Implementation for Scientific Computing: FEM and FMM

Matthew Knepley

Computation Institute University of Chicago

Department of Mathematics Tufts University March 12, 2010

Outline

- 2 Operator Assembly
- 3 Mesh Distribution
- 4 Parallel FMM

• • • • • • • • • • • •

Tufts

Computational Mathematics

can produce Better Software and lead to Better Science

Computational Mathematics can produce Better Software and lead to Better Science

Computational Mathematics can produce Better Software and lead to Better Science

Improve Accuracy, Stability, or Scaling

- Spectral elements
- SUPG
- Multigrid

- 3 >

Tufts

Automatically Optimize

- Loop Tiling
- FErari
- PetFMM

Tufts

Simplify Design

- Generic type systems
- Sieve
- PetFMM

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Tufts

Explore Algorithmic Tradeoffs

- Treecode vs. FMM
- Conforming vs. Nonconforming elements
- FMM vs. Multigrid for Poisson on a GPU

Tufts

Collaborators

Automated FEM

- Andy Terrel (UT Austin)
- Ridgway Scott (UChicago)
- Rob Kirby (Texas Tech)
- Sieve
 - Dmitry Karpeev (ANL)
 - Peter Brune (UChicago)
 - Anders Logg (Simula)
- FMM
 - Lorena Barba (BU)
 - Felipe Cruz (Bristol)
 - Rio Yokota (BU)

Outline

Introduction

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

3 Mesh Distribution

4 Parallel FMM

Main Point

A familiar problem, FEM assembly,

is recast to allow

automatic optimization.

M. Knepley (UC)

Tufts

Main Point

A familiar problem, FEM assembly,

is recast to allow

automatic optimization.

M. Knepley (UC)

Tufts

Main Point

A familiar problem, FEM assembly,

is recast to allow

automatic optimization.

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

- 3 >

Form Decomposition

Element integrals are decomposed into <u>analytic</u> and <u>geometric</u> parts:

$$\int_{\mathcal{T}} \nabla \phi_i(\mathbf{x}) \cdot \nabla \phi_j(\mathbf{x}) d\mathbf{x}$$
(1)

$$= \int_{\mathcal{T}} \frac{\partial \phi_i(\mathbf{x})}{\partial x_{\alpha}} \frac{\partial \phi_j(\mathbf{x})}{\partial x_{\alpha}} d\mathbf{x}$$
(2)

$$= \int_{\mathcal{T}_{ref}} \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \phi_{i}(\xi)}{\partial \xi_{\beta}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} \frac{\partial \phi_{j}(\xi)}{\partial \xi_{\gamma}} |J| d\mathbf{x}$$
(3)

$$= \frac{\partial \xi_{\beta}}{\partial x_{\alpha}} \frac{\partial \xi_{\gamma}}{\partial x_{\alpha}} |J| \int_{\mathcal{T}_{ref}} \frac{\partial \phi_i(\xi)}{\partial \xi_{\beta}} \frac{\partial \phi_j(\xi)}{\partial \xi_{\gamma}} d\mathbf{x}$$
(4)
$$= \frac{G^{\beta\gamma}(\mathcal{T}) K_{\beta\gamma}^{ij}}{G^{\beta\gamma}(\mathcal{T})}$$
(5)

$$= \mathbf{G}^{\gamma}(\mathbf{r})\mathbf{K}_{\beta\gamma}$$

Coefficients are also put into the geometric part.

Element Matrix Formation

- Element matrix K is now made up of small tensors
- Contract all tensor elements with each the geometry tensor $G(\mathcal{T})$

3	0	0	-1	1	1	-4	-4	0	4	0	0
0	0	0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	0	0	0	0
-1	0	0	3	1	1	0	0	4	0	-4	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
1	0	0	1	3	3	-4	0	0	0	0	-4
-4	0	0	0	-4	-4	8	4	0	-4	0	4
-4	0	0	0	0	0	4	8	-4	-8	4	0
0	0	0	4	0	0	0	-4	8	4	-8	-4
4	0	0	0	0	0	-4	-8	4	8	-4	0
0	0	0	-4	0	0	0	4	-8	-4	8	4
0	0	0	-4	-4	-4	4	0	-4	0	4	8

ロトメポトメミトメミト・ミーク

Element Matrix Computation

• Element matrix K can be precomputed

- FFC
- SyFi
- Can be extended to nonlinearities and curved geometry
- Many redundancies among tensor elements of *K*
 - Could try to optimize the tensor contraction...

