
Tree-based methods on GPUs

Felipe Cruz1 and Matthew Knepley2,3

1Department of Mathematics
University of Bristol

2Computation Institute
University of Chicago

3Department of Molecular Biology and Physiology
Rush University Medical Center

SIAM CS & E
Miami, FL Mar 2, 2009

M. Knepley (UC) GPU SIAM 1 / 50



Introduction

Outline

1 Introduction

2 Short Introduction to FMM

3 Serial Implementation

4 Complexity Analysis

5 Multicore Computing

6 An Interface for Multicore Programs

M. Knepley (UC) GPU SIAM 2 / 50



Introduction

Scientific Computing Challenge

How do we create
reusable

implementations which are also
efficient?

M. Knepley (UC) GPU SIAM 5 / 50



Introduction

Scientific Computing Insight

Structures are conserved,

but tradeoffs change.

M. Knepley (UC) GPU SIAM 6 / 50



Introduction

Structure vs. Tradeoffs

This is how PETSc works:
Sparse matrix-vector product has a common structure
Different storage formats are chosen based upon

architecture
PDE

M. Knepley (UC) GPU SIAM 7 / 50

http://www.mcs.anl.gov/petsc


Introduction

Structure vs. Tradeoffs

This is how PETSc works:
Sparse matrix-vector product has a common structure
Different storage formats are chosen based upon

architecture
PDE

M. Knepley (UC) GPU SIAM 7 / 50

http://www.mcs.anl.gov/petsc


Introduction

Structure vs. Tradeoffs

This is how PETSc works:
Sparse matrix-vector product has a common structure
Different storage formats are chosen based upon

architecture
PDE

M. Knepley (UC) GPU SIAM 7 / 50

http://www.mcs.anl.gov/petsc


Introduction

Structure vs. Tradeoffs

A x = b

{ b, Ab, A(Ab), A(A(Ab)), . . . }

This is how PETSc works:
Krylov solvers have a common structure
Different solvers are chosen based upon

problem characteristics
architecture

M. Knepley (UC) GPU SIAM 8 / 50

http://www.mcs.anl.gov/petsc


Introduction

Structure vs. Tradeoffs

A x = b

{ b, Ab, A(Ab), A(A(Ab)), . . . }

This is how PETSc works:
Krylov solvers have a common structure
Different solvers are chosen based upon

problem characteristics
architecture

M. Knepley (UC) GPU SIAM 8 / 50

http://www.mcs.anl.gov/petsc


Introduction

Structure vs. Tradeoffs

A x = b

{ b, Ab, A(Ab), A(A(Ab)), . . . }

This is how PETSc works:
Krylov solvers have a common structure
Different solvers are chosen based upon

problem characteristics
architecture

M. Knepley (UC) GPU SIAM 8 / 50

http://www.mcs.anl.gov/petsc


Introduction

Structure vs. Tradeoffs

This is how treecodes work:
Hierarchical algorithms have a common structure
Different analytical and geometric decisions depend upon

problem configuration
accuray requirements

M. Knepley (UC) GPU SIAM 9 / 50



Introduction

Structure vs. Tradeoffs

This is how treecodes work:
Hierarchical algorithms have a common structure
Different analytical and geometric decisions depend upon

problem configuration
accuray requirements

M. Knepley (UC) GPU SIAM 9 / 50



Introduction

Structure vs. Tradeoffs

This is how treecodes work:
Hierarchical algorithms have a common structure
Different analytical and geometric decisions depend upon

problem configuration
accuray requirements

M. Knepley (UC) GPU SIAM 9 / 50



Introduction

Structure vs. Tradeoffs

This is how biology works:
For ion channels, Nature uses the same

protein building blocks
energetic balances

Different energy terms predominate for different uses

M. Knepley (UC) GPU SIAM 10 / 50



Introduction

Structure vs. Tradeoffs

This is how biology works:
For ion channels, Nature uses the same

protein building blocks
energetic balances

Different energy terms predominate for different uses

M. Knepley (UC) GPU SIAM 10 / 50



Introduction

Structure vs. Tradeoffs

This is how biology works:
For ion channels, Nature uses the same

protein building blocks
energetic balances

Different energy terms predominate for different uses

M. Knepley (UC) GPU SIAM 10 / 50



Introduction

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Spiral Project:
Discrete Fourier Transform (DSP)

