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Scientific Libraries

Main Point

To be widely accepted,

GPU computing must be
transparent to the user,

and reuse existing
infrastructure.
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Scientific Libraries

Lessons from Clusters and MPPs

Failure
Parallelizing Compilers
Automatic program decomposition

Success
MPI (Library Approach)
PETSc (Parallel Linear Algebra)
User provides only the mathematical description
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Scientific Libraries What is PETSc?

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries
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http://amzn.com/0521602866


Scientific Libraries What is PETSc?

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith
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Scientific Libraries What is PETSc?

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I’ll
put this tile down on the ground, and then I’ll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)
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Scientific Libraries What is PETSc?

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free
Download from http://www.petsc.org
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python
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Scientific Libraries What is PETSc?

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

ECP, PSAAPIII, AMR, BES, SciDAC, MICS
National Science Foundation

CSSI, SI2, CIG, CISE

Intel Parallel Computing Center
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Scientific Libraries What is PETSc?

The PETSc Team

Matt Knepley Barry Smith Satish Balay Jed Brown

Hong Zhang Lisandro Dalcin Stefano Zampini Mark Adams

Toby Isaac Hong Zhang Pierre Jolivet Junchao Zhang
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Scientific Libraries What is PETSc?

Who Uses PETSc?

Computational Scientists

Earth Science
PyLith (CIG)
Underworld (Monash)
Salvus (ETHZ)
TerraFERMA (LDEO, Columbia, Oxford)

Multiphysics
MOOSE
GRINS

Subsurface Flow and Porous Media
PFLOTRAN (DOE)
STOMP (DOE)
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http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
https://salvus.io/
http://terraferma.github.io/
http://mooseframework.org/
https://grinsfem.github.io/
http://ees.lanl.gov/pflotran/
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Scientific Libraries What is PETSc?

Who Uses PETSc?

Computational Scientists

CFD
IBAMR
Fluidity
OpenFVM

Fusion
XGC
BOUT++
NIMROD
M3D − C1

M. Knepley (UC) GPU CBC 14 / 85

https://github.com/IBAMR/IBAMR
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Scientific Libraries What is PETSc?

Who Uses PETSc?

Algorithm Developers

Iterative methods
Deflated GMRES
LGMRES
QCG
SpecEst

Preconditioning researchers
FETI-DP (Klawonn and Rheinbach)
STRUMPACK (Ghysels and Li)
HPDDM (Jolivet and Nataf)
ParPre (Eijkhout)
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http://www.uni-due.de/numerik/klawonn.shtml
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach/kontakt
https://github.com/pghysels/STRUMPACK
https://github.com/hpddm/hpddm
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/


Scientific Libraries What is PETSc?

Who Uses PETSc?

Algorithm Developers

Discretization
Firedrake
FEniCS
libMesh
Deal II
PETSc-FEM
OOFEM
PetRBF

Outer Loop Solvers
Eigensolvers (SLEPc)
Optimization (PERMON)
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http://www.dealii.org/
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Scientific Libraries What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code
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Scientific Libraries What is PETSc?

Interface Questions

How should the user interact with
manycore systems?
Through computational libraries

How should the user interact with the library?
Strong, data structure-neutral API (Smith and Gropp, 1996)

How should the library interact with
manycore systems?

Existing library APIs
Code generation (CUDA, OpenCL, PyCUDA)
Custom multi-language extensions

M. Knepley (UC) GPU CBC 18 / 85
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Scientific Libraries What is PETSc?

Performance Analysis

In order to understand and predict the performance of GPU code, we
need:

good models for the computation, which make it possible to evaluate
the efficiency of an implementation;

a flop rate, which tells us how well we are utilizing the hardware;

timing, which is what users care about;

M. Knepley (UC) GPU CBC 19 / 85
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Linear Systems

Performance Expectations
Linear Systems

The Sparse Matrix-Vector product (SpMV)
is limited by system memory bandwidth,

rather than by peak flop rate.

