Improved Solvation Models using Boundary Integral Equations

Matthew Knepley and Jaydeep Bardhan

Computational and Applied Mathematics Rice University

SIAM Conference on the Life Sciences Minneapolis, MN August 9, 2018

Collaborators

- Amir Molvai Tabrizi (postdoc, NE)
- Tom Klotz (grad student, Rice)
- Spencer Goossens (grad student, NE)
- Ali Rahimi (grad student, NE)

Main Point

Solvation computation

can benefit from
non-Poisson models.

Bioelectrostatics

The Natural World

Induced Surface Charge on Lysozyme

Bioelectrostatics

Physical Model

Electrostatic Potential ϕ

Bioelectrostatics

Mathematical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ,

$$
\begin{aligned}
\sigma(\vec{r})+\hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma\left(\vec{r}^{\prime}\right) d^{2} \vec{r}^{\prime}}{4 \pi\left\|\vec{r}-\vec{r}^{\prime}\right\|} & =-\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_{k}}{4 \pi\left\|\vec{r}-\vec{r}_{k}\right\|} \\
\left(\mathcal{I}+\hat{\epsilon} \mathcal{D}^{*}\right) \sigma(\vec{r}) & =
\end{aligned}
$$

where we define

$$
\hat{\epsilon}=2 \frac{\epsilon_{I}-\epsilon_{I I}}{\epsilon_{I}+\epsilon_{I I}}<0
$$

Bioelectrostatics

Mathematical Model

This is equivalent to a PDE model for the potentials $\Phi_{I, / l}$ in the two regions, and boundary conditions at the solute surface:

$$
\begin{aligned}
\epsilon_{I} \Delta \Phi_{I} & =\sum_{k=1}^{Q} q_{k} \delta\left(\vec{r}-\vec{r}_{k}\right) \\
\epsilon_{I I} \Delta \Phi_{I I} & =0 \\
\left.\Phi_{I}\right|_{r=b} & =\left.\Phi_{I I}\right|_{r=b} \\
\left.\epsilon_{I} \frac{\partial \Phi_{I}}{\partial r}\right|_{r=b} & =\left.\epsilon_{I I} \frac{\partial \Phi_{I I}}{\partial r}\right|_{r=b}
\end{aligned}
$$

Bioelectrostatics

Mathematical Model

The reaction potential is given by

$$
\phi^{R}(\vec{r})=\int_{\Gamma} \frac{\sigma\left(\vec{r}^{\prime}\right) d^{2} \vec{r}^{\prime}}{4 \pi \epsilon_{1}\left\|\vec{r}-\vec{r}^{\prime}\right\|}=C \sigma
$$

which defines $G_{e s}$, the electrostatic part of the solvation free energy

$$
\begin{aligned}
\Delta G_{e s} & =\frac{1}{2}\left\langle q, \phi^{R}\right\rangle \\
& =\frac{1}{2}\langle q, L q\rangle \\
& =\frac{1}{2}\left\langle q, C A^{-1} B q\right\rangle
\end{aligned}
$$

where

$$
\begin{aligned}
& B q=-\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q\left(\vec{r}^{\prime}\right) d^{3} \vec{r}^{\prime}}{4 \pi\left\|\vec{r}-\vec{r}^{\prime}\right\|} \\
& A \sigma=\mathcal{I}+\hat{\epsilon} \mathcal{D}^{*}
\end{aligned}
$$

Outline

(1) Some History

(2) Improving the Poisson Operator

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

$$
G_{e s}^{i j}=\frac{1}{8 \pi}\left(\frac{1}{\epsilon_{l l}}-\frac{1}{\epsilon_{l}}\right) \sum_{i, j}^{N} \frac{q_{i} q_{j}}{r_{i j}^{2}+R_{i} R_{j} e^{-r_{i j}^{2} / 4 R_{i} R_{j}}}
$$

where the effective Born radius is

$$
R_{i}=\frac{1}{8 \pi}\left(\frac{1}{\epsilon_{I I}}-\frac{1}{\epsilon_{l}}\right) \frac{1}{E_{i}}
$$

where E_{i} is the self-energy of the charge q_{i}, the electrostatic energy when atom i has unit charge and all others are neutral.