Fast Fourier Transform (SPL)

C Implementation (SPL Compiler)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU SIAM 11 / 50

http://www.spiral.net


Introduction

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Spiral Project:
Discrete Fourier Transform (DSP)

Fast Fourier Transform (SPL)

C Implementation (SPL Compiler)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU SIAM 11 / 50

http://www.spiral.net


Introduction

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FLAME Project:
Abstract LA (PME/Invariants)

Basic LA (FLAME/FLASH)

Scheduling (SuperMatrix)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU SIAM 11 / 50

http://www.cs.utexas.edu/users/flame


Introduction

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

FEniCS Project:
Navier-Stokes (FFC)

Finite Element (FIAT)

Integration/Assembly (FErari)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU SIAM 11 / 50

http://www.fenics.org


Introduction

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Treecodes:
Kernels with decay (Coulomb)

Treecodes (PetFMM)

Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU SIAM 11 / 50



Introduction

Representation Hierarchy

Divide the work into levels:
Model

Algorithm

Implementation

Treecodes:
Kernels with decay (Coulomb)

Treecodes (PetFMM)

Scheduling (PetFMM-GPU)

Each level demands a strong abstraction layer

M. Knepley (UC) GPU SIAM 11 / 50



Introduction

Spiral

Spiral Team, http://www.spiral.net
Uses an intermediate language, SPL, and then generates C
Works by circumscribing the algorithmic domain

M. Knepley (UC) GPU SIAM 12 / 50

http://www.spiral.net


Introduction

FLAME & FLASH

0

200

400

600

800

1000

1200

1400

0 5000 10000 15000 20000

G
F

LO
P

S

Matrix size

Performance of the Matrix-Matrix Product (C=C+A*B) on GPU/CPU on S1070

Algorithm-by-blocks on four T10 processors
CUBLAS sgemm on a single T10 processor

MKL sgemm on Intel Xeon QuadCore (4 cores)

Robert van de Geijn, http://www.cs.utexas.edu/users/flame
FLAME is an Algorithm-By-Blocks interface
FLASH/SuperMatrix is a runtime system

M. Knepley (UC) GPU SIAM 13 / 50

http://www.cs.utexas.edu/users/flame


Short Introduction to FMM

Outline

1 Introduction

2 Short Introduction to FMM
Spatial Decomposition
Data Decomposition

3 Serial Implementation

4 Complexity Analysis

5 Multicore Computing

6 An Interface for Multicore Programs

M. Knepley (UC) GPU SIAM 14 / 50



Short Introduction to FMM Spatial Decomposition

Outline

2 Short Introduction to FMM
Spatial Decomposition
Data Decomposition

M. Knepley (UC) GPU SIAM 15 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

FMM in Sieve

The Quadtree is a Sieve
with optimized operations

Multipoles are stored in Sections

Two Overlaps are defined
Neighbors
Interaction List

Completion moves data for
Neighbors
Interaction List

M. Knepley (UC) GPU SIAM 16 / 50



Short Introduction to FMM Spatial Decomposition

Tree Interface

locateBlob(blob)
Locate point in the tree

fillNeighbors()
Compute the neighbor section

findInteractionList()
Compute the interaction list cell section, allocate value section

fillInteractionList(level)
Compute the interaction list value section

fill(blobs)
Compute the blob section

dump()
Produces a verifiable repesentation of the tree

M. Knepley (UC) GPU SIAM 17 / 50



Short Introduction to FMM Data Decomposition

Outline

2 Short Introduction to FMM
Spatial Decomposition
Data Decomposition

M. Knepley (UC) GPU SIAM 18 / 50



Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (UC) GPU SIAM 19 / 50



Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (UC) GPU SIAM 19 / 50



Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (UC) GPU SIAM 19 / 50



Short Introduction to FMM Data Decomposition

FMM Sections

FMM requires data over the Quadtree distributed by:
box

Box centers, Neighbors

box + neighbors
Blobs

box + interaction list
Interaction list cells and values
Multipole and local coefficients

