A Computational Viewpoint on Classical Density Functional Theory

Matthew Knepley

Computation Institute University of Chicago

Numerical Analysis Seminar Texas A&M University College Station, TX December 3, 2014

M. Knepley (UC)

DFT

BIBEE Researchers

Jaydeep Bardhan

Classical DFT Researchers

Dirk Gillespie

Bob Eisenberg

Biological Ion Channels

Ion channels, such as the ryanodine receptor, control the flow of ions across membranes. The competition between *energetic* and *entropic* effects determines ion selectivity.

Classical DFT combined with advanced electrostatics has allowed prediction of I-V curves for 100+ solutions, including polyvalent species.

The implementation is detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Biological Ion Channels

Ion channels, such as the ryanodine receptor, control the flow of ions across membranes. The competition between *energetic* and *entropic* effects determines ion selectivity.

Classical DFT combined with advanced electrostatics has allowed prediction of I-V curves for 100+ solutions, including polyvalent species.

The implementation is detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Biological Ion Channels

Ion channels, such as the ryanodine receptor, control the flow of ions across membranes. The competition between *energetic* and *entropic* effects determines ion selectivity.

Classical DFT combined with advanced electrostatics has allowed prediction of I-V curves for 100+ solutions, including polyvalent species.

< ロ > < 同 > < 回 > < 回 >

The implementation is detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Outline

2 Model

What is CDFT?

A fast, accurate theoretical tool to understand the fundamental physics of inhomogeneous fluids

CDFT Intro

What is CDFT?

For concentration $\rho_i(\vec{x})$ of species *i*, solve

 $\min \Omega[\{\rho_i(\vec{x})\}]$ $\rho_i(\vec{x})$

where Ω is the free energy.

Thermal Properties of the Inhomogeneous Electron Gas, N. David Mermin, Phys. Rev., 1965 **CDFT** Intro

What is CDFT?

For concentration $\rho_i(\vec{x})$ of species *i*, solve

$$\frac{\delta\Omega}{\delta\rho_i(\vec{x})} = \mathbf{0}$$

which are the Euler-Lagrange equations.

What is CDFT?

DFT

- Computes ensemble-averaged quantities directly
- Can have physical resolution in time (μs) and space (Å)
- Requires an accurate Ω
- Requires sophisticated solver technology
- Can predict experimental results!

For example,

D. Gillespie, L. Xu, Y. Wang, and G. Meissner, J. Phys. Chem. B 109, 15598, 2005

Outline

1 CDFT Intro

2 Model

- Hard Sphere Repulsion
- Bulk Fluid Electrostatics
- Reference Fluid Density Electrostatics

Verification

TAMU

Equilibrium

In equilibrium, the Euler-Lagrange equations reduce to,

 $\nabla \mu_i = \mathbf{0}$

Equilibrium

or equivalently,

$$\mu_i = \mu_i^{\text{bath}}.$$

イロト イヨト イヨト イ

Equilibrium

We can divide the chemical potential into parts,

$$\mu_i^{\text{ext}} + \mu_i^{\text{ideal}} + \mu_i^{\text{ex}} = \mu_i^{\text{bath}}$$

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Equilibrium

We can divide the chemical potential into parts,

$$\mu_i^{\text{ext}} + kT \log \rho_i + \mu_i^{\text{ex}} = \mu_i^{\text{bath}}$$

Equilibrium

which, upon rearrangement, gives

$$ho_i(ec{x}) = \exp\left(rac{\mu_i^{ ext{bath}} - \mu_i^{ ext{ext}}(ec{x}) - \mu_i^{ ext{ext}}(ec{x})}{kT}
ight)$$

where

$$\mu_i^{\text{ex}}(\vec{x}) = \mu_i^{\text{HS}}(\vec{x}) + \mu_i^{\text{ES}}(\vec{x})$$
$$= \mu_i^{\text{HS}}(\vec{x}) + \mu_i^{\text{SC}}(\vec{x}) + z_i \boldsymbol{e}\phi(\vec{x})$$

and

$$-\epsilon\Delta\phi(ec{x})=oldsymbol{e}\sum_i
ho_i(ec{x})$$

The theory and implementation are detailed in

Knepley, Karpeev, Davidovits, Eisenberg, Gillespie, An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Outline