We expect bandwidth ratio speedup (3x–6x for most systems)

Memory movement is more important than minimizing flops

Kernel is a vectorized, segmented sum (Blelloch, Heroux, and
Zagha: CMU-CS-93-173)
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Linear Systems

Memory Bandwidth

All computations in this presentation are memory bandwidth limited.
We have a bandwidth peak, the maximum flop rate achievable given a
bandwidth. This depends on β, the ratio of bytes transferred to flops
done by the algorithm.

Processor BW (GB/s) Peak (GF/s) BW Peak∗ (GF/s)
Core 2 Duo 4 34 1
GeForce 9400M 21 54 5
GTX 285 159 1062 40
Tesla M2050 144 1030 36

∗Bandwidth peak is shown for β = 4
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Linear Systems

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/
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Linear Systems

Analysis of Sparse Matvec (SpMV)
Assumptions

No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (1)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (2)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.
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http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf


Linear Systems

Linear Algebra Interfaces

Strong interfaces mean:

Easy code interoperability (LAPACK, Trilinos)

Easy portability (GPU)

Seamless optimization
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Linear Systems

VECCUDA

Strategy: Define a new Vec implementation

Uses Thrust for data storage and operations on GPU

Supports full PETSc Vec interface

Inherits PETSc scalar type

Can be activated at runtime, -vec_type cuda

PETSc provides memory coherence mechanism

M. Knepley (UC) GPU CBC 26 / 85

http://code.google.com/p/thrust/


Linear Systems

MATAIJCUDA

Also define new Mat implementations

Uses Cusp for data storage and operations on GPU

Supports full PETSc Mat interface, some ops on CPU

Can be activated at runtime, -mat_type aijcuda

Notice that parallel matvec necessitates off-GPU data transfer
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http://code.google.com/p/cusp-library/


Linear Systems

Solvers

Solvers come for Free
Preliminary Implementation of PETSc Using GPU,

Minden, Smith, Knepley, 2010

All linear algebra types work with solvers

Entire solve can take place on the GPU
Only communicate scalars back to CPU

GPU communication cost could be amortized over several solves

Preconditioners are a problem
Cusp has a promising AMG
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Linear Systems

Example
Driven Cavity Velocity-Vorticity with Multigrid

ex50 -da_vec_type seqcusp
-da_mat_type aijcusp -mat_no_inode # Setup types
-da_grid_x 100 -da_grid_y 100 # Set grid size
-pc_type none -pc_mg_levels 1 # Setup solver
-preload off -cuda_synchronize # Setup run
-log_summary

M. Knepley (UC) GPU CBC 29 / 85



Linear Systems

Example
PFLOTRAN

Flow Solver
32 × 32 × 32 grid

Routine Time (s) MFlops MFlops/s
CPU
KSPSolve 8.3167 4370 526
MatMult 1.5031 769 512
GPU
KSPSolve 1.6382 4500 2745
MatMult 0.3554 830 2337

P. Lichtner, G. Hammond,
R. Mills, B. Phillip
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Linear Systems

Serial Performance
NVIDIA GeForce 9400M
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Linear Systems

Serial Performance
NVIDIA Tesla M2050
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NVIDIA Tesla M2050
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Assembly

Performance Expectations
Matrix Assembly

Matrix Assembly, aggregation of inputs,
is also limited by memory bandwidth,

rather than by peak flop rate.

We expect bandwidth ratio speedup (3x–6x for most systems)

Input for FEM is a set of element matrices

Kernel is dominated by sort (submission to TOMS)
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Assembly

Assembly Interface

A single new method is added:
MatSetValuesBatch ( Mat J , Pe tsc In t Ne, Pe tsc In t Nl ,

Pe tsc In t *elemRows ,
PetscScalar * elemMats )

Thus, a user just batches his input to
achieve massive concurrency.
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Assembly

Serial Assembly Steps

1 Copy elemRows and elemMat to device
2 Allocate storage for intermediate COO matrix
3 Use repeat&tile iterators to expand row input
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Assembly

