
FEM Integration with Quadrature on the GPU

Matthew Knepley

Computation Institute
University of Chicago

Department of Molecular Biology and Physiology
Rush University Medical Center

GPU-SMP 2012
Shenzhen, China June 1–4, 2012

M. Knepley (UC) GPU GPU-SMP 1 / 38

Collaborators

Andy R. Terrel

Andreas Klöckner

Jed Brown

Robert Kirby
M. Knepley (UC) GPU GPU-SMP 3 / 38

http://andy.terrel.us/Professional/
http://mathema.tician.de/
http://www.59a2.org/research/
http://www.math.ttu.edu/~kirby/

Why Scientific Libraries?

Outline

1 Why Scientific Libraries?
What is PETSc?

2 Linear Systems are Easy

3 Finite Element Integration

4 Future Direction

M. Knepley (UC) GPU GPU-SMP 4 / 38

Why Scientific Libraries?

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) GPU GPU-SMP 5 / 38

Why Scientific Libraries?

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) GPU GPU-SMP 5 / 38

Why Scientific Libraries?

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.

M. Knepley (UC) GPU GPU-SMP 5 / 38

Why Scientific Libraries?

Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description

M. Knepley (UC) GPU GPU-SMP 6 / 38

Why Scientific Libraries?

Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description

M. Knepley (UC) GPU GPU-SMP 6 / 38

Why Scientific Libraries? What is PETSc?

Outline

1 Why Scientific Libraries?
What is PETSc?

M. Knepley (UC) GPU GPU-SMP 7 / 38

Why Scientific Libraries? What is PETSc?

What is PETSc?

A freely available and supported research
code for the parallel solution of nonlinear
algebraic equations

Free
Download from http://www.mcs.anl.gov/petsc
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley (UC) GPU GPU-SMP 8 / 38

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

Why Scientific Libraries? What is PETSc?

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

SciDAC, MICS Program, AMR Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

M. Knepley (UC) GPU GPU-SMP 9 / 38

Why Scientific Libraries? What is PETSc?

The PETSc Team

Bill Gropp Barry Smith Satish Balay

Jed Brown Matt Knepley Lisandro Dalcin

Hong Zhang Mark Adams Toby Issac
M. Knepley (UC) GPU GPU-SMP 10 / 38

Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Computational Scientists

Earth Science
PyLith (CIG)
Underworld (Monash)
Magma Dynamics (LDEO, Columbia, Oxford)

Subsurface Flow and Porous Media
STOMP (DOE)
PFLOTRAN (DOE)

M. Knepley (UC) GPU GPU-SMP 11 / 38

http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
http://www.bu.edu/pasi/files/2011/01/MarcSpiegelman4-11-1000.pdf
http://stomp.pnnl.gov/
http://ees.lanl.gov/pflotran/

Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Computational Scientists

CFD
Firedrake
Fluidity
OpenFOAM
freeCFD
OpenFVM

MicroMagnetics
MagPar

Fusion
XGC
BOUT++
NIMROD

M. Knepley (UC) GPU GPU-SMP 12 / 38

http://firedrakeproject.org/
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://www.openfoam.com/
http://www.freecfd.com/
http://openfvm.sourceforge.net/
http://www.magpar.net/
http://w3.physics.lehigh.edu/~xgc/
https://bout.llnl.gov/
http://www.nimrodteam.org/

Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Algorithm Developers

Iterative methods
Deflated GMRES
LGMRES
QCG
SpecEst

Preconditioning researchers
Prometheus (Adams)
ParPre (Eijkhout)
FETI-DP (Klawonn and Rheinbach)

M. Knepley (UC) GPU GPU-SMP 13 / 38

http://www.columbia.edu/~ma2325/prom_intro.html
http://www.columbia.edu/~ma2325/
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/
http://www.uni-due.de/numerik/klawonn.shtml
http://www.uni-due.de/numerik/rheinbach.shtml

Why Scientific Libraries? What is PETSc?

Who Uses PETSc?