Model

Hard Sphere Repulsion

- Bulk Fluid Electrostatics
- Reference Fluid Density Electrostatics

< 合い

-

TAMU

Hard Spheres (Rosenfeld)

$$\mu_i^{\rm HS}(\vec{x}) = kT \sum_{\alpha} \int \frac{\partial \Phi^{\rm HS}}{\partial n_{\alpha}} (n_{\alpha}(\vec{x}')) \omega_i^{\alpha}(\vec{x} - \vec{x}') \, d^3x'$$

where

$$\begin{split} \Phi^{\mathrm{HS}}(n_{\alpha}(\vec{x}')) &= -n_0 \ln(1-n_3) + \frac{n_1 n_2 - \vec{n}_{V1} \cdot \vec{n}_{V2}}{1-n_3} \\ &+ \frac{n_2^3}{24\pi(1-n_3)^2} \left(1 - \frac{\vec{n}_{V2} \cdot \vec{n}_{V2}}{n_2^2}\right)^3 \end{split}$$

イロト イヨト イヨト イ

Hard Sphere Basis

$$n_{lpha}(ec{x}) = \sum_{i} \int
ho_{i}(ec{x}') \omega_{i}^{lpha}(ec{x} - ec{x}') \, d^{3}x'$$

where

$$\omega_{i}^{0}(\vec{r}) = \frac{\omega_{i}^{2}(\vec{r})}{4\pi R_{i}^{2}} \qquad \qquad \omega_{i}^{1}(\vec{r}) = \frac{\omega_{i}^{2}(\vec{r})}{4\pi R_{i}} \\
 \omega_{i}^{2}(\vec{r}) = \delta(|\vec{r}| - R_{i}) \qquad \qquad \omega_{i}^{3}(\vec{r}) = \theta(|\vec{r}| - R_{i}) \\
 \vec{\omega}_{i}^{V1}(\vec{r}) = \frac{\vec{\omega}_{i}^{V2}(\vec{r})}{4\pi R_{i}} \qquad \qquad \vec{\omega}_{i}^{V2}(\vec{r}) = \frac{\vec{r}}{|\vec{r}|}\delta(|\vec{r}| - R_{i})$$

・ロト ・ 日 ト ・ 目 ト ・

Hard Sphere Basis

All n_{α} integrals may be cast as convolutions:

$$n_{\alpha}(\vec{x}) = \sum_{i} \int \rho_{i}(\vec{x}')\omega_{i}^{\alpha}(\vec{x}' - \vec{x})d^{3}x'$$
$$= \sum_{i} \mathcal{F}^{-1} \left(\mathcal{F}(\rho_{i}) \cdot \mathcal{F}(\omega_{i}^{\alpha})\right)$$
$$= \sum_{i} \mathcal{F}^{-1} \left(\hat{\rho}_{i} \cdot \hat{\omega_{i}^{\alpha}}\right)$$

and similarly

$$\mu_i^{\rm HS}(\vec{x}) = kT \sum_{\alpha} \mathcal{F}^{-1} \left(\frac{\partial \hat{\Phi}^{\rm HS}}{\partial n_{\alpha}} \cdot \hat{\omega_i^{\alpha}} \right)$$

< 🗇 🕨 < 🖃 >

There is a fly in the ointment:

- standard quadrature for ω^{α} is very inaccurate ($\mathcal{O}(1)$ errors),
- and destroys conservation properties, e.g. total mass

We can use spectral quadrature for accurate evaluation,
combining FFT of density, ρ̂_i,

• with analytic FT of weight functions.