Convenience Iterators

repeated_range < I n d e xA r r a y I t e r a t o r >
rowInd ( elemRows . begin ( ) , elemRows . end ( ) , Nl ) ;

t i l ed_range < I nd e x A r r ay I t e r a to r >
co l I nd ( elemRows . begin ( ) , elemRows . end ( ) , Nl , Nl ) ;

Nl = 3
elemRows 0 1 3
rowInd 0 0 0 | 1 1 1 | 3 3 3
colInd 0 1 3 | 0 1 3 | 0 1 3

M. Knepley (UC) GPU CBC 38 / 85



Assembly

Serial Assembly Steps

1 Copy elemRows and elemMat to device
2 Allocate storage for intermediate COO matrix
3 Use repeat&tile iterators to expand row input
4 Sort COO matrix by row and column

1 Get permutation from (stably) sorting columns
2 Gather rows with this permutation
3 Get permutation from (stably) sorting rows
4 Gather columns with this permutation
5 Gather values with this permutation
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Assembly

Multikey Sort

Initial input
(1 0)
(3 1)
(0 0)
(1 1)
(3 3)
(0 1)
(0 3)
(3 0)
(1 3)

M. Knepley (UC) GPU CBC 40 / 85



Assembly

Multikey Sort

Number pairs Index
(1 0) 0
(3 1) 1
(0 0) 2
(1 1) 3
(3 3) 4
(0 1) 5
(0 3) 6
(3 0) 7
(1 3) 8
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Assembly

Multikey Sort

After stable sort of columns Index
(1 0) 0
(0 0) 2
(3 0) 7
(3 1) 1
(1 1) 3
(0 1) 5
(3 3) 4
(0 3) 6
(1 3) 8
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Assembly

Multikey Sort

After gather of rows
using column permutation,
and implicit renumbering

Index
(1 0) 0
(0 0) 1
(3 0) 2
(3 1) 3
(1 1) 4
(0 1) 5
(3 3) 6
(0 3) 7
(1 3) 8
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Assembly

Multikey Sort

After stable sort of rows,
and gather of columns
using row permutation

Index
(0 0) 1
(0 1) 5
(0 3) 7
(1 0) 0
(1 1) 4
(1 3) 8
(3 0) 2
(3 1) 3
(3 3) 6

M. Knepley (UC) GPU CBC 44 / 85



Assembly

Serial Assembly Steps

1 Copy elemRows and elemMat to device
2 Allocate storage for intermediate COO matrix
3 Use repeat&tile iterators to expand row input
4 Sort COO matrix by row and column
5 Compute number of unique (i,j) entries using inner_product()
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Assembly

Counting Unique Entries

Initial input (0 0)
(0 1)
(0 1)
(0 3)
(1 0)
(1 1)
(3 0)
(3 0)
(3 0)
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Assembly

Counting Unique Entries

Duplicate input (0 0) (0 0)
(0 1) (0 1)
(0 1) (0 1)
(0 3) (0 3)
(1 0) (1 0)
(1 1) (1 1)
(3 0) (3 0)
(3 0) (3 0)
(3 0) (3 0)
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Assembly

Counting Unique Entries

Shift new sequence
and truncate initial input

(0 0) (0 1)
(0 1) (0 1)
(0 1) (0 3)
(0 3) (1 0)
(1 0) (1 1)
(1 1) (3 0)
(3 0) (3 0)
(3 0) (3 0)
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Assembly

Counting Unique Entries

“Multiply entries” using
not-equals binary operator

(0 0) (0 1) =⇒ 1
(0 1) (0 1) =⇒ 0
(0 1) (0 3) =⇒ 1
(0 3) (1 0) =⇒ 1
(1 0) (1 1) =⇒ 1
(1 1) (3 0) =⇒ 1
(3 0) (3 0) =⇒ 0
(3 0) (3 0) =⇒ 0
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Assembly