GB Problems

- No global potential solution, only energy
- No analysis of the error
- For example, Salsbury 2006 consists of parameter tuning
- No path for systematic improvement
- For example, Sigalov 2006 changes the model
- The same atoms have different radii in different
- molecules,
- solvents
- temperatures
- LOTS of parameters
- Nina, Beglov, Roux 1997

GB Problems

TABLE 2: Atomic Born Radii Derived from Solvent Electrostatic Charge Distribution Tested with Free Energy Perturbation Methods in an Explicit Solvent ${ }^{a}$

- No global potential so
atom
radius (\AA)
- No analysis of the erri
${ }_{c}^{\circ}$
- For example, Salsbury 20 ca
- No path for systematic ${ }^{\mathrm{H}^{*}}$
- For example, Sigalov $200 \mathrm{cc}_{\mathrm{cc}}^{\mathrm{cB}}$ Backbone
2.04 carbonyl C, peptide backbone
1.52 carbonyl oxygen
2.23 peptide nitrogen
2.86 all CA except Gly
2.38 Gly only

Hydrogens
0.00 all hydrogens

Side Chains
2.67 all residues
2.46 Val, Ile, Arg, Lys, Met, Phe, Thr, Trp, Gln, Glu

- The same atoms hav $\mathrm{cc}_{\mathrm{co}}$
2.44 Ile, Leu, Arg, Lys
- molecules,
- solvents
- temperatures
- LOTS of parameters
- Nina, Beglov, Roux 1997

CD, CG
1.98

Asp, Glu, Asn, Gln
CB, CG, CD
CE*, CD*, CZ,
1.98

CE*, CD* ${ }^{*} \mathrm{CZ}^{*}, \mathrm{CH} 2$
2.00
1.78

CE $\quad 2.10$
CZ, CE $\quad 2.80$
OE*, OD*
142 Arg, Lys
OG* $\quad 1.64 \quad$ Ser, Thr

OH
1.85

NH*, NE, NZ
2.13 At only

NE2, ND2
2.15 Gln, Asn

NE2, ND1
NE1
S*
2.31 His only
2.40 Trp
2.00 Met, Cys
${ }^{a}$ Patches N-term and C-term CAT, CAY: $2.06 \AA$. CY: $2.04 \AA$. OY: $1.52 \AA$. NT: $2.23 \AA$. * refers to a wild card character.

Implicit Solvent Models

State-of-the-art solvation models still use the same variation in radii

Biomolecular electrostatics I want your solvation (model),
J. Bardhan, Comp. Sci. \& Disc., 5(1), (2012)

Outline

(1) Some History

(2) Improving the Poisson Operator

Origins of Electrostatic Asymmetry

Improving the Poisson Operator

Origins of Electrostatic Asymmetry

Origins of Electrostatic Asymmetry

Main Idea

Maxwell Boundary Condition

Assume the model and energy, and derive the radii,

$$
\epsilon_{l} \frac{\partial \Phi_{I}}{\partial n}=\epsilon_{l l} \frac{\partial \Phi_{I I}}{\partial n}
$$

Main Idea

Solvation-Layer Interface Condition (SLIC)

Assume the energy and radii, and derive the model.

$$
\left(\epsilon_{l}-\Delta \epsilon h\left(E_{n}\right)\right) \frac{\partial \Phi_{I}}{\partial n}=\left(\epsilon_{l l}-\Delta \epsilon h\left(E_{n}\right)\right) \frac{\partial \Phi_{I I}}{\partial n}
$$

Main Idea

Using our correspondence with the BIE form,

$$
\left(\mathcal{I}+h\left(E_{n}\right)+\hat{\epsilon}\left(-\frac{1}{2} \mathcal{I}+\mathcal{D}^{*}\right)\right) \sigma=\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial G}{\partial n}
$$

where h is a diagonal nonlinear integral operator.

$$
h\left(E_{n}\right)=\alpha \tanh \left(\beta E_{n}-\gamma\right)+\mu
$$

where
α Size of the asymmetry
β Width of the transition region
γ The transition field strength
μ Assures $h(0)=0$, so $\mu=-\alpha \tanh (-\gamma)$