TAMU

There is a fly in the ointment:

- standard quadrature for ω^{α} is very inaccurate ($\mathcal{O}(1)$ errors),
- and destroys conservation properties, e.g. total mass

We can use spectral quadrature for accurate evaluation,

- combining FFT of density, $\hat{\rho}_i$,
- with analytic FT of weight functions.

TAMU

Hard Sphere Repulsion

Model

Hard Sphere Basis Spectral Quadrature

$$\hat{\omega}_{i}^{0}(\vec{k}) = \frac{\hat{\omega}_{i}^{2}(\vec{k})}{4\pi R_{i}^{2}} \qquad \hat{\omega}_{i}^{1}(\vec{k}) = \frac{\hat{\omega}_{i}^{2}(\vec{k})}{4\pi R_{i}}$$
$$\hat{\omega}_{i}^{2}(\vec{k}) = \frac{4\pi R_{i} \sin(R_{i}|\vec{k}|)}{|\vec{k}|} \qquad \hat{\omega}_{i}^{3}(\vec{k}) = \frac{4\pi}{|\vec{k}|^{3}} \left(\sin(R_{i}|\vec{k}|) - R_{i}|\vec{k}|\cos(R_{i}|\vec{k}|)\right)$$
$$\hat{\omega}_{i}^{V1}(\vec{k}) = \frac{\hat{\omega}_{i}^{V2}(\vec{k})}{4\pi R_{i}} \qquad \hat{\omega}_{i}^{V2}(\vec{k}) = \frac{-4\pi i}{|\vec{k}|^{2}} \left(\sin(R_{i}|\vec{k}|) - R_{i}|\vec{k}|\cos(R_{i}|\vec{k}|)\right)$$

э

イロン イロン イヨン イ

Hard Sphere Basis Numerical Stability

Recall that

$$\Phi^{\rm HS}(n_{\alpha}(\vec{x}')) = \ldots + \frac{n_2^3}{24\pi(1-n_3)^2} \left(1 - \frac{\vec{n}_{V2} \cdot \vec{n}_{V2}}{n_2^2}\right)^3$$

Model

and note that we have analytically

$$\frac{|n^{V2}(x)|^2}{|n^2(x)|^2} \le 1.$$

However, discretization errors in ρ_i near sharp geometric features can produce large values for this term, which prevent convergence of the nonlinear solver. Thus we explicitly enforce this bound.

Outline

• Hard Sphere Repulsion

Bulk Fluid Electrostatics

Reference Fluid Density Electrostatics

TAMU

$$\mu_{i}^{\text{SC}} = \mu_{i}^{\text{ES,bath}} - \sum_{j} \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_{j}(\vec{x}') \, d^{3}x'$$

Using $\lambda_k = R_k + \frac{1}{2\Gamma}$, where Γ is the MSA screening parameter, we have

$$\begin{aligned} \boldsymbol{c}_{ij}^{(2)}\left(\vec{x},\vec{x}'\right) + \psi_{ij}\left(\vec{x},\vec{x}'\right) &= \frac{Z_i Z_j \boldsymbol{e}^2}{8\pi\epsilon} \left(\frac{|\vec{x}-\vec{x}'|}{2\lambda_i \lambda_j} - \frac{\lambda_i + \lambda_j}{\lambda_i \lambda_j} + \frac{1}{|\vec{x}-\vec{x}'|} \left(\frac{(\lambda_i - \lambda_j)^2}{2\lambda_i \lambda_j} + 2\right)\right) \end{aligned}$$

$$\mu_i^{\text{SC}} = \mu_i^{\text{ES,bath}} - \sum_j \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_j(\vec{x}') \, d^3x'$$

It's a convolution too!