Counting Unique Entries

Reduction of entries plus 1
gives number of unique
entries

1
(0 0) (0 1) =⇒ 1
(0 1) (0 1) =⇒ 0
(0 1) (0 3) =⇒ 1
(0 3) (1 0) =⇒ 1
(1 0) (1 1) =⇒ 1
(1 1) (3 0) =⇒ 1
(3 0) (3 0) =⇒ 0
(3 0) (3 0) =⇒ 0

6

M. Knepley (UC) GPU CBC 50 / 85



Assembly

Serial Assembly Steps

1 Copy elemRows and elemMat to device
2 Allocate storage for intermediate COO matrix
3 Use repeat&tile iterators to expand row input
4 Sort COO matrix by row and column
5 Compute number of unique (i,j) entries using inner_product()

6 Allocate COO storage for final matrix
7 Sum values with the same (i,j) index using reduce_by_key()

8 Convert to AIJ matrix
9 Copy from GPU (if necessary)
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Assembly

Parallel Assembly Steps

1 Copy elemRows and elemMat to device
2 Use repeat&tile iterators to expand row input
3 Communicate off-process entry sizes

1 Find number of off-process rows (serial)
2 Map rows to processes (serial)
3 Send number of rows to each process (collective)
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Assembly

Parallel Assembly Steps

1 Copy elemRows and elemMat to device
2 Use repeat&tile iterators to expand row input
3 Communicate off-process entry sizes
4 Allocate storage for intermediate diagonal COO matrix
5 Partition entries

1 Partition into diagonal and off-diagonal&off-process using
partition_copy ()

2 Partition again into off-diagonal and off-process using
stable_partition ()
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Assembly

Partitioning Entries
Process owns rows [0, 3)

Initial input

(0,0) · · · (0,2) (0,3)
...

. . .
... (0,3)

(2,0) · · · (2,2) (0,3)
(3,0) (3,1) (3,2) (3,3)

(3 0)
(0 1)
(3 3)
(0 3)
(0 0)
(3 1)
(1 3)
(1 1)
(1 0)
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Assembly

Partitioning Entries
Process owns rows [0, 3)

Partition into
diagonal, and
off-diagonal &
off-process entries

Diagonal

(0 0)
(1 1)
(0 1)
(1 0)

Off-diagonal
and
Off-process

(3 1)
(3 0)
(1 3)
(3 3)
(0 3)
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Assembly

Partitioning Entries
Process owns rows [0, 3)

Partition again into
off-diagonal and
off-process entries

Diagonal

(0 0)
(1 1)
(0 1)
(1 0)

Off-diagonal
(1 3)
(0 3)

Off-process
(3 1)
(3 0)
(3 3)
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Assembly

Parallel Assembly Steps

1 Copy elemRows and elemMat to device
2 Use repeat&tile iterators to expand row input
3 Communicate off-process entry sizes
4 Allocate storage for intermediate diagonal COO matrix
5 Partition entries
6 Send off-process entries
7 Allocate storage for intermediate off-diagonal COO matrix
8 Repartition entries into diagonal and off-diagonal using

partition_copy ()

9 Repeat serial assembly on both matrices
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Assembly

Serial Performance
NVIDIA GTX 285
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Integration

Outline

1 Scientific Libraries

2 Linear Systems

3 Assembly

4 Integration
Analytic Flexibility
Computational Flexibility
Efficiency

5 Yet To be Done
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Integration

What are the Benefits for current PDE Code?

Low Order FEM on GPUs

Analytic Flexibility

Computational Flexibility

Efficiency

http://www.bitbucket.org/aterrel/flamefem
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Integration Analytic Flexibility

Outline

4 Integration
Analytic Flexibility
Computational Flexibility
Efficiency
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Integration Analytic Flexibility

Analytic Flexibility
Laplacian

∫
T
∇ϕi(x) · ∇ϕj(x)dx (3)

element = F in i teE lement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner ( grad ( v ) , grad ( u ) ) * dx
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Integration Analytic Flexibility