Accuracy of SLIC

Residues

Accuracy of SLIC

Protonation

Accuracy of SLIC

Synthetic Molecules

Accuracy of SLIC

Synthetic Molecules

Accuracy of SLIC

Synthetic Molecules

Thermodynamics

The parameters show linear temperature dependence

Model Validation

Courtesy A. Molvai Tabrizi

Model Validation

Courtesy A. Molvai Tabrizi

Solvent	$r_{s}(\AA)$	$\epsilon_{\text {out }}(T)$	$\epsilon_{\text {out }}\left(25^{\circ} \mathrm{C}\right)$
W	1.370	$\epsilon_{\text {out }}=87.740-4.0008 \mathrm{e}-1 T+9.398 \mathrm{e}-4 T^{2}-1.410 \mathrm{e}-6 T^{3}$	78.3
MeOH	1.855	$\log _{10} \epsilon_{\text {out }}=\log _{10}(32.63)-2.64 \mathrm{e}-3(T-25)$	32.6
EtOH	2.180	$\log _{10} \epsilon_{\text {out }}=\log _{10}(24.30)-02.70 \mathrm{e}-3(T-25)$	24.3
F	1.725	$\epsilon_{\text {out }}=109-7.2 \mathrm{e}-1(T-20)$	105.4
AN	2.135	$\epsilon_{\text {out }}=37.50-1.6 \mathrm{e}-1(T-20)$	36.7
DMF	2.585	$\epsilon_{\text {out }}=42.04569-2.204448 \mathrm{e}-1 T+7.718531 \mathrm{e}-4 T^{2}-1.000389 \mathrm{e}-6 T^{3}$	37.0
DMSO	2.455	$\epsilon_{\text {out }}=-60.5+(5.7 \mathrm{e} 4 /(T+273.15))-\left(7.5 \mathrm{e} 6 /(T+273.15)^{2}\right)$	46.3
NM	2.155	$\log _{10} \epsilon_{\text {out }}=\log _{10}(35.8)-1.89 \mathrm{e}-3(T-30)$	36.6
PC	2.680	$\epsilon_{\text {out }}=56.670738+2.58431 \mathrm{e}-1 T-7.7143 \mathrm{e}-4 T^{2}$	62.6

Model Validation

Courtesy A. Molvai Tabrizi

Model Validation

Courtesy A. Molvai Tabrizi

Model Validation
 Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan, Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute-solvent interface, Molecular Physics (2016).

Thermodynamic Predictions

Courtesy A. Molvai Tabrizi

Solvent	Ion	$\Delta \mathrm{G}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	$\Delta \mathrm{S}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$	$\mathrm{C}_{\mathrm{p}}\left(\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}\right)$
W	F^{-}	$-430(-429)$	$-67(-115)$	$-86(-45)$
MeOH	Rb^{+}	$-326(-319)$	$-178(-175)$	55
	$\mathrm{~F}^{-}$	-415	-116	$-79(-131)$
EtOH	Rb^{+}	$-319(-313)$	$-197(-187)$	128
	$\mathrm{~F}^{-}$	-405	-145	$-153(-194)$
F	Rb^{+}	$-340(-334)$	$-135(-130)$	27
	$\mathrm{~F}^{-}$	-418	-128	$36(28)$
AN	F^{-}	-390	-192	147
DMF	F^{-}	-389	-230	105
DMSO	Rb^{+}	$-348(-339)$	$-151(-180)$	32
	$\mathrm{~F}^{-}$	-400	-160	$186(60)$
NM	Rb^{+}	$-324(-318)$	$-186(-183)$	19
	$\mathrm{~F}^{-}$	-391	-182	$95(71)$
PC	F^{-}	-394	-149	67

Experimental Data in Parentheses

Thermodynamic Predictions

 Courtesy A. Molvai TabriziA. Molavi Tabrizi, S. Goossens, A. Rahimi, M.G. Knepley, and J.P. Bardhan, Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition. Journal of Chemical Physical (2017).