Given vectors $v_i \in \mathbb{R}^m$, minimize $flops(v^Tg)$ for arbitrary $g \in \mathbb{R}^m$

- The set v_i is not at all random
- Not a traditional compiler optimization
- How to formulate as an optimization problem?

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

Tufts

Complexity Reducing Relations

If
$$v_i^T g$$
 is known, is $flops(v_i^T g) < 2m - 1$?

We can use binary relations among the vectors:

Equality

• If
$$v_j = v_i$$
, then $flops(v_j^T g) = 0$

Colinearity

• If
$$v_j = \alpha v_i$$
, then $flops(v_i^T g) = 1$

- Hamming distance
 - If $dist_H(v_j, v_i) = k$, then $flops(v_j^T g) = 2k$

Algorithm for Binary Relations

Construct a weighted graph on v_i

- The weight w(i, j) is $flops(v_i^T g)$ given $v_i^T g$
- With the above relations, the graph is symmetric
- Find a minimum spanning tree
 - Use Prim or Kruskal for worst case $O(n^2 \log n)$
- Traverse the MST, using the appropriate calculation for each edge
 - Roots require a full dot product

Coplanarity

Ternary relation

- If $v_k = \alpha v_i + \beta v_j$, then $flops(v_k^T g) = 3$
- Does not fit our undirected graph paradigm

• SVD for vector triples is expensive

- Use a randomized projection into a few \mathbb{R}^3s
- Use a hypergraph?
 - MST algorithm available
- Appeal to geometry?
 - Incidence structures

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 47 ▶

Finite Element rearragement to automaically reduce instructions

- Open source implementation http://www.fenics.org/wiki/FErari
- Build tensor blocks $K_{m,m'}^{ij}$ as vectors using FIAT
- Discover dependencies
 - Represented as a DAG
 - Can also use hypergraph model
- Use minimal spanning tree to construct computation

Results

Preliminary Results

Order	Entries	Base MAPs	FErari MAPs
1	6	24	7
2	21	84	15
3	55	220	45
4	120	480	176
5	231	924	443
6	406	1624	867

イロト イヨト イヨト

Outline

Operator Assembly

- Problem Statement
- Plan of Attack
- Results
- Mixed Integer Linear Programming

< 🗇 🕨 🔺 🖃

Tufts

Modeling the Problem

- Objective is cost of dot products (tensor contractions in FEM)
 Set of vectors V with a given arbitrary vector g
- The original MINLP has a nonconvex, nonlinear objective
- Reformulate to obtain a MILP using auxiliary binary variables

Modeling the Problem

Variables

- $\alpha_{ij} =$ Basis expansion coefficients
- y_i = Binary variable indicating membership in the basis
- s_{ij} = Binary variable indicating nonzero coefficient α_{ij}
- z_{ij} = Binary variable linearizes the objective function (equivalent to $y_i y_j$)
- U =Upper bound on coefficients

Constraints

- Eq. (6b) : Basis expansion
- Eq. (6c) : Exclude nonbasis vector from the expansion
- Eq. (6d) : Remove offdiagonal coefficients for basis vectors
- Eq. (7c) : Exclude vanishing coefficients from cost

A (10) > A (10) > A (10)

Original Formulation

MINLP Model

minimize
$$\sum_{i=1}^{n} \left\{ y_i(2m-1) + (1-y_i) \left(2 \sum_{j=1, j \neq i}^{n} y_j - 1 \right) \right\}$$
(6a)
subject to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ $i = 1, \dots, n$
 $(6b)$
 $- Uy_j \le \alpha_{ij} \le Uy_j$ $i, j = 1, \dots, n$
 $(6c)$

$$- U(1 - y_i) \le \alpha_{ij} \le U(1 - y_i)$$
 $i, j = 1, ..., n_i$ (6d)
 $y_i \in \{0, 1\}$ $i = 1, ..., n_i$