Analytic Flexibility
Linear Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
:
(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (4)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
a = inner (sym( grad ( v ) ) , sym( grad ( u ) ) ) * dx
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Integration Analytic Flexibility

Analytic Flexibility
Full Elasticity

1
4

∫
T

(
∇ϕ⃗i(x) +∇T ϕ⃗i(x)

)
: C :

(
∇ϕ⃗j(x) +∇ϕ⃗j(x)

)
dx (5)

element = VectorElement ( ’ Lagrange ’ , te t rahedron , 1)
cElement = TensorElement ( ’ Lagrange ’ , te t rahedron , 1 ,

( dim , dim , dim , dim ) )
v = TestFunct ion ( element )
u = T r i a l F u n c t i o n ( element )
C = C o e f f i c i e n t ( cElement )
i , j , k , l = i nd i ces ( 4 )
a = sym( grad ( v ) ) [ i , j ] *C[ i , j , k , l ] * sym( grad ( u ) ) [ k , l ] * dx

Currently broken in FEniCS release
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Integration Analytic Flexibility

Form Decomposition

Element integrals are decomposed into analytic and geometric parts:

∫
T ∇ϕi(x) · ∇ϕj(x)dx (6)

=
∫
T

∂ϕi (x)
∂xα

∂ϕj (x)
∂xα dx (7)

=
∫
Tref

∂ξβ
∂xα

∂ϕi (ξ)
∂ξβ

∂ξγ
∂xα

∂ϕj (ξ)
∂ξγ

|J|dx (8)

=
∂ξβ
∂xα

∂ξγ
∂xα |J|

∫
Tref

∂ϕi (ξ)
∂ξβ

∂ϕj (ξ)
∂ξγ

dx (9)

= Gβγ(T )K ij
βγ (10)

Coefficients are also put into the geometric part.
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Integration Analytic Flexibility

Weak Form Processing

from f f c . ana l ys i s impor t analyze_forms
from f f c . compi ler impor t compute_ir

parameters = f f c . defau l t_parameters ( )
parameters [ ’ r ep resen ta t i on ’ ] = ’ tensor ’
ana l ys i s = analyze_forms ( [ a , L ] , { } , parameters )
i r = compute_ir ( ana lys is , parameters )

a_K = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 0 ]
a_G = i r [ 2 ] [ 0 ] [ ’AK ’ ] [ 0 ] [ 1 ]

K = a_K . A0 . astype (numpy . f l o a t 3 2 )
G = a_G
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Integration Computational Flexibility

Outline

4 Integration
Analytic Flexibility
Computational Flexibility
Efficiency
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Integration Computational Flexibility

Computational Flexibility

We generate different computations on the fly,

and can change
Element Batch Size

Number of Concurrent Elements

Loop unrolling

Interleaving stores with computation
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Integration Computational Flexibility

Computational Flexibility
Basic Contraction

G K

Figure: Tensor Contraction Gβγ(T )K ij
βγ
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Integration Computational Flexibility

Computational Flexibility
Element Batch Size

G0

G1

G2

G3

K
thread 0

thread 5

thread 15
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Computational Flexibility
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Integration Computational Flexibility

Computational Flexibility
Concurrent Elements
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Integration Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = f u l l * /
E [ 0 ] += G[ 0 ] * K [ 0 ] ;
E [ 0 ] += G[ 1 ] * K [ 1 ] ;
E [ 0 ] += G[ 2 ] * K [ 2 ] ;
E [ 0 ] += G[ 3 ] * K [ 3 ] ;
E [ 0 ] += G[ 4 ] * K [ 4 ] ;
E [ 0 ] += G[ 5 ] * K [ 5 ] ;
E [ 0 ] += G[ 6 ] * K [ 6 ] ;
E [ 0 ] += G[ 7 ] * K [ 7 ] ;
E [ 0 ] += G[ 8 ] * K [ 8 ] ;

M. Knepley (UC) GPU CBC 72 / 85



Integration Computational Flexibility

Computational Flexibility
Loop Unrolling

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r ( i n t b = 0; b < 1; ++b ) {

const i n t n = b * 1 ;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E [ b ] += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}