Notice this is multiscale since data is divided at each level

M. Knepley (UC) GPU SIAM 19 / 50



Serial Implementation

Outline

1 Introduction

2 Short Introduction to FMM

3 Serial Implementation

4 Complexity Analysis

5 Multicore Computing

6 An Interface for Multicore Programs

M. Knepley (UC) GPU SIAM 20 / 50



Serial Implementation

Evaluator Interface

initializeExpansions(tree, blobInfo)
Generate multipole expansions on the lowest level
Requires loop over cells
O(p)

upwardSweep(tree)
Translate multipole expansions to intermediate levels
Requires loop over cells and children (support)
O(p2)

downwardSweep(tree)
Convert multipole to local expansions and translate local
expansions on intermediate levels
Requires loop over cells and parent (cone)
O(p2)

M. Knepley (UC) GPU SIAM 21 / 50



Serial Implementation

Evaluator Interface

evaluateBlobs(tree, blobInfo)
Evaluate direct and local field interactions on lowest level
Requires loop over cells and neighbors (in section)
O(p2)

evaluate(tree, blobs, blobInfo)
Calculate the complete interaction (multipole + direct)

M. Knepley (UC) GPU SIAM 22 / 50



Serial Implementation

Kernel Interface

Method Description
P2M(t) Multipole expansion coefficients
L2P(t) Local expansion coefficients
M2M(t) Multipole-to-multipole translation
M2L(t) Multipole-to-local translation
L2L(t) Local-to-local translation
evaluate(blobs) Direct interaction

Evaluator is templated over Kernel
There are alternative kernel-independent methods

kifmm3d

M. Knepley (UC) GPU SIAM 23 / 50

http://www.mrl.nyu.edu/~harper/kifmm3d


Complexity Analysis

Outline

1 Introduction

2 Short Introduction to FMM

3 Serial Implementation

4 Complexity Analysis

5 Multicore Computing

6 An Interface for Multicore Programs

M. Knepley (UC) GPU SIAM 24 / 50



Complexity Analysis

Greengard & Gropp Analysis

For a shared memory machine,

T = a
N
P

+ b log4 P + c
N

BP
+ d

NB
P

+ e(N,P) (1)

1 Initialize multipole expansions, finest local expansions, final sum
2 Reduction bottleneck
3 Translation and Multipole-to-Local
4 Direct interaction
5 Low order terms

A Parallel Version of the Fast Multipole Method,
L. Greengard and W.D. Gropp, Comp. Math. Appl., 20(7), 1990.

M. Knepley (UC) GPU SIAM 25 / 50



Complexity Analysis

Distributed FMM

Additions for distributed computing:

Partitioning

Explicit optimization problem to minimize
Communication volume
Load imbalance

Uses PETSc Sieve for parallelism

M. Knepley (UC) GPU SIAM 26 / 50



Complexity Analysis

Distributed FMM

Additions for distributed computing:

Partitioning

Explicit optimization problem to minimize
Communication volume
Load imbalance

Uses PETSc Sieve for parallelism

M. Knepley (UC) GPU SIAM 26 / 50



Complexity Analysis

Distributed FMM

Additions for distributed computing:

Partitioning

Explicit optimization problem to minimize
Communication volume
Load imbalance

Uses PETSc Sieve for parallelism

M. Knepley (UC) GPU SIAM 26 / 50



Complexity Analysis

Distributed FMM

Additions for distributed computing:

Partitioning

Explicit optimization problem to minimize
Communication volume
Load imbalance

Uses PETSc Sieve for parallelism

M. Knepley (UC) GPU SIAM 26 / 50



Multicore Computing

Outline

1 Introduction

2 Short Introduction to FMM

3 Serial Implementation

4 Complexity Analysis

5 Multicore Computing

6 An Interface for Multicore Programs

M. Knepley (UC) GPU SIAM 27 / 50



Multicore Computing

Question

What is the optimal number of particles per cell?