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Main Successes of SLIC

Accurate charging free energy

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Main Successes of SLIC

Accurate transfer free energy

- for water-octanol system
- on par with explicit-solvent MD

$$
\begin{aligned}
& \text { Reinterpretation of } \\
& \text { Mean Spherical Approximation } \\
& \text { - Explains temperature dependence } \\
& \text { of model coefficients }
\end{aligned}
$$

Main Successes of SLIC

Accurate transfer free energy

- for water-octanol system
- on par with explicit-solvent MD

Reinterpretation of
Mean Spherical Approximation

- Explains temperature dependence of model coefficients

What is missing from SLIC?

- Large packing fraction
- No charge oscillation or overcharging
- Classical DFT?
(Gillespie, Microfluidics and Nanofluidics, 2015)
- No dielectric saturation
- Possible with different condition
- No long range correlations
- Use nonlocal dielectric

Future Work

- More complex solutes
- Better nonlinear solvers
- Mixtures
- Preliminary work is accurate
- Integration into community code - Psi4, QChem, APBS

Thank You!

http://cse.buffalo.edu/~knepley

Outline

- Approximate Boundary Conditions

Bioelectrostatics

Physical Model

Electrostatic Potential ϕ

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$
\Phi_{I}=\sum_{k=1}^{Q} \frac{q_{k}}{\epsilon_{1}\left|\vec{r}-\vec{r}_{k}\right|}+\psi,
$$

and the potential in Region II is given by

$$
\Phi_{I /}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{n m}}{r^{n+1}} P_{n}^{m}(\cos \theta) e^{i m \phi} .
$$

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$
\psi=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{n m} r^{n} P_{n}^{m}(\cos \theta) e^{i m \phi} .
$$

and the source distribution is also expanded

$$
\sum_{k=1}^{Q} \frac{q_{k}}{\epsilon_{1}\left|\vec{r}-\vec{r}_{k}\right|}=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{n m}}{\epsilon_{1} r^{n+1}} P_{n}^{m}(\cos \theta) e^{i m \phi}
$$

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius b,

$$
\begin{aligned}
\left.\Phi_{I}\right|_{r=b} & =\left.\Phi_{I I}\right|_{r=b} \\
\left.\epsilon_{l} \frac{\partial \Phi_{l}}{\partial r}\right|_{r=b} & =\left.\epsilon_{l l} \frac{\partial \Phi_{I I}}{\partial r}\right|_{r=b}
\end{aligned}
$$

we can eliminate $C_{n m}$, and determine the reaction potential coefficients in terms of the source distribution,

$$
B_{n m}=\frac{1}{\epsilon_{l} b^{2 n+1}} \frac{\left(\epsilon_{I}-\epsilon_{I I}\right)(n+1)}{\epsilon_{I} n+\epsilon_{l l}(n+1)} E_{n m}
$$

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$
\begin{aligned}
A_{C F A} & =\mathcal{I}\left(1+\frac{\hat{\epsilon}}{2}\right) \\
A_{P} & =\mathcal{I}
\end{aligned}
$$

have an equivalent PDE formulation,

$$
\begin{array}{rlrl}
\epsilon_{l} \Delta \Phi_{C F A, P} & =\sum_{k=1}^{Q} q_{k} \delta\left(\vec{r}-\vec{r}_{k}\right) & \left.\frac{\epsilon_{I}}{\epsilon_{\|}} \frac{\partial \Phi_{I}^{C}}{\partial r}\right|_{r=b}=\frac{\partial \Phi_{\|}}{\partial r}-\left.\frac{\partial \psi_{C F A}}{\partial r}\right|_{r=b} \\
\epsilon_{\|} \Delta \Phi_{C F A, P} & =0 & & \text { or } \\
\left.\Phi_{\|}\right|_{r=b} & =\left.\Phi_{\| \|}\right|_{r=b} & \left.\frac{3 \epsilon_{l}-\epsilon_{\| I}}{\epsilon_{l}+\epsilon_{\|}} \frac{\partial \Phi_{I}^{C}}{\partial r}\right|_{r=b}=\frac{\partial \Phi_{\|}}{\partial r}-\left.\frac{\partial \psi_{P}}{\partial r}\right|_{r=b},
\end{array}
$$

where Φ_{1}^{C} is the Coulomb field due to interior charges.

