Improved Solvation Models using Boundary Integral Equations

Matthew Knepley and Jaydeep Bardhan

Computational and Applied Mathematics Rice University

SIAM Conference on the Life Sciences Minneapolis, MN August 9, 2018

M. Knepley (Rice)

Solvation

- Amir Molvai Tabrizi (postdoc, NE)
- Tom Klotz (grad student, Rice)
- Spencer Goossens (grad student, NE)
- Ali Rahimi (grad student, NE)

Solvation computation can benefit from non-Poisson models.

M. Knepley (Rice)

LS18 4 / 52

Bioelectrostatics The Natural World

Induced Surface Charge on Lysezyme

M. Knepley (Rice)

Solvation

LS18 5/52

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||} (\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2\frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

∃ >

This is equivalent to a PDE model for the potentials $\Phi_{I,II}$ in the two regions, and boundary conditions at the solute surface:

$$\epsilon_{I} \Delta \Phi_{I} = \sum_{k=1}^{Q} q_{k} \delta(\vec{r} - \vec{r}_{k})$$
$$\epsilon_{II} \Delta \Phi_{II} = 0$$
$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b}$$
$$\epsilon_{I} \frac{\partial \Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial r}|_{r=b}$$

The reaction potential is given by

1

$$\phi^{R}(\vec{r}) = \int_{\Gamma} \frac{\sigma(\vec{r}') d^{2}\vec{r}'}{4\pi\epsilon_{1}||\vec{r}-\vec{r}'||} = C\sigma$$

which defines G_{es} , the electrostatic part of the solvation free energy

$$egin{aligned} \Delta G_{es} &= rac{1}{2} \left\langle q, \phi^R
ight
angle \ &= rac{1}{2} \left\langle q, Lq
ight
angle \ &= rac{1}{2} \left\langle q, CA^{-1}Bq
ight
angle \end{aligned}$$

where

$$Bq = -\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q(\vec{r}') d^{3}\vec{r}'}{4\pi ||\vec{r} - \vec{r}'||}$$
$$A\sigma = \mathcal{I} + \hat{\epsilon}\mathcal{D}^{*}$$

Outline

2 Improving the Poisson Operator

• • • • • • • • • • • • •

Generalized Born Approximation

The pairwise energy between charges is defined by the *Still equation*:

$$G_{es}^{ij} = rac{1}{8\pi} \left(rac{1}{\epsilon_{II}} - rac{1}{\epsilon_{I}}
ight) \sum_{i,j}^{N} rac{q_{i}q_{j}}{r_{ij}^{2} + R_{i}R_{j}e^{-r_{ij}^{2}/4R_{i}R_{j}}}$$

where the effective Born radius is

$$R_i = \frac{1}{8\pi} \left(\frac{1}{\epsilon_{II}} - \frac{1}{\epsilon_I} \right) \frac{1}{E_i}$$

where E_i is the *self-energy* of the charge q_i , the electrostatic energy when atom *i* has unit charge and all others are neutral.

M. Knepley (Rice	ce)
------------------	-----

GB Problems

- No global potential solution, only energy
- No analysis of the error
 - For example, Salsbury 2006 consists of parameter tuning
- No path for systematic improvement
 - For example, Sigalov 2006 changes the model
- The same atoms have different radii in different
 - molecules,
 - solvents
 - temperatures