Greengard & Gropp
Minimize time and maximize parallel efficiency
Bopt =

√
c
d ≈ 30

Gumerov & Duraiswami
Follow GG, but also try to consider memory access
Bopt ≈ 91, but instead, they choose 320
Heavily weights the N2 part of the computation

We propose to cover up the bottleneck with direct evaluations

M. Knepley (UC) GPU SIAM 28 / 50



Multicore Computing

Problem
Missing Concurrency

We can balance time in direct evaluation with idle time for small grids.

The direct evaluation takes time d NB
p

Assume a single thread group works on the first L tree levels

Thus, we need

B ≥ b
d

4L+1p
N

(2)

in order to cover the bottleneck. In an upcoming publication, we show
that this bound holds for all modern processors.

M. Knepley (UC) GPU SIAM 29 / 50



Multicore Computing

Problem
Missing Bandwidth

We can restructure the M2L to conserve bandwidth

Matrix-free application of M2L

Reorganize traversal to minimize bandwidth

Old Pull in 27 interaction MEs, transform to LE, reduce

New Pull in cell ME, transform to 27 interaction LEs, partially reduce

M. Knepley (UC) GPU SIAM 30 / 50



Multicore Computing

Matrix-Free M2L

The M2L transformation applies the operator

Mij = −1i t−(i+j+1)
(

i + j
j

)
(3)

Notice that the t exponent is constant along perdiagonals. Thus we
divide by t at each perdiagonal
calculate the Cij by the recurrence along each perdiagonal
carefully formulate complex division (STL fails here)

M. Knepley (UC) GPU SIAM 31 / 50



An Interface for Multicore Programs

Outline

1 Introduction

2 Short Introduction to FMM

3 Serial Implementation

4 Complexity Analysis

5 Multicore Computing

6 An Interface for Multicore Programs
FLASH
PetFMM

M. Knepley (UC) GPU SIAM 32 / 50



An Interface for Multicore Programs FLASH

Outline

6 An Interface for Multicore Programs
FLASH
PetFMM

M. Knepley (UC) GPU SIAM 33 / 50



An Interface for Multicore Programs FLASH

FLASH Design

FLASH enables multicore computing through FLAME

LA interface is identical to FLAME
FLAME executes operates immediately
FLASH queues operations, and
Executes queues on user call (does nothing in FLAME)

M. Knepley (UC) GPU SIAM 34 / 50



An Interface for Multicore Programs FLASH

FLASH Design

FLASH enables multicore computing through FLAME

LA interface is identical to FLAME
FLAME executes operates immediately
FLASH queues operations, and
Executes queues on user call (does nothing in FLAME)

M. Knepley (UC) GPU SIAM 34 / 50



An Interface for Multicore Programs FLASH

FLASH Design

FLASH enables multicore computing through FLAME

LA interface is identical to FLAME
FLAME executes operates immediately
FLASH queues operations, and
Executes queues on user call (does nothing in FLAME)

M. Knepley (UC) GPU SIAM 34 / 50



An Interface for Multicore Programs FLASH

FLASH Design

FLASH enables multicore computing through FLAME

LA interface is identical to FLAME
FLAME executes operates immediately
FLASH queues operations, and
Executes queues on user call (does nothing in FLAME)

M. Knepley (UC) GPU SIAM 34 / 50



An Interface for Multicore Programs FLASH

Cholesky Factorization

FLA_Part_2x2(A, &ATL, &ATR,
&ABL, &ABR, 0, 0, FLA_TL);

while(FLA_Object_length(ATL) < FLA_Object_length(A)) {
FLA_Repart_2x2_to_3x3(
ATL, ATR, &A00, &A01, &A02,

&A10, &A11, &A12,
ABL, ABR, &A20, &A21, &A22, 1, 1, FLA_BR);

FLASH_Chol(FLA_UPPER_TRIANGULAR, A11);
FLASH_Trsm(FLA_LEFT,FLA_UPPER_TRIANGULAR,FLA_TRANSPOSE,

FLA_NONUNIT_DIAG, FLA_ONE, A11, A12);
FLASH_Syrk(FLA_UPPER_TRIANGULAR, FLA_TRANSPOSE,

FLA_MINUS_ONE, A12, FLA_ONE, A22);
FLA_Cont_with_3x3_to_2x2(

&ATL, &ATR, A00, A01, A02,
A10, A11, A12,

&ABL, &ABR, A20, A21, A22, FLA_TL);
}
FLA_Queue_exec();