- 3 →

Original Formulation

Equivalent MILP Model: $z_{ii} = y_i \cdot y_i$ minimize $2m \sum_{i=1}^{n} y_i + 2 \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} (y_j - z_{ij}) - n$ (6a) subject to $v_i = \sum \alpha_{ij} v_j$ $i=1,\ldots,n$ (6b) $-Uy_i \leq \alpha_{ii} \leq Uy_i$ *i*, *j* = 1, . . . , *n* (6c) $i, j = 1, \ldots, n, i \neq j$ $-U(1-y_i) \leq \alpha_{ii} \leq U(1-y_i)$ (6d) $z_{ii} \leq y_i, \quad z_{ii} \leq y_i, \quad z_{ii} \geq y_i + y_i - 1, \qquad i, j = 1, \dots, n$ (6e) $y_i \in \{0, 1\}, \quad z_{ii} \in \{0, 1\}$ $i, j = 1, \dots, n$ M. Knepley (UC) SC 26/121 Tuffs

Sparse Coefficient Formulation

- Take advantage of sparsity of α_{ij} coefficient
- Introduce binary variables s_{ij} to model existence of α_{ij}
- Add constraints $-Us_{ij} \le \alpha_{ij} \le Us_{ij}$

Tufts

Sparse Coefficient Formulation

MINLP Model

minimize

mize
$$\sum_{i=1}^{n} \left\{ y_i(2m-1) + (1-y_i) \left(2 \sum_{j=1, j \neq i}^{n} s_{ij} - 1 \right) \right\}$$
(7a)
t to $v_i = \sum_{j=1}^{n} \alpha_{ij} v_j$ $i = 1, \dots, n$

subject to

$$- Us_{ij} \le \alpha_{ij} \le Us_{ij}$$

$$i, j = 1, \dots, n$$
(7b)
(7c)

$$-U(1-y_i) \le \alpha_{ij} \le U(1-y_i) \qquad i,j = 1,\ldots,n$$
(7d)

$$s_{ij} \leq y_j$$
 $i, j = 1, \dots, n$ (7e)

$$y_i \in \{0,1\}, \quad s_{ij} \in \{0,1\}$$

Tufts

Sparse Coefficient Formulation

Equivalent MILP Model

27 / 121

Tufts

Results

Initial Formulation

- Initial formulation only had sparsity in the α_{ii}
- MINTO was not able to produce some optimal solutions
 - Report results after 36000 seconds

	Default	MILP			Sparse Coef. MILP		
Element	Flops	Flops	LPs	CPU	Flops	LPs	CPU
<i>P</i> ₁ 2D	42	42	33	0.10	34	187	0.43
<i>P</i> ₂ 2D	147	147	2577	37.12	67	6030501	36000
P ₁ 3D	170	166	79	0.49	146	727	3.97
P ₂ 3D	935	935	25283	36000	829	33200	36000

Formulation with Sparse Basis

- We can also take account of the sparsity in the basis vectors
- Count only the flops for nonzero entries
 - Significantly decreases the flop count

	Sparse Coefficient	Sparse Basis			
Elements	Flops	Flops			
<i>P</i> ₁ 2D	34	12			
P ₁ 3D	146	26			
Outline

Introduction

2 Operator Assembly

3 Mesh Distribution

- Sieve
- Distribution
- Interfaces
- Full Assembly

Parallel FMM

Tufts

29/121

Main Point

Rethinking meshes

produces a simple FEM interface

and good code reuse.

Main Point

Rethinking meshes produces a simple FEM interface

and good code reuse.

Main Point

Rethinking meshes produces a simple FEM interface

and good code reuse.

Problems

The biggest problem in scientific computing is programmability:

- Lack of usable implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"
 - to
 - characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

< 🗇 🕨 < 🖻 > <

Problems

The biggest problem in scientific computing is programmability:

- Lack of widespread implementations of modern algorithms
 - Unstructured Multigrid
 - Fast Multipole Method
- Lack of comparison among classes of algorithms
 - Meshes
 - Discretizations
- We should reorient thinking from
 - characterizing the solution (FEM)
 - "what is the convergence rate (in h) of this finite element?"

to

- characterizing the computation (FErari)
 - "how many digits of accuracy per flop for this finite element?"

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- Full Assembly

• • • • • • • • • • • • •

Sieve is an interface for

- general topologies
- functions over these topologies (bundles)
- traversals

One relation handles all hierarchy

- Vast reduction in complexity
 - Dimension independent code
 - A single communication routine to optimize
- Expansion of capabilities
 - Partitioning and distribution
 - Hybrid meshes
 - Complicated structures and embedded boundaries
 - Unstructured multigrid

Doublet Mesh

M. Knepley (UC)

Tufts 34 / 121

Doublet Mesh

• $cone(0) = \{2, 3, 4\}$

- E - N

Doublet Mesh

• $cone(0) = \{2, 3, 4\}$

•
$$support(7) = \{2, 3\}$$

M. Knepley (UC)

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$

Doublet Mesh

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$
- $star(7) = \{7, 2, 3, 0\}$

M. Knepley (UC)

Doublet Mesh

- 3 >

Doublet Mesh

SC

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

SC

The Mesh Dual

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

.