LOTS of parameters

• Nina, Beglov, Roux 1997

Some History

GB Problems

 TABLE 2: Atomic Born Radii Derived from Solvent

 Electrostatic Charge Distribution Tested with Free Energy

 Perturbation Methods in an Explicit Solvent^a

	N I I I I I I I I I	atom	radius (Å)	
۲	No global potential so		Backbo	one
		С	2.04	carbonyl C, peptide backbone
	No analysis of the error	0	2.23	carbonyl oxygen
·	No analysis of the one	CA	2.86	all CA except Gly
	 For example, Salsbury 20(CA	2.38	Gly only
			Hydrog	ens
٩	No path for systematic	H*	0.00	all hydrogens
			Side Ch	ains
	For example, Sigalov 2006	CB	2.67	all residues
		CG*	2.46	Val, Ile, Arg, Lys, Met, Phe, Thr,
	The same atoms have	CD*	2.44	Ile Leu Are Lys
		CD, CG	1.98	Asp, Glu, Asn, Gln
	molecules.	CB, CG, CD	1.98	Pro only
		CE*, CD*, CZ,	2.00	Tyr, Phe rings
	solvents	CE*, CD*, CZ*, CH2	1.78	Trp ring only
	 tomporaturoo 	CE CT CE	2.10	Met only
		OF* OD*	2.80	Arg, Lys Glu, Aop, Aop, Glu
	LOTC of more motors	06*	1.42	Ser Thr
۲	LUIS of parameters	OH	1.85	Tyr only
		NH*, NE, NZ	2.13	Arg, Lys
	Nina, Beglov, Roux 1997	NE2, ND2	2.15	Gln, Asn
		NE2, ND1	2.31	His only
		NE1	2.40	Trp
		S*	2.00	Met, Cys

^a Patches N-term and C-term CAT, CAY: 2.06 Å. CY: 2.04 Å. OY: 1.52 Å. NT: 2.23 Å. * refers to a wild card character.

Solvation

LS18 12/52

Implicit Solvent Models

State-of-the-art solvation models still use the same variation in radii

Biomolecular electrostatics — *I want your solvation (model)*, J. Bardhan, Comp. Sci. & Disc., **5**(1), (2012)

M. Knepley (Rice)

- 4 ∃ →

LS18 14 / 52

Origins of Electrostatic Asymmetry

Origins of Electrostatic Asymmetry

< A

Origins of Electrostatic Asymmetry

Maxwell Boundary Condition

Assume the model and energy, and derive the radii,

$$\epsilon_{I}\frac{\partial\Phi_{I}}{\partial n} = \epsilon_{II}\frac{\partial\Phi_{II}}{\partial n}$$

M. Knepley (Rice)

Solvation-Layer Interface Condition (SLIC)

Assume the energy and radii, and derive the model.

$$(\epsilon_{I} - \Delta \epsilon h(E_{n})) \frac{\partial \Phi_{I}}{\partial n} = (\epsilon_{II} - \Delta \epsilon h(E_{n})) \frac{\partial \Phi_{II}}{\partial n}$$

Using our correspondence with the BIE form,

$$\left(\mathcal{I}+h(E_n)+\hat{\epsilon}\left(-\frac{1}{2}\mathcal{I}+\mathcal{D}^*\right)\right)\sigma=\hat{\epsilon}\sum_{k=1}^Q\frac{\partial G}{\partial n}$$

where h is a diagonal nonlinear integral operator.

$$h(E_n) = \alpha \tanh (\beta E_n - \gamma) + \mu$$

where

- α Size of the asymmetry
- β Width of the transition region
- γ The transition field strength