M. Knepley (UC) GPU SIAM 35 / 50



An Interface for Multicore Programs PetFMM

Outline

6 An Interface for Multicore Programs
FLASH
PetFMM

M. Knepley (UC) GPU SIAM 36 / 50



An Interface for Multicore Programs PetFMM

PetFMM-GPU

We break down sweep operations into Tasks

Cell loops are now tiled
Tasks are queued
We can form a DAG since we know the dependence structure
Scheduling is possible

This asynchronous interface can enable
Overlapping direct and multipole calculations
Reorganizing the downward sweep
Adaptive expansions

M. Knepley (UC) GPU SIAM 37 / 50



An Interface for Multicore Programs PetFMM

GPU Classes

Section
size() returns the number of values
getFiberDimension(cell) returns the number of cell values
restrict/update() retrieves and changes cell values
clone/extract() converts between CPU and GPU objects

Evaluator

initializeExpansions()

upwardSweep()

downwardSweepTransform()

downwardSweepTranslate()

evaluateBlobs()

evaluate()

M. Knepley (UC) GPU SIAM 38 / 50



An Interface for Multicore Programs PetFMM

GPU Classes

Section
size() returns the number of values
getFiberDimension(cell) returns the number of cell values
restrict/update() retrieves and changes cell values
clone/extract() converts between CPU and GPU objects

Task

Input data size
Output data size
Dependencies (future)

TaskQueue

Manages storage and offsets
evaluate()

M. Knepley (UC) GPU SIAM 38 / 50



An Interface for Multicore Programs PetFMM

Tasks

Upward Sweep Task

cell block
in cell and child centers, child multipole coeff

out cell multipole coeff
Downward Sweep Transform Task

cell block
in cell and interaction list centers, interaction list multipole coeff

out cell temp local coeff
Downward Sweep Expansion Task

cell block
in cell and parent centers, cell temp local coeff, parent local coeff

out cell local coeff

M. Knepley (UC) GPU SIAM 39 / 50



An Interface for Multicore Programs PetFMM

Tasks

Upward Sweep Task

cell block
in cell and child centers, child multipole coeff

out cell multipole coeff
Downward Sweep Transform Task

cell block
in cell and interaction list centers, cell multipole coeff

out interaction list temp local coefficients
Downward Sweep Expansion Task

cell block
in cell and parent centers, cell temp local coeff, parent local coeff

out cell local coeff

M. Knepley (UC) GPU SIAM 39 / 50



An Interface for Multicore Programs PetFMM

Tasks

Upward Sweep Task

cell block
in cell and child centers, child multipole coeff

out cell multipole coeff
Downward Sweep Reduce Task

cell block
in interaction list temp local coefficients

out cell temp local coefficients
Downward Sweep Expansion Task

cell block
in cell and parent centers, cell temp local coeff, parent local coeff

out cell local coeff

M. Knepley (UC) GPU SIAM 39 / 50



An Interface for Multicore Programs PetFMM

Transform Task

Shifts interaction cell multipole expansion to cell local expansion

Add a task for each interaction cell
All tasks with same origin are merged
Local memory:

2 (p+1) blockSize (Pascal) + 2 p blockSize (LE) + 2 p (ME)
8 terms 4416 bytes

17 terms 9096 bytes
Execution

1 block per ME
Each thread reads a section of ME and the MEcenter
Each thread computes an LE separately
Each thread writes LE to separate global location

M. Knepley (UC) GPU SIAM 40 / 50



An Interface for Multicore Programs PetFMM

Reduce Task

Add up local expansion contributions from each interaction cell

Add a task for each cell
Local memory:

2*terms (LE)
8 terms 64 bytes

17 terms 136 bytes
Execution

1 block per output LE
Each thread reads a section of input LE
Each thread adds to shared output LE

M. Knepley (UC) GPU SIAM 41 / 50



Conclusions

What’s Important?