・ロト ・ 日 ト ・ 目 ト ・

$$\mu_{i}^{\text{SC}} = \mu_{i}^{\text{ES,bath}} - \sum_{j} \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_{j}(\vec{x}') \, d^{3}x'$$

$$\mathcal{F}\left(\Delta\rho_{j}
ight)=\mathcal{F}\left(
ho_{j}-
ho_{\mathrm{bath}}
ight)=\mathcal{F}\left(
ho_{j}
ight)-\mathcal{F}\left(
ho_{\mathrm{bath}}
ight)$$

•
$$\mathcal{F}(\rho_j)$$
 was already calculated

•
$$\mathcal{F}(\rho_{\text{bath}})$$
 is constant

•
$$\mathcal{F}\left(c_{ij}^{(2)}\left(\vec{x},\vec{x}'\right)+\psi_{ij}\left(\vec{x},\vec{x}'\right)\right)$$
 is constant

so we only calculate the inverse transform on each iteration.

TAMU

$$\mu_{i}^{\text{SC}} = \mu_{i}^{\text{ES,bath}} - \sum_{j} \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_{j}(\vec{x}') \, d^{3}x'$$
FFT is also inaccurate!

・ロト ・ 日 ト ・ 目 ト ・

$$\mu_{i}^{\text{SC}} = \mu_{i}^{\text{ES,bath}} - \sum_{j} \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_{j}(\vec{x}') d^{3}x'$$
$$\hat{c}_{ij}^{(2)} + \hat{\psi}_{ij} = \frac{z_{i}z_{j}e^{2}}{\epsilon |\vec{k}|} \left(\frac{1}{2\lambda_{i}\lambda_{j}} I_{1} - \frac{\lambda_{i} + \lambda_{j}}{\lambda_{i}\lambda_{j}} I_{0} + \left(\frac{(\lambda_{i} - \lambda_{j})^{2}}{2\lambda_{i}\lambda_{j}} + 2 \right) I_{-1} \right)$$

where

$$\begin{split} I_{-1} &= \frac{1}{|\vec{k}|} \left(1 - \cos(|\vec{k}|R) \right) \\ I_0 &= -\frac{R}{|\vec{k}|} \cos(|\vec{k}|R) + \frac{1}{|\vec{k}|^2} \sin(|\vec{k}|R) \\ I_1 &= -\frac{R^2}{|\vec{k}|} \cos(|\vec{k}|R) + 2\frac{R}{|\vec{k}|^2} \sin(|\vec{k}|R) - \frac{2}{|\vec{k}|^3} \left(1 - \cos(|\vec{k}|R) \right) \\ M. \text{ Knepley (UC)} \quad \text{DFT} \quad \text{TAMU} \quad 18/36 \end{split}$$

Outline

• Hard Sphere Repulsion

Bulk Fluid Electrostatics

Reference Fluid Density Electrostatics

-

Expand around $\rho_i^{\text{ref}}(\vec{x})$, an inhomogeneous reference density profile:

$$\mu_i^{SC} \left[\left\{ \rho_k \left(\vec{y} \right) \right\} \right] \approx \mu_i^{SC} \left[\left\{ \rho_k^{\text{ref}} \left(\vec{y} \right) \right\} \right] \\ - kT \sum_i \int c_i^{(1)} \left[\left\{ \rho_k^{\text{ref}} \left(\vec{y} \right) \right\} ; \vec{x} \right] \Delta \rho_i \left(\vec{x} \right) d^3x \\ - \frac{kT}{2} \sum_{i,j} \iint c_{ij}^{(2)} \left[\left\{ \rho_k^{\text{ref}} \left(\vec{y} \right) \right\} ; \vec{x}, \vec{x}' \right] \Delta \rho_i \left(\vec{x} \right) \Delta \rho_j \left(\vec{x}' \right) d^3x d^3x'$$

with

$$\Delta \rho_{i}\left(\vec{x}\right) = \rho_{i}\left(\vec{x}\right) - \rho_{i}^{\text{ref}}\left(\vec{x}\right)$$