Algorithm Developers

Finite Elements
libMesh
MOOSE
PETSc-FEM
Deal II
OOFEM

Other Solvers
Fast Multipole Method (PetFMM)
Radial Basis Function Interpolation (PetRBF)
Eigensolvers (SLEPc)
Optimization (TAO)

M. Knepley (UC) GPU GPU-SMP 14 / 38

http://libmesh.sourceforge.net/
http://mooseframework.org/
http://www.cimec.org.ar/petscfem
http://www.dealii.org/
http://www.oofem.org/
http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetRBF.html
http://www.grycap.upv.es/slepc/
http://www.mcs.anl.gov/tao

Why Scientific Libraries? What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (UC) GPU GPU-SMP 15 / 38

https://hpgmg.org/

Why Scientific Libraries? What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (UC) GPU GPU-SMP 15 / 38

https://hpgmg.org/

Why Scientific Libraries? What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (UC) GPU GPU-SMP 15 / 38

https://hpgmg.org/

Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 16 / 38

http://portal.acm.org/citation.cfm?id=245883

Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 16 / 38

http://portal.acm.org/citation.cfm?id=245883

Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 16 / 38

http://portal.acm.org/citation.cfm?id=245883

Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 16 / 38

http://portal.acm.org/citation.cfm?id=245883

Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 16 / 38

http://portal.acm.org/citation.cfm?id=245883

Why Scientific Libraries? What is PETSc?

Interface Questions

How should the user interact with
manycore systems?

Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU GPU-SMP 16 / 38

http://portal.acm.org/citation.cfm?id=245883

Linear Systems are Easy

Outline

1 Why Scientific Libraries?

2 Linear Systems are Easy

3 Finite Element Integration

4 Future Direction

M. Knepley (UC) GPU GPU-SMP 17 / 38

Linear Systems are Easy

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) GPU GPU-SMP 18 / 38

Linear Systems are Easy

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) GPU GPU-SMP 18 / 38

Linear Systems are Easy

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) GPU GPU-SMP 18 / 38

Linear Systems are Easy

Interface Maturity

Some parts of PDE
computation are less mature

Linear Algebra
One universal interface

BLAS, PETSc, Trilinos,
FLAME, Elemental

Entire problem can be
phrased in the interface

Ax = b

Standalone component

Finite Elements
Many Interfaces

FEniCS, FreeFEM++, DUNE,
dealII, Fluent

Problem definition requires
general code

Physics, boundary conditions
Crucial interaction with other
simulation components

Discretization, mesh/geometry
M. Knepley (UC) GPU GPU-SMP 18 / 38

Linear Systems are Easy

PETSc-GPU

PETSc now has support for Krylov solves on the GPU

-with-cuda=1 -with-cusp=1 -with-thrust=1
Also possibly -with-precision=single

New classes VECCUDA and MATAIJCUDA
Just change type on command line, -vec_type veccuda

Uses Thrust and Cusp libraries from Nvidia guys
Does not communicate vectors during solve

M. Knepley (UC) GPU GPU-SMP 19 / 38

http://code.google.com/p/thrust
http://code.google.com/p/cusp-library

Linear Systems are Easy

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary

M. Knepley (UC) GPU GPU-SMP 20 / 38

Linear Systems are Easy

Example
PFLOTRAN

Flow Solver
32× 32× 32 grid

Routine Time (s) MFlops MFlops/s
CPU
KSPSolve 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve 1.6382 4500 2745
MatMult 0.3554 830 2337

P. Lichtner, G. Hammond,
R. Mills, B. Phillip

M. Knepley (UC) GPU GPU-SMP 21 / 38

Finite Element Integration

Outline

1 Why Scientific Libraries?

2 Linear Systems are Easy

3 Finite Element Integration

4 Future Direction

M. Knepley (UC) GPU GPU-SMP 22 / 38

Finite Element Integration

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇φi(x) · ∇φj(x)dx (1)

=
∫
T
∂φi (x)
∂xα

∂φj (x)
∂xα dx (2)

=
∫
Tref

∂ξβ
∂xα

∂φi (ξ)
∂ξβ

∂ξγ
∂xα

∂φj (ξ)
∂ξγ
|J|dx (3)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂φi (ξ)
∂ξβ

∂φj (ξ)
∂ξγ

dx (4)

= Gβγ(T)K ij
βγ (5)

Coefficients are also put into the geometric part.

M. Knepley (UC) GPU GPU-SMP 23 / 38

Finite Element Integration

Tensor Product Formulation

FEniCS based code achieves

90 GF/s on 3D P1 Laplacian
100 GF/s on 2D P1 Elasticity

Relies on analytic integration

Dot products are workhorse

Crossover point with quadrature with multiple fields

Finite Element Integration on GPUs, ACM TOMS, Andy R. Terrel and Matthew G. Knepley

M. Knepley (UC) GPU GPU-SMP 24 / 38

http://www.fenicsproject.org
http://arxiv.org/abs/1103.0066

Finite Element Integration

Why Quadrature?