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.

BEM eigenvector $e_{i} \cdot e_{j} \mathrm{BIBEE} / \mathrm{P}$ eigenvector

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the annroximate BC gives the BIBEE boundary integral approximation

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof of PDE Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these PDEs are equivalent to the original BIEs,

- Start with the fundamental solution to Laplace's equation $G\left(r, r^{\prime}\right)$
- Note that $\int_{\Gamma} G\left(r, r^{\prime}\right) \sigma\left(r^{\prime}\right) d \Gamma$ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof of Eigenspace Equivalence

Proof: Bardhan and Knepley, JCP, 135(12), 2011.
In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary, \mathcal{D}^{*} is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

Note that the approximate solutions are separable:

$$
\begin{aligned}
B_{n m} & =\frac{1}{\epsilon_{1} n+\epsilon_{2}(n+1)} \gamma_{n m} \\
B_{n m}^{C F A} & =\frac{1}{\epsilon_{2}} \frac{1}{2 n+1} \gamma_{n m} \\
B_{n m}^{P} & =\frac{1}{\epsilon_{1}+\epsilon_{2}} \frac{1}{n+\frac{1}{2}} \gamma_{n m} .
\end{aligned}
$$

If $\epsilon_{I}=\epsilon_{\|}=\epsilon$, both approximations are exact:

Series Solutions

Note that the approximate solutions are separable:

$$
\begin{aligned}
B_{n m} & =\frac{1}{\epsilon_{1} n+\epsilon_{2}(n+1)} \gamma_{n m} \\
B_{n m}^{C F A} & =\frac{1}{\epsilon_{2}} \frac{1}{2 n+1} \gamma_{n m} \\
B_{n m}^{P} & =\frac{1}{\epsilon_{1}+\epsilon_{2}} \frac{1}{n+\frac{1}{2}} \gamma_{n m} .
\end{aligned}
$$

If $\epsilon_{I}=\epsilon_{\| I}=\epsilon$, both approximations are exact:

$$
B_{n m}=B_{n m}^{C F A}=B_{n m}^{P}=\frac{1}{\epsilon(2 n+1)} \gamma_{n m} .
$$

Asymptotics

BIBEE/CFA is exact for the $n=0$ mode,

$$
B_{00}=B_{00}^{C F A}=\frac{\gamma_{00}}{\epsilon_{2}},
$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

Asymptotics

BIBEE/CFA is exact for the $n=0$ mode,

$$
B_{00}=B_{00}^{C F A}=\frac{\gamma_{00}}{\epsilon_{2}}
$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$
\lim _{n \rightarrow \infty} B_{n m}=\lim _{n \rightarrow \infty} B_{n m}^{P}=\frac{1}{\left(\epsilon_{1}+\epsilon_{2}\right) n} \gamma_{n m}
$$

Asymptotics

In the limit $\epsilon_{1} / \epsilon_{2} \rightarrow 0$,

$$
\begin{aligned}
\lim _{\epsilon_{1} / \epsilon_{2} \rightarrow 0} B_{n m} & =\frac{\gamma_{n m}}{\epsilon_{2}(n+1)} \\
\lim _{\epsilon_{1} / \epsilon_{2} \rightarrow 0} B_{n m}^{C F A} & =\frac{\gamma_{n m}}{\epsilon_{2}(2 n+1)}, \\
\lim _{\epsilon_{1} / \epsilon_{2} \rightarrow 0} B_{n m}^{P} & =\frac{\gamma_{n m}}{\epsilon_{2}\left(n+\frac{1}{2}\right)},
\end{aligned}
$$

so that the approximation ratios are given by

$$
\frac{B_{n m}^{C F A}}{B_{n m}}=\frac{n+1}{2 n+1}, \quad \frac{B_{n m}^{P}}{B_{n m}}=\frac{n+1}{n+\frac{1}{2}}
$$

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.

Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using electrostatic component analysis to identify residue contributions to binding and molecular recognition.

Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.

Spheres

(a)

Ellpsoids

(b)

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5\% accuracy for all synthetic proteins tested.

Spheres

Ellpsoids