Model Reference Fluid Density Electrostatics

Reference Fluid Density (RFD) Electrostatics

$$\rho_{i}^{\text{ref}}\left[\left\{\rho_{k}\left(\vec{x}'\right)\right\};\vec{x}\right] = \frac{3}{4\pi R_{SC}^{3}\left(\vec{x}\right)} \int_{\left|\vec{x}'-\vec{x}\right| \leq R_{SC}\left(\vec{x}\right)} \alpha_{i}\left(\vec{x}'\right) \rho_{i}\left(\vec{x}'\right) d^{3}x'$$

Choose α_i so that the reference density is

- charge neutral, and
- has the same ionic strength as ρ_i

This can model gradient flow

TAMU

Model Reference Fluid Density Electrostatics

Reference Fluid Density (RFD) Electrostatics

$$\rho_{i}^{\text{ref}}\left[\left\{\rho_{k}\left(\vec{x}'\right)\right\};\vec{x}\right] = \frac{3}{4\pi R_{SC}^{3}\left(\vec{x}\right)} \int_{\left|\vec{x}'-\vec{x}\right| \leq R_{SC}\left(\vec{x}\right)} \alpha_{i}\left(\vec{x}'\right) \rho_{i}\left(\vec{x}'\right) d^{3}x'$$

Choose α_i so that the reference density is

- charge neutral, and
- has the same ionic strength as ρ_i

This can model gradient flow

TAMU

Model Reference Fluid Density Electrostatics

Reference Fluid Density (RFD) Electrostatics

$$\rho_{i}^{\text{ref}}\left[\left\{\rho_{k}\left(\vec{x}'\right)\right\};\vec{x}\right] = \frac{3}{4\pi R_{SC}^{3}\left(\vec{x}\right)} \int_{\left|\vec{x}'-\vec{x}\right| \leq R_{SC}\left(\vec{x}\right)} \alpha_{i}\left(\vec{x}'\right) \rho_{i}\left(\vec{x}'\right) d^{3}x'$$

Choose α_i so that the reference density is

- charge neutral, and
- has the same ionic strength as ρ_i

This can model gradient flow

We can rewrite this expression as an averaging operation:

$$\rho^{\text{ref}}(\vec{x}) = \int \rho(\vec{x}') \frac{\theta\left(|\vec{x}' - \vec{x}| - R_{SC}(\vec{x})\right)}{\frac{4\pi}{3}R_{SC}^3(\vec{x})} dx'$$

where

$$R_{SC}(\vec{x}) = \frac{\sum_{i} \tilde{\rho}_{i}(\vec{x}) R_{i}}{\sum_{i} \tilde{\rho}_{i}(\vec{x})} + \frac{1}{2\Gamma(\vec{x})}$$

We close the system using

$$\Gamma_{\rm SC}\left[\rho\right]\left(\vec{x}\right) = \Gamma_{\rm MSA}\left[\rho^{\rm ref}(\rho)\right]\left(\vec{x}\right).$$

We can rewrite this expression as an averaging operation:

$$\rho^{\text{ref}}(\vec{x}) = \int \rho(\vec{x}') \frac{\theta\left(|\vec{x}' - \vec{x}| - R_{SC}(\vec{x})\right)}{\frac{4\pi}{3}R_{SC}^3(\vec{x})} dx'$$

where

$$R_{SC}(\vec{x}) = \frac{\sum_{i} \tilde{\rho}_{i}(\vec{x}) R_{i}}{\sum_{i} \tilde{\rho}_{i}(\vec{x})} + \frac{1}{2\Gamma(\vec{x})}$$

We close the system using

$$\Gamma_{\rm SC}\left[\rho\right]\left(\vec{x}\right) = \Gamma_{\rm MSA}\left[\rho^{\rm ref}(\rho)\right]\left(\vec{x}\right).$$

TAMU

Efficient Evaluation:

 Full integral O(N²) with vectorization
 Accurate Evaluation of Local Averages on GPGPUs, Karpeev, Knepley, Brune, LNESS, 2013

FFT + Interpolation Fast Numerical Methods and Biological Problems, Brune, 2011 complexity in

 $\mathcal{O}(N_R N \log N)$

using

$$N_R \leq rac{\log R_{\max} - \log R_{\min}}{\log \left(1 + \sqrt{rac{8\epsilon}{R_{\max}||
abla
ho||_2 + 10||
ho||_2}}
ight)}$$

where we have used Young's inequality to produce the denominator from the interpolation estimate.