}
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Integration Computational Flexibility

Computational Flexibility
Interleaving stores

/ * G K c o n t r a c t i o n : u n r o l l = none * /
f o r ( i n t b = 0; b < 4; ++b ) {

const i n t n = b * 1 ;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E [ b ] += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}

}
/ * Store c o n t r a c t i o n r e s u l t s * /
elemMat [ Eo f f se t + idx +0] = E [ 0 ] ;
elemMat [ Eo f f se t + idx +16] = E [ 1 ] ;
elemMat [ Eo f f se t + idx +32] = E [ 2 ] ;
elemMat [ Eo f f se t + idx +48] = E [ 3 ] ;
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Integration Computational Flexibility

Computational Flexibility
Interleaving stores

n = 0;
f o r ( i n t alpha = 0; alpha < 3; ++alpha ) {

f o r ( i n t beta = 0; beta < 3; ++beta ) {
E += G[ n*9+ alpha *3+ beta ] * K [ alpha *3+ beta ] ;

}
}
/ * Store c o n t r a c t i o n r e s u l t * /
elemMat [ Eo f f se t + idx +0] = E;
n = 1; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +16] = E;
n = 2; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +32] = E;
n = 3; E = 0 . 0 ; / * con t rac t * /
elemMat [ Eo f f se t + idx +48] = E;

M. Knepley (UC) GPU CBC 75 / 85



Integration Efficiency

Outline
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Analytic Flexibility
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Efficiency
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Integration Efficiency

Performance
Influence of Element Batch Sizes
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Integration Efficiency

Performance
Influence of Code Structure
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Performance
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Integration Efficiency

Performance

Price-Performance Comparison of CPU and GPU
3D P1 Laplacian Integration

Model Price ($) GF/s MF/s$
GTX285 390 90 231
Core 2 Duo 300 2 6.6

∗ Jed Brown Optimization Engine
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Yet To be Done
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Yet To be Done

Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
Single language
Hand optimized
3rd party libraries
new hardware

Alternative Model: PetCLAW
Multiple language through Python
Optimization through code generation
3rd party libaries through wrappers
New hardware through code generation

M. Knepley (UC) GPU CBC 83 / 85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw


Yet To be Done

Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
Single language
Hand optimized
3rd party libraries
new hardware

Alternative Model: PetCLAW
Multiple language through Python
Optimization through code generation
3rd party libaries through wrappers
New hardware through code generation

M. Knepley (UC) GPU CBC 83 / 85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw


Yet To be Done

Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
Single language
Hand optimized
3rd party libraries
new hardware

Alternative Model: PetCLAW
Multiple language through Python
Optimization through code generation
3rd party libaries through wrappers
New hardware through code generation

M. Knepley (UC) GPU CBC 83 / 85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw


Yet To be Done

Competing Models

How should modern scientific
computing be structured?

Current Model: PETSC
Single language
Hand optimized
3rd party libraries
new hardware

Alternative Model: PetCLAW
Multiple language through Python
Optimization through code generation
3rd party libaries through wrappers
New hardware through code generation

M. Knepley (UC) GPU CBC 83 / 85

http://www.mcs.anl.gov/petsc
http://numerics.kaust.edu.sa/pyclaw


Yet To be Done

New Model for Scientific Software

Application

FFC/SyFi
eqn. definitionsympy symbolics

numpy
da

ta
st

ru
ct

ur
es

petsc4py

so
lve

rs

PyCUDA

integration/assembly

PETSc
CUDA

OpenCL

Figure: Schematic for a generic scientific applicationM. Knepley (UC) GPU CBC 84 / 85



Yet To be Done

What Do We Still Need?

Better integration of code generation
Match CUDA driver interface to CUDA runtime interface

Extend code generation to quadrature schemes

Kernel fusion in assembly

Better hierarchical parallelism
Larger scale parallel GPU tests

Synchronization reduction in current algorithms
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