 μ Assures h(0) = 0, so $\mu = -\alpha \tanh(-\gamma)$

Accuracy of SLIC Residues

M. Knepley (Rice)

Accuracy of SLIC Protonation

M. Knepley (Rice)

Accuracy of SLIC Synthetic Molecules

M. Knepley (Rice)

LS18 22 / 52

Accuracy of SLIC Synthetic Molecules

Accuracy of SLIC Synthetic Molecules

Thermodynamics

The parameters show linear temperature dependence

イロト イヨト イヨト イヨト

Solvent	r_s (Å)	$\epsilon_{out}(T)$	$\epsilon_{out}(25^{\circ}\mathrm{C})$
W	1.370	$\epsilon_{out} = 87.740 - 4.0008e - 1 T + 9.398e - 4 T^2 - 1.410e - 6 T^3$	78.3
MeOH	1.855	$\log_{10} \epsilon_{out} = \log_{10}(32.63) - 2.64e - 3(T - 25)$	32.6
EtOH	2.180	$\log_{10} \epsilon_{out} = \log_{10}(24.30) - 02.70e - 3 \ (T - 25)$	24.3
F	1.725	$\epsilon_{out} = 109 - 7.2e - 1 \ (T - 20)$	105.4
AN	2.135	$\epsilon_{out} = 37.50 - 1.6e - 1 \ (T - 20)$	36.7
DMF	2.585	$\epsilon_{out} = 42.04569 - 2.204448e - 1 T + 7.718531e - 4 T^2 - 1.000389e - 6 T^3$	37.0
DMSO	2.455	$\epsilon_{out} = -60.5 + (5.7\text{e}4/(T + 273.15)) - (7.5\text{e}6/(T + 273.15)^2)$	46.3
NM	2.155	$\log_{10} \epsilon_{out} = \log_{10}(35.8) - 1.89e - 3 \ (T - 30)$	36.6
\mathbf{PC}	2.680	$\epsilon_{out} = 56.670738 + 2.58431e - 1 T - 7.7143e - 4 T^2$	62.6

। ্র প্র LS18 27/52

イロト イポト イヨト イヨ

LS18 28/52

< 17 ▶

LS18 29 / 52

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan, Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute-solvent interface, Molecular Physics (2016).

Thermodynamic Predictions Courtesy A. Molvai Tabrizi

Solvent	lon	∆G (kJ mol ⁻¹)	ΔS (JK ⁻¹ mol ⁻¹)	C _p (J K ⁻¹ mol ⁻¹)
W	W F ⁻ -430 (-429) -67 (-115)		-67 (-115)	-86 (-45)
MeOH	Rb⁺	-326(-319)	-178 (-175)	55
	F⁻	-415	-116	-79 (-131)
EtOH	Rb⁺	-319 (-313)	-197 (-187)	128
	F⁻	-405	-145	-153 (-194)
F	Rb⁺	-340 (-334)	-135 (-130)	27
	F⁻	-418	-128	36 (28)
AN	F⁻	-390	-192	147
DMF	F⁻	-389	-230	105
	Rb⁺	-348 (-339)	-151 (-180)	32
DMSO	F⁻	-400	-160	186(60)
NM	Rb+	-324 (-318)	-186 (-183)	19
	F⁻	-391	-182	95(71)
PC	F⁻	-394	-149	67

Experimental Data in Parentheses

M. Knepley (Rice)

LS18 31 / 52

Thermodynamic Predictions Courtesy A. Molvai Tabrizi

A. Molavi Tabrizi, S. Goossens, A. Rahimi, M.G. Knepley, and J.P. Bardhan, *Predicting solvation free energies and thermodynamics in polar solvents and mixtures using a solvation-layer interface condition.* Journal of Chemical Physical (2017).

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

- using crystal radii (no fitting/temp dep)
- for (de-)protonation
- for individual atoms
- for mixtures

Accurate transfer free energy

- for water-octanol system
- on par with explicit-solvent MD

Reinterpretation of Mean Spherical Approximation

• Explains temperature dependence of model coefficients

Accurate transfer free energy

- for water-octanol system
- on par with explicit-solvent MD

Reinterpretation of

- Mean Spherical Approximation
- Explains temperature dependence of model coefficients

What is missing from SLIC?

Large packing fraction

- No charge oscillation or overcharging
- Classical DFT?

(Gillespie, Microfluidics and Nanofluidics, 2015)

No dielectric saturation

- Possible with different condition
- No long range correlations
 - Use nonlocal dielectric

Future Work

More complex solutes

- Better nonlinear solvers
- Mixtures
 - Preliminary work is accurate

Integration into community code Psi4, QChem, APBS

Thank You!

http://cse.buffalo.edu/~knepley

Approximate Boundary Conditions

• • • • • • • • • • • • •

Bioelectrostatics Physical Model

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$\Phi_I = \sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} + \psi,$$

and the potential in Region II is given by

$$\Phi_{II} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{nm}}{r^{n+1}} P_n^m(\cos\theta) e^{im\phi}$$