Efficient Evaluation:

 Full integral O(N²) with vectorization
 Accurate Evaluation of Local Averages on GPGPUs, Karpeev, Knepley, Brune, LNESS, 2013

 FFT + Interpolation Fast Numerical Methods and Biological Problems, Brune, 2011 Complexity in

 $\mathcal{O}(N_R N \log N)$

using

$$N_R \leq rac{\log R_{ ext{max}} - \log R_{ ext{min}}}{\log \left(1 + \sqrt{rac{8\epsilon}{R_{ ext{max}}||
abla
ho||_2 + 10||
ho||_2}}
ight)}$$

where we have used Young's inequality to produce the denominator from the interpolation estimate.

M. Knepley (UC)

TAMU

Outline

CDFT Intro

2 Model

M. Knepley (UC)

・ロト ・ 日 ト ・ ヨ ト ・

24/36

TAMU

- Check n_{α} of constant density against analytics
- Check that *n*₃ is the combined volume fraction
- Check that wall solution has only 1D variation

TAMU

Sum Rule Verification Hard Spheres

$$\beta P_{\text{bath}}^{HS} = \sum_{i} \rho_i(R_i)$$

where

$$P_{\text{bath}}^{HS} = \frac{6kT}{\pi} \left(\frac{\xi_0}{\Delta} + \frac{3\xi_1\xi_2}{\Delta^2} + \frac{3\xi_2^3}{\Delta^3} \right)$$

using auxiliary variables

$$\xi_n = rac{\pi}{6} \sum_j
ho_j^{bath} \sigma_j^n \qquad n \in \{0, \dots, 3\}$$

 $\Delta = 1 - \xi_3$

• • • • • • • • • • • • •

TAMU

Sum Rule Verification Hard Spheres

Relative accuracy and Simulation time for R = 0.1 nm

0.09 5000 Time 0.08 Relative sum rule error $rac{P-kT
ho(z=R)}{D}$ 4000 0.070.06 Time (s) 0.05 0.042000 0.03 0.02 1000 Error 0.00.00 0.20 0.30 0.35 0.40 packing fraction η DFT TAMU M. Knepley (UC)

27/36

Sum Rule Verification against Hard Wall

Sum Rule Verification Hard Spheres

Volume fraction ranges from 10^{-5} to 0.4 (very difficult for MC/MD)

5000 Time 0.08 Relative sum rule error $rac{P-kT
ho(z=R)}{D}$ 4000 0.070.06 Time (s) 0.05 0.04 2000 0.03 0.02 1000 Error 0.00.00 0.20 0.30 0.35 0.40 packing fraction η DFT TAMU 27/36 M. Knepley (UC)

Sum Rule Verification against Hard Wall

R _{cation}	0.1nm
R _{anion}	0.2125nm
Concentration	1M
Domain	$2 \times 2 \times 6 \mathrm{nm^3}$ and periodic
Uncharged hard wall	<i>z</i> = 0
Grid	21 imes 21 imes 161

R _{cation}	0.1nm
R _{anion}	0.2125nm
Concentration	1M
Domain	$2 \times 2 \times 6 \mathrm{nm^3}$ and periodic
Uncharged hard wall	<i>z</i> = 0
Grid	21 × 21 × <mark>161</mark>

Cation Concentrations for 1M concentration Cation Density

AMU 29/36

Anion Concentrations for 1M concentration Anion Density

Mean Electrostatic Potential for 1M concentration

Electrostatic Potential

These results were first reported in 1D in Density functional theory of the electrical double layer: the RFD functional, J. Phys.: Condens. Matter 17, 6609, 2005.

