   Nonlinear solve did not converge due to DIVERGED_MAX_IT its 6
    •
       Nonlinear solve converged due to CONVERGED SNORM RELATIVE its 1
    ٠
  1 SNES Function norm 0.1935
  2 SNES Function norm 0.0179938
  3 SNES Function norm 0.00223698
  4 SNES Function norm 0.000190461
  5 SNES Function norm 1.6946e-06
Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 5
```

Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes type composite -snes composite type additiveoptimal
-snes_composite_sneses fas, newtonls -snes_converged_reason
-sub 0 fas levels snes type qs -sub 0 fas levels snes max it 6
  -sub 0 fas coarse snes linesearch type basic
-sub 1 snes linesearch type basic -sub 1 pc type mg
```

lid velocity = 100, prandtl # = 1, grashof # = 50000

- 0 SNES Function norm 1228.95
- 1 SNES Function norm 541,462
- 2 SNES Function norm 162.92
- 3 SNES Function norm 48,8138
- 4 SNES Function norm 11,1822
- 5 SNES Function norm 0.181469
- 6 SNES Function norm 0.00170909
- 7 SNES Function norm 3,24991e-08

Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 7

Nonlinear Preconditioning

```
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes type composite -snes composite type multiplicative
-snes_composite_sneses fas, newtonls -snes_converged_reason
-sub 0 fas levels snes type qs -sub 0 fas levels snes max it 6
  -sub 0 fas coarse snes linesearch type basic
-sub 1 snes linesearch type basic -sub 1 pc type mg
```

lid velocity = 100, prandtl # = 1, grashof # = 50000 0 SNES Function norm 1228.95 1 SNES Function norm 544,404 2 SNES Function norm 18,2513 3 SNES Function norm 0.488689 4 SNES Function norm 0.000108712 5 SNES Function norm 5.68497e-08

Nonlinear solve converged due to CONVERGED FNORM RELATIVE iterations 5

Nonlinear Preconditioning

Solver	Т	N. It	L. It	Func	Jac	PC	NPC
$(\mathcal{N} \setminus K - MG)$	9.83	17	352	34	85	370	_
NGMRES – R	7.48	10	220	21	50	231	10
$(\mathcal{N} \setminus K - MG)$							
FAS	6.23	162	0	2382	377	754	_
$FAS + (\mathcal{N} \backslash K - MG)$	8.07	10	197	232	90	288	_
$FAS*(\mathcal{N}ackslashK-MG)$	4.01	5	80	103	45	125	_
NRICH $-L$ FAS	3.20	50	0	1180	192	384	50
NGMRES – R FAS	1.91	24	0	447	83	166	24

イロト イヨト イヨト

Nonlinear Preconditioning

See discussion in:

Composing scalable nonlinear solvers,

Peter Brune, Matthew Knepley, Barry Smith, and Xuemin Tu,

ANL/MCS-P2010-0112, Argonne National Laboratory, 2012.

http://www.mcs.anl.gov/uploads/cels/papers/P2010-0112.pdf