Quadrature can handle

many fields (linearization)

non-affine elements (Argyris)

non-affine mappings (isoparametric)

functions not in the FEM space

Optimizations for Quadrature Representations of Finite Element Tensors through Automated
Code Generation, ACM TOMS, Kristian B. Ølgaard and Garth N. Wells

M. Knepley (UC) GPU GPU-SMP 25 / 38

http://arxiv.org/abs/1104.0199
http://arxiv.org/abs/1104.0199

Finite Element Integration

Jed Brown’s Model

We consider weak forms dependent only on fields and gradients,∫
Ω
φ · f0(u,∇u) +∇φ : ~f1(u,∇u) = 0. (6)

Discretizing we have

∑
e

ET
e

[
BT W qf0(uq,∇uq) +

∑
k

DT
k W q~f k

1 (u
q,∇uq)

]
= 0 (7)

fn pointwise physics functions
uq field at a quad point
W q diagonal matrix of quad weights
B,D basis function matrices which

reduce over quad points
E assembly operator

M. Knepley (UC) GPU GPU-SMP 26 / 38

Finite Element Integration

Physics code

∇φi · ∇u

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ∇u

__device__ vecType f1 (realType u [] , vecType gradU [] , i n t comp) {
return gradU [comp] ;

}

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · (∇u +∇uT)

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · (∇u +∇uT)

__device__ vecType f1 (realType u [] , vecType gradU [] , i n t comp) {
vecType f1 ;

switch (comp) {
case 0:

f1 . x = 0 . 5 * (gradU [0] . x + gradU [0] . x) ;
f1 . y = 0 . 5 * (gradU [0] . y + gradU [1] . x) ;
break ;

case 1:
f1 . x = 0 . 5 * (gradU [1] . x + gradU [0] . y) ;
f1 . y = 0 . 5 * (gradU [1] . y + gradU [1] . y) ;

}
return f1 ;

}

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ∇u + φik2u

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ∇u + φik2u

__device__ vecType f1 (realType u [] , vecType gradU [] , i n t comp) {
return gradU [comp] ;

}

__device__ realType f0 (realType u [] , vecType gradU [] , i n t comp) {
return k * k *u [0] ;

}

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ∇~u − (∇ · φ)p

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ∇~u − (∇ · φ)p

void f1 (PetscScalar u [] , const PetscScalar gradU [] , PetscScalar f1 []) {
const PetscInt dim = SPATIAL_DIM_0 ;
const PetscInt Ncomp = NUM_BASIS_COMPONENTS_0;
PetscInt comp , d ;

for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0 ; d < dim ; ++d) {

f1 [comp* dim+d] = gradU [comp* dim+d] ;
}
f1 [comp* dim+comp] −= u [Ncomp] ;

}
}

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ν0e−βT∇~u − (∇ · φ)p

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Physics code

∇φi · ν0e−βT∇~u − (∇ · φ)p

void f1 (PetscScalar u [] , const PetscScalar gradU [] , PetscScalar f1 []) {
const PetscInt dim = SPATIAL_DIM_0 ;
const PetscInt Ncomp = NUM_BASIS_COMPONENTS_0;
PetscInt comp , d ;

for (comp = 0; comp < Ncomp; ++comp) {
for (d = 0 ; d < dim ; ++d) {

f1 [comp* dim+d] = nu_0 * exp(−beta *u [Ncomp+ 1]) * gradU [comp* dim+d] ;
}
f1 [comp* dim+comp] −= u [Ncomp] ;

}
}

M. Knepley (UC) GPU GPU-SMP 27 / 38

Finite Element Integration

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) GPU GPU-SMP 28 / 38

Finite Element Integration

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) GPU GPU-SMP 28 / 38

Finite Element Integration

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) GPU GPU-SMP 28 / 38

Finite Element Integration

Why Not Quadrature?