Main Points

Real Space vs. Fourier Space

- $\mathcal{O}(N^2)$ vs. $\mathcal{O}(N \lg N)$
- Accurate quadrature only available in Fourier space

Electrostatics

- Bulk Fluid (BF) model can be qualitatively wrong
- Reference Fluid Density (RFD) model demands complex algorithm

Solver convergence

- Picard was more robust
- Newton rarely entered the quadratic regime
- Still no multilevel alternative (interpolation?)

Main Points

Real Space vs. Fourier Space

- $\mathcal{O}(N^2)$ vs. $\mathcal{O}(N \lg N)$
- Accurate quadrature only available in Fourier space

Electrostatics

- Bulk Fluid (BF) model can be qualitatively wrong
- Reference Fluid Density (RFD) model demands complex algorithm

Solver convergence

- Picard was more robust
- Newton rarely entered the quadratic regime
- Still no multilevel alternative (interpolation?)

TAMU

Main Points

Real Space vs. Fourier Space

- $\mathcal{O}(N^2)$ vs. $\mathcal{O}(N \lg N)$
- Accurate quadrature only available in Fourier space

Electrostatics

- Bulk Fluid (BF) model can be qualitatively wrong
- Reference Fluid Density (RFD) model demands complex algorithm

Solver convergence

- Picard was more robust
- Newton rarely entered the quadratic regime
- Still no multilevel alternative (interpolation?)

Verification

Conclusion

The theory and implementation are detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012.

Potassium Density in a Calcium Channel

Conclusion

Verification The theory and implementation are detailed in An Efficient Algorithm for Classical Density Functional Theory in Three Dimensions: Ionic Solutions, JCP, 2012. Hardsphere Chemical Potential (bath subtracted) for Potassium

mu_HS - muBath_HS (kT) -0.0219 0.872 1.77 2.66 3.55 7.13 5.34 6.23 8.02 1 14

Verification

Hydrodynamics

Recall that for electrostatics, we have

$$\mu_{i}^{\text{SC}} = \mu_{i}^{\text{ES,bath}} - \sum_{j} \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_{j}(\vec{x}') \, d^{3}x'$$

where

$$c_{ij}^{(2)}\left(\vec{x},\vec{x}'\right) + \psi_{ij}\left(\vec{x},\vec{x}'\right) = \frac{z_i z_j e^2}{8\pi\epsilon} \left(\frac{|\vec{x}-\vec{x}'|}{2\lambda_i \lambda_j} - \frac{\lambda_i + \lambda_j}{\lambda_i \lambda_j} + \frac{1}{|\vec{x}-\vec{x}'|} \left(\frac{(\lambda_i - \lambda_j)^2}{2\lambda_i \lambda_j} + 2\right)\right)$$

for the interaction kernel

$$\frac{1}{|\vec{x}-\vec{x}'|}$$

★ ∃ > ★

TAMU

Hydrodynamics

A similar expression for hydrodynamics would have the same form

$$\mu_{i}^{\text{HSC}} = \mu_{i}^{\text{HD,bath}} - \sum_{j} \int_{|\vec{x} - \vec{x}'| \le R_{ij}} \left(c_{ij}^{(2)}(\vec{x}, \vec{x}') + \psi_{ij}(\vec{x}, \vec{x}') \right) \Delta \rho_{j}(\vec{x}') \, d^{3}x'$$

where now

$$c_{ij}^{(2)}\left(ec{x},ec{x}'
ight) + \psi_{ij}\left(ec{x},ec{x}'
ight) = rac{1}{8\pi}\sum_{k}rac{C_{k}(ec{x},ec{x}')}{|ec{x}-ec{x}'|^{k}}$$

for the interaction kernel

$$\frac{1}{|\vec{x}-\vec{x'}|}\left(1+\frac{\vec{x}\vec{x'}}{|\vec{x}-\vec{x'}|^2}\right)$$

TAMU