The Impact of Solvers on Modeling: The Solvation-Layer Interface Condition

Matthew Knepley and Jaydeep Bardhan

Computer Science and Engineering University at Buffalo

SIAM Parallel Processing 2020 Seattle, WA February 12th, 2020

BEM and SLIC Collaboration

Jay Bardhan

How do available solvers influence our choice of model?

Nonlinear BEM is powerful, but neglected because it requires specialized solvers.

Outline

Bioelectrostatics The Natural World

Induced Surface Charge on Lysozyme

M. Knepley (Buffalo)

SLIC

Bioelectrostatics Physical Model

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||} (\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2\frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

This model is inaccurate for solvation energy.

This model is inaccurate for solvation energy.

Thus practitioners adjust atomic radii to fit full atomistic simulation energies.

However, a given atom

can have two different radii in different molecules

However, a given atom

- can have two different radii in different molecules
- can have two different radii in the same molecule

However, a given atom

- can have two different radii in different molecules
- can have two different radii in the same molecule
- has a solvent-dependent radius

However, a given atom

- can have two different radii in different molecules
- can have two different radii in the same molecule
- has a solvent-dependent radius
- has a temperature-dependent radius

However, a given atom

- can have two different radii in different molecules
- can have two different radii in the same molecule
- has a solvent-dependent radius
- has a temperature-dependent radius

For example, the volume of a carbon atom can vary by 50% in a single molecule.

Why is this a bad model?

• Ignores experimental data (crystal radii)

Why is this a bad model?

- Ignores experimental data (crystal radii)
- Not robust to solute/solvent/temperature changes

- Why is this a bad model?
 - Ignores experimental data (crystal radii)
 - Not robust to solute/solvent/temperature changes
 - Misses sensitivity to local electrostatic conditions

- Why is this a bad model?
 - Ignores experimental data (crystal radii)
 - Not robust to solute/solvent/temperature changes
 - Misses sensitivity to local electrostatic conditions
 - Gives nonsense for the entropy

Origins of Electrostatic Asymmetry

2020 13/34

Origins of Electrostatic Asymmetry

Origins of Electrostatic Asymmetry

Solvation-Layer Interface Condition (SLIC)

Instead of assuming the model and energy and deriving the radii,

$$\epsilon_I \frac{\partial \Phi_I}{\partial n} = \epsilon_{II} \frac{\partial \Phi_{II}}{\partial n}$$

Solvation-Layer Interface Condition (SLIC)

assume the energy and radii and derive the model.

$$(\epsilon_{I} - \Delta \epsilon h(E_{n})) \frac{\partial \Phi_{I}}{\partial n} = (\epsilon_{II} - \Delta \epsilon h(E_{n})) \frac{\partial \Phi_{II}}{\partial n}$$

Solvation-Layer Interface Condition (SLIC)

Using our correspondence with the BIE form,

$$\left(\mathcal{I}+h(E_n)+\hat{\epsilon}\left(-\frac{1}{2}\mathcal{I}+\mathcal{D}^*\right)\right)\sigma=\hat{\epsilon}\sum_{k=1}^Q\frac{\partial G}{\partial n}$$

where h is a diagonal nonlinear integral operator.

$$h(E_n) = \alpha \tanh (\beta E_n - \gamma) + \mu$$

where

- α Size of the asymmetry
- β Width of the transition region
- γ The transition field strength
- μ Assures h(0) = 0, so $\mu = -\alpha \tanh(-\gamma)$

Outline

$$F(u) = b$$

with Richardson's Method

$$u_{n+1} = u_n + \lambda \left(F(u_n) - b \right)$$

$$F(u) = b$$

with Richardson's Method

-snes_type nrichardson
-snes_linesearch_type 12
-snes_linesearch_damping 0.05

$$F(u) = b$$

with Newton's Method

$$u_{n+1} = u_n + J^{-1}(u_n) (F(u_n) - b)$$

Nonlinear Solvers

If we are solving

$$F(u) = b$$

with Newton's Method

-snes_type newtonls
-snes_linesearch_type basic

$$Au + N(u)u = b$$

with Picard's Method

$$(\boldsymbol{A} + \operatorname{diag}(\boldsymbol{h}(\boldsymbol{u}_n))) \, \boldsymbol{u}_{n+1} = \boldsymbol{b}$$

$$Au + \operatorname{diag}(h(u))u = b$$

with Picard's Method

$$(\boldsymbol{A} + \operatorname{diag}(\boldsymbol{h}(\boldsymbol{u}_n))) \, \boldsymbol{u}_{n+1} = \boldsymbol{b}$$

$$Au + \operatorname{diag}(h(u))u = b$$

with Picard's Method

$$J = A + \operatorname{diag}(h(u_n)) + \operatorname{diag}(h'(u_n))K'$$
$$J_P = A + \operatorname{diag}(h(u_n))$$

$$F(u) = b$$

with Generalized Broyden Method

$$u_{n+1} = u_n + \beta \left(F(u_n) - b \right) - \left(\mathbb{X}_k + \beta F(u_k) \right) \gamma_k$$

$$\gamma_i = \left(\mathcal{F}^T(u_k) \mathcal{F}(u_k) \right)^{-1} \mathcal{F}^T(u_i) \left(F(u_i) - b \right)$$

$$F(u) = b$$

with Generalized Broyden Method

-snes_type ngmres
-snes_linesearch_type 12

$$F(u) = b$$

with Newton $-_R$ Generalized Broyden Method

$$y = \mathcal{N}(F(\mathcal{GB}(F, \cdot, b)), x_n, b)$$

 $x_{n+1} = \mathcal{GB}(F, y, b)$

$$F(u) = b$$

with Newton $-_R$ Generalized Broyden Method

$$u' = \mathcal{GB}(F, u_n, b)$$

 $u_{n+1} = u' + J^{-1}(u') (F(u') - b)$

$$F(u) = b$$

with Newton $-_R$ Generalized Broyden Method

Outline

Nonlinear Preconditioning can lead to significant speedups,

and is accessible without recoding.

Charge Distribution

Charge Distribution

M. Knepley (Buffalo)

Charge Distribution

Charge Distribution Difference (Rescaled)

M. Knepley (Buffalo)

PP2020 32/34

Cathodic Protection/Corrosion Prevention

Homogenized boundary conditions

Models of the hydrophobic interaction

Thank You!

http://cse.buffalo.edu/~knepley