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Vlasov Equation

∂f
∂t

+ v · ∂f
∂x

+
dv
dt
· ∂f
∂v

= 0

We will need

I Particle discretization

I Symplectic integrators



Vlasov-Poisson Equation

∂f
∂t

+ v · ∂f
∂x
− q∇φ

m
· ∂f
∂v

= 0

−∆φ = ρ

We will need

I FEM discretization

I FEM-Particle map



Weak Equivalence

fFEM =
∑

i

φifi fPM =
∑

p

δ(x− xp)δ(v− vp)wp

Require that moments are preserved
∫
φi fFEM =

∫
φi fPM

Mf = MPw

where M is the mass matrix, and

[MP]ip =

∫
φi δ(x− xp)

= φi(xp)



Projections

Particle→ FEM (deposition)

Mf = MPw

f = M−1MPw

FEM→ Particle

w = M+
P Mf



Examples

Two stream instability test in PETSc

(Mollén et al. 2021)



Vlasov-Poisson-Landau Equation

∂f
∂t

+ v · ∂f
∂x
− q∇φ

m
· ∂f
∂v

= C(f )

−∆φ = ρ

We will need

I Action of the Landau operator

I Metriplectic integrator



Long Time Evolution

Symmetries must be present in the discrete system:

I Conservation of mass

I Conservation of momentum

I Conservation of energy

I Monotonicity of entropy



Long Time Evolution

Tools we will need:

I Symplectic integrator will preserve moments

I Projection will preserve moments

I Discrete Landau must preserve moments

I DG integrator to preserve monotonic entropy

I Splitting should not destroy these properties



Discrete Gradients
Discrete Gradient integrators

f n+1 − f n

∆t
= S(f n, f n+1)∇F(f n, f n+1)

satisfy a secant condition
(
f n+1 − f n) · ∇F(f n, f n+1) = F(f n+1)− F(f n).

Monotonicity of entropy means monotonicity of free energy:

S(f n+1)− S(f n) =
(
E(f n+1)− F(f n+1)

)
− (E(f n)− F(f n))

= −
(
F(f n+1)− F(f n)

)

= −
(
f n+1 − f n) · ∇F

= −∆t∇F · S · ∇F

≥ 0

since our S is symmetric negative semi-definite.
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Landau Operator
Strong Form

Cα(f )

=
∑

β

ναβ
m0

mα
∇ ·
∫

dv′ U(v, v′)
(

m0

mα
fβ(v′)∇fα(v)− fα(v)∇′fβ(v′)

m0

mβ

)

U(v, v′) =
1

|v− v′|I−
(v− v′)⊗ (v− v′)

|v− v′|3

ναβ =
e2
αe2
η ln Λαβ

8πm2
0ε

2
0

m0 = reference mass



Landau Operator
Weak Form

∑

β

ναβ
m2

0
mα

∫
dv′∇′ψ(v′) ·

(
1

mα
K(fβ, v′)φ(v′) +

1
mβ

D(fβ, v′) · ∇′φ(v′)
)

K(f , v) =

∫
dv′ U(v, v′) · ∇′f (v′)

D(f , v) =

∫
dv′ U(v, v′) f (v′)

(Hirvijoki and Adams 2017)



Landau Operator
Implementation

I Conservative projection to/from FEM

I Constant order Qk

I Adaptive p4est grid

(Adams, Hirvijoki, et al. 2017)



Spitzer Resistivity
(Adams, Knepley, and Brennan 2021)
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2.2. Verification with Spitzer resistivity. Spitzer resistivity is a classical model of elec-
trical resistivity commonly used in plasma physics, based upon electron-ion collisions [12, 13].
The transverse Spitzer resistivity is given by:

⌘? =
4
p

2⇡

3

Ze2m
1/2
e ln⇤

(4⇡"0)
2
(kBTe)

3/2
,

and the parallel resistivity is given by ⌘z = ⌘?F (Z), with

F (Z) =
1 + 1.198Z + 0.222Z2

1 + 2.966Z + 0.753Z2

.
We verify our code by applying and electric field (Ez = 10�1N/C), computing a finite

element integral of the current. The velocity space model can create a current with an applied
electric field. This parallel current can be computed with Jz =

P
↵

R
⌦

dxq↵xzf↵(x), and the

e↵ective resistivity of the model is ⌘c = Ez/Jz. Jz asymptotes to a constant, within a range of
several decades of Ez; we run the code until the changes in Jz are negligible. We have informally
verified that the ratio of our ⌘ = E/J to the Spitzer ⌘z is not sensitive to any parameters such
as temperature and solver parameters. Figure 4 plot the value of ⌘ = E/J to the Spitzer ⌘z as
a function of the ionization of the ions (Z). This data was run with a highly resolved mesh, 512

Fig. 4. Calculate ⌘ = E/J and the Spitzer ⌘z as a function of Z

cells and Q5 elements resulting in 18,468 integration points, and is probably not fully resolved.
We do see with this data that the calculated ⌘ is within 1% of the Spitzer value.
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Particle Landau
(Hirvijoki 2021)

If we ignore position, we have

dvp

dt
=
ν

m

∑

p′
wp′Q

(
vp − vp′

)
Γ(S, p, p′)

where Q is the Landau tensor,

Q(v) =
1
‖v‖I− v⊗ v

‖v‖3

and

Γ(S, p, p′) =
1

wp

∂S
∂vp
− 1

wp′

∂S
∂vp′

S = −
∫

dv f (v) ln f (v)



Particle Landau
(Hirvijoki 2021)

If we ignore position, we have

dvp

dt
=
ν

m

∑

p′
wp′Q

(
vp − vp′

)
Γ(S, p, p′)

where Q is the Landau tensor,

Q(v) =
1
‖v‖I− v⊗ v

‖v‖3

and

Γ(S, p, p′) =
1

wp

∂S
∂vp
− 1

wp′

∂S
∂vp′

S = −
∑

p

wp ln wp



Particle Landau
(Hirvijoki 2021)

If we ignore position, we have

dvp

dt
=
ν

m

∑

p′
wp′Q

(
vp − vp′

)
Γ(S, p, p′)

where Q is the Landau tensor,

Q(v) =
1
‖v‖I− v⊗ v

‖v‖3

and

Γ(S, p, p′) =
1

wp

∂S
∂vp
− 1

wp′

∂S
∂vp′

Sε = −
∫

dv
∑

p

wpψε(v− vp) ln


∑

p′
wp′ψε(v− vp′)






Particle Landau
(Hirvijoki 2021)

vn+1
p − vn

p

∆t
=
ν

m

∑

p′
wp′Q

(
vn+1/2

p − vn+1/2
p′

)
Γ(Sn

ε , p, p
′)

where Q is the Landau tensor,

Q(v) =
1
‖v‖I− v⊗ v

‖v‖3

and

Γ(S, p, p′) =
1

wp

∂S
∂vp
− 1

wp′

∂S
∂vp′

Sε = −
∫

dv
∑

p

wpψε(v− vp) ln


∑

p′
wp′ψε(v− vp′)






Future Work

I Prove that splitting preserves structure

I Scalability tests

I Higher order Discrete Gradients

I Mixed-Poisson FEM
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