Vectorization is a Problem

Strategy Problem

Vectorize over Quad Points Reduction needed to compute
Basis Coefficients

Vectorize over Basis Coef for
each Quad Point

Too many passes through global
memory

Vectorize over Basis Coef
and Quad Points

Some threads idle when sizes
are different

M. Knepley (UC) GPU GPU-SMP 28 / 38

Finite Element Integration

Thread Transposition

Map values at quadrature

points to coefficients

t5
t4
t3

t2
t1
t0

t5
t4
t3

t2
t1
t0

t5
t4
t3

t2
t1
t0

Continue with kernel

Evaluate basis and process

values at quadrature points

t5

t4

t3

t2

t1

t0

t5

t4

t3

t2

t1

t0

M. Knepley (UC) GPU GPU-SMP 29 / 38

Finite Element Integration

Basis Phase

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

Quadrature Phase

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TT

TTNt = 24

Nt = 24

Nbc = 12

Nbs = 6

Nsbc = 3

Nsqc = 2

Nbl = 2 Nbl = 2

M. Knepley (UC) GPU GPU-SMP 30 / 38

Finite Element Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

Loops are done in batches
Remainder cells are integrated on the CPU
PETSc ex52 is a single-field example

M. Knepley (UC) GPU GPU-SMP 31 / 38

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Finite Element Integration

PETSc Integration

PETSc FEM Organization

GPU evaluation is transparent to the user:

User Input Automation Solver Input
domain == Triangle/TetGen ==> Mesh
element == FIAT ==> Tabulation
fn == Generic Evaluation ==> Residual

Loops are done in batches
Remainder cells are integrated on the CPU
PETSc ex52 is a single-field example

M. Knepley (UC) GPU GPU-SMP 31 / 38

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex52.c.html

Finite Element Integration

PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
Reuse single-field code

Vectorize over cells, rather than fields

Retain sparsity of the Jacobian

Solver integration is seamless:
Nested Block preconditioners from the command line

Segregated KKT MG smoothers from the command line

Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) GPU GPU-SMP 32 / 38

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

Finite Element Integration

PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
Reuse single-field code

Vectorize over cells, rather than fields

Retain sparsity of the Jacobian

Solver integration is seamless:
Nested Block preconditioners from the command line

Segregated KKT MG smoothers from the command line

Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) GPU GPU-SMP 32 / 38

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

Finite Element Integration

PETSc Multiphysics

Each block of the Jacobian is evaluated separately:
Reuse single-field code

Vectorize over cells, rather than fields

Retain sparsity of the Jacobian

Solver integration is seamless:
Nested Block preconditioners from the command line

Segregated KKT MG smoothers from the command line

Fully composable with AMG, LU, Schur complement, etc.

PETSc ex62 solves the Stokes problem,
and ex31 adds temperature

M. Knepley (UC) GPU GPU-SMP 32 / 38

http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex31.c.html

Finite Element Integration

Performance Expectations
Element Integration

FEM Integration, at the element level,
is also limited by memory bandwidth,

rather than by peak flop rate.

We expect bandwidth ratio speedup (3x–6x for most systems)

Input for FEM is a vector of coefficients (auxiliary fields)

Output is a vector of coefficients for the residual

M. Knepley (UC) GPU GPU-SMP 33 / 38

Finite Element Integration

2D P1 Laplacian Performance

Reaches 100 GF/s by 100K elements
M. Knepley (UC) GPU GPU-SMP 34 / 38

Finite Element Integration

2D P1 Laplacian Performance

Linear scaling for both GPU and CPU integration
M. Knepley (UC) GPU GPU-SMP 35 / 38

Finite Element Integration

2D P1 Rate-of-Strain Performance

Reaches 100 GF/s by 100K elements

M. Knepley (UC) GPU GPU-SMP 36 / 38

Future Direction

Outline

1 Why Scientific Libraries?

2 Linear Systems are Easy

3 Finite Element Integration

4 Future Direction

M. Knepley (UC) GPU GPU-SMP 37 / 38

Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) GPU GPU-SMP 38 / 38

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) GPU GPU-SMP 38 / 38

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) GPU GPU-SMP 38 / 38

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) GPU GPU-SMP 38 / 38

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

Future Direction

Competing Models

How should kernels be
integrated into libraries?

CUDA+Code Generation
Explicit vectorization
Can inspect/optimize code
Errors easily localized
Can use high-level reasoning
for optimization (FErari)
Kernel fusion is easy

TBB+C++ Templates
Implicit vectorization
Generated code is hidden
Notoriously difficult debugging
Low-level compiler-type
optimization
Kernel fusion is really hard

M. Knepley (UC) GPU GPU-SMP 38 / 38

http://mathema.tician.de/software/pycuda
http://www.mcs.anl.gov/petsc/petsc-dev/src/snes/examples/tutorials/ex62.c.html
https://launchpad.net/ferari
http://threadingbuildingblocks.org/
http://www.cplusplus.com/reference/stl/

	Why Scientific Libraries?
	What is PETSc?

	Linear Systems are Easy
	Finite Element Integration
	Future Direction