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$\psi = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{nm} r^{n} P_{n}^{m} (\cos \theta) e^{im\phi}.$$

and the source distribution is also expanded

$$\sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{nm}}{\epsilon_1 r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius *b*,

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b}$$
$$\epsilon_{I}\frac{\partial\Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II}\frac{\partial\Phi_{II}}{\partial r}|_{r=b}$$

we can eliminate C_{nm} , and determine the reaction potential coefficients in terms of the source distribution,

$$B_{nm} = \frac{1}{\epsilon_I b^{2n+1}} \frac{(\epsilon_I - \epsilon_{II})(n+1)}{\epsilon_I n + \epsilon_{II}(n+1)} E_{nm}.$$

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$egin{aligned} & \mathcal{A}_{CF\!A} = \mathcal{I} \left(1 + rac{\hat{\epsilon}}{2}
ight) \ & \mathcal{A}_{P} = \mathcal{I} \end{aligned}$$

have an equivalent PDE formulation,

$$\epsilon_{I}\Delta\Phi_{CFA,P} = \sum_{k=1}^{Q} q_{k}\delta(\vec{r} - \vec{r}_{k}) \qquad \qquad \frac{\epsilon_{I}}{\epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial\Phi_{II}}{\partial r} - \frac{\partial\psi_{CFA}}{\partial r}|_{r=b}$$

$$\epsilon_{II}\Delta\Phi_{CFA,P} = 0 \qquad \qquad \text{or}$$

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b} \qquad \qquad \frac{3\epsilon_{I} - \epsilon_{II}}{\epsilon_{I} + \epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial\Phi_{II}}{\partial r} - \frac{\partial\psi_{P}}{\partial r}|_{r=b},$$

where Φ_1^C is the Coulomb field due to interior charges.

M. Knep	ley ((Rice)
---------	-------	--------

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.

M. Knepley (Rice)

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum

- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = \frac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
$$B_{nm}^{CFA} = \frac{1}{\epsilon_2} \frac{1}{2n+1} \gamma_{nm}$$
$$B_{nm}^P = \frac{1}{\epsilon_1 + \epsilon_2} \frac{1}{n+\frac{1}{2}} \gamma_{nm}.$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

< 🗇 🕨 < 🖃 🕨

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = \frac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
$$B_{nm}^{CFA} = \frac{1}{\epsilon_2} \frac{1}{2n+1} \gamma_{nm}$$
$$B_{nm}^P = \frac{1}{\epsilon_1 + \epsilon_2} \frac{1}{n+\frac{1}{2}} \gamma_{nm}.$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

< ∃ >

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$\textbf{B}_{00} = \textbf{B}_{00}^{\textit{CFA}} = \frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$\lim_{n\to\infty} B_{nm} = \lim_{n\to\infty} B_{nm}^P = \frac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}.$$

< 47 ▶

.

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$B_{00} = B_{00}^{CFA} = \frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$\lim_{n\to\infty} B_{nm} = \lim_{n\to\infty} B_{nm}^{P} = \frac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}.$$

- E - N

Asymptotics

In the limit $\epsilon_1/\epsilon_2 \rightarrow 0$,

$$\begin{split} &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm} = \frac{\gamma_{nm}}{\epsilon_2(n+1)} \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^{CFA} = \frac{\gamma_{nm}}{\epsilon_2(2n+1)}, \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^P = \frac{\gamma_{nm}}{\epsilon_2(n+\frac{1}{2})}, \end{split}$$

so that the approximation ratios are given by

$$\frac{B_{nm}^{CFA}}{B_{nm}} = \frac{n+1}{2n+1}, \qquad \frac{B_{nm}^{P}}{B_{nm}} = \frac{n+1}{n+\frac{1}{2}}.$$

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.

Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using *electrostatic component analysis* to identify residue contributions to binding and molecular recognition.

LS18

50 / 52

M. Knepley (Rice)

Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.

M. Knepley (Rice)

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5% accuracy for all synthetic proteins tested.