Interface improvements bring concrete benefits

Facilitated code reuse
Serial code was largely reused
Test infrastructure completely reused

Opportunites for performance improvement
Overlapping computations
Better task scheduling

Expansion of capabilities
Could now combine distributed and multicore implementations
Could replace local expansions with cheaper alternatives

M. Knepley (UC) GPU SIAM 42 / 50



Distributed FMM

Parallel Tree Implementation

Divide tree into a root and local trees

Distribute local trees among processes

Provide communication pattern for local sections (overlap)
Both neighbor and interaction list overlaps

Sieve generates MPI from high level description

M. Knepley (UC) GPU SIAM 43 / 50



Distributed FMM

Parallel Tree Implementation
How should we distribute trees?

Multiple local trees per process allows good load balance
Partition weighted graph

Minimize load imbalance and communication

Computation estimate:
Leaf Nip (P2M) + nIp2 (M2L) + Nip (L2P) + 3d N2

i (P2P)
Interior ncp2 (M2M) + nIp2 (M2L) + ncp2 (L2L)

Communication estimate:
Diagonal nc(L − k − 1)

Lateral 2d 2m(L−k−1)−1
2m−1 for incidence dimesion m

Leverage existing work on graph partitioning
ParMetis

M. Knepley (UC) GPU SIAM 44 / 50

http://www.cs.umn.edu/parmetis


Distributed FMM

Parallel Tree Implementation
Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms
for parallel adaptive N-body simulation, SIAM J. Sci. Comput., 19(2), 1998.

Good partitions exist for non-uniform distributions
2D O

(√
n(log n)3/2

)
edgecut

3D O
(
n2/3(log n)4/3

)
edgecut

As scalable as regular grids

As efficient as uniform distributions

ParMetis will find a nearly optimal partition

M. Knepley (UC) GPU SIAM 45 / 50

http://portal.acm.org/citation.cfm?id=289842
http://portal.acm.org/citation.cfm?id=289842


Distributed FMM

Parallel Tree Implementation
Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning,
Supercomputing, 1995.

Good partitions exist for non-uniform distributions
2D Ci = 1.24iC0 for random matching
3D Ci = 1.21iC0?? for random matching

3D proof needs assurance that averge degree does not increase

Efficient in practice

M. Knepley (UC) GPU SIAM 46 / 50

http://glaros.dtc.umn.edu/gkhome/node/79
http://glaros.dtc.umn.edu/gkhome/node/79


Distributed FMM

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

M. Knepley (UC) GPU SIAM 47 / 50



Distributed FMM

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

M. Knepley (UC) GPU SIAM 47 / 50



Distributed FMM

Parallel Tree Implementation
Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

M. Knepley (UC) GPU SIAM 47 / 50



Distributed FMM

Parallel Tree Interface

fillNeighbors()
Compute neighbor overlap, and send neighbors

findInteractionList()
Compute the interaction list overlap

fillInteractionList(level)
Complete and copy into local interaction sections

fill(blobs)
Now must scatter blobs to local trees
Uses scatterBlobs() and gatherBlobs()

M. Knepley (UC) GPU SIAM 48 / 50



Distributed FMM

Parallel Data Movement

1 Complete neighbor section

2 Upward sweep
1 Upward sweep on local trees
2 Gather to root tree
3 Upward sweep on root tree

3 Complete interaction list section

4 Downward sweep
1 Downward sweep on root tree
2 Scatter to local trees
3 Downward sweep on local trees

M. Knepley (UC) GPU SIAM 49 / 50



Distributed FMM

Parallel Evaluator Interface

initializeExpansions(local trees, blobInfo)
Evaluate each local tree

upwardSweep(local trees, partition, root tree)
Evaluate each local tree and then gather to root tree

downwardSweep(local trees, partition, root tree)
Scatter from root tree and then evaluate each local tree

evaluateBlobs(local trees, blobInfo)
Evaluate on all local trees

evaluate(tree, blobs, blobInfo)
Identical

M. Knepley (UC) GPU SIAM 50 / 50


	Introduction
	Short Introduction to FMM
	Spatial Decomposition
	Data Decomposition

	Serial Implementation
	Complexity Analysis
	Multicore Computing
	An Interface for Multicore Programs
	FLASH
	PetFMM