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

- (E

< 47 ▶

Doublet Section

• Section interface

- $restrict(0) = \{ f_0 \}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

- 3 >

э

Doublet Section

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

-

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Doublet Section

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Restriction

Localization

- Restrict to patches (here an edge closure)
- Compute locally

- E -

Delta

• Delta

- Restrict further to the overlap
- Overlap now carries twice the data

Fusion

- Merge/reconcile data on the overlap
 - Addition (FEM)
 - Replacement (FD)
 - Coordinate transform (Sphere)
 - Linear transform (MG)

< A

Update

• Update

- Update local patch data
- Completion = restrict \longrightarrow fuse \longrightarrow update, <u>in parallel</u>

イロト イポト イヨト イヨ

Completion

- A ubiquitous parallel form of *restrict* \longrightarrow *fuse* \longrightarrow *update*
- Operates on Sections
 - Sieves can be "downcast" to Sections
- Based on two operations
 - Data exchange through overlap
 - Fusion of shared data

- FEM accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

FEM accumulating integrals on shared faces

- distributing mesh entities after partition
- accumlating matvec for a partially assembled matrix.

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

- distributing mesh entities after partition
- accumlating matvec for a partially assembled matrix.

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumilating matvec for a partially assembled matrix

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- Full Assembly

Tufts

40 / 121
Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone() s!

- 3rd party packages construct a vertex partition
- For FEM, partition dual graph vertices
- For FVM, construct hyperpgraph dual with faces as vertices
- Assign closure (v) and star (v) to same partition

Doublet Mesh Distribution

• • • • • • • • • • • • •

Doublet Mesh Distribution

Doublet Mesh Distribution

• • • • • • • • • • • • •

Section Distribution

Section distribution consists of

- Creation of the local Section
- Distribution of the Atlas (layout Section)
- Completion of the Section

Tufts

44 / 121

Sieve Distribution

Construct local mesh from partition

- - This distributes the cells
- - This distributes the remaining sieve points

Sieve Distribution

Construct local mesh from partition

- Construct partition overlap
- - This distributes the cells
- - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- Update Overlap with new points
- - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- Update Overlap with new points
- Omplete() the cone section
 - This distributes the remaining sieve points

- Construct local mesh from partition
- Construct partition overlap
- Omplete() the partition section
 - This distributes the cells
- Update Overlap with new points
- Omplete() the cone section
 - This distributes the remaining sieve points
- Opdate local Sieves

2D Example

A simple triangular mesh

M. Knepley (UC)

2D Example

Sieve for the mesh

• • • • • • • • • • • • •

2D Example

Local sieve on process 0

2D Example

Partition Overlap

M. Knepley (UC)

2D Example

Partition Section

イロト イヨト イヨト イヨ

2D Example

Updated Sieve Overlap

M. Knepley (UC)

Tufts 46 / 121

2D Example

Cone Section

・ロト ・ 日 ・ ・ ヨ ・ ・

2D Example

Distributed Sieve

2D Example

Coordinate Section

2D Example

Distributed Coordinate Section

2D Example

Distributed Mesh

3D Example

A simple hexahedral mesh

M. Knepley (UC)

■ ► ● へへの Tufts 47 / 121

3D Example

Sieve for the mesh

Its complicated!

M. Knepley (UC)

• • • • • • • • •

3D Example

Sieve for the mesh

Its complicated!

M. Knepley (UC)

• • • • • • • • •

3D Example

Partition Overlap

M. Knepley (UC)

3D Example

Partition Section

・ロト ・ 四ト ・ ヨト ・ ヨト

3D Example

Distributed Mesh

Notice cells are ghosted

M. Knepley (UC)

Tufts

47 / 121

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- Full Assembly

< • > < • > >

Sieve Overview

• Hierarchy is the centerpiece

- Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 Rich enough for FEM
- Single operation, completion, for parallelism
 - Enforces consistency of the relation

Sieve Overview

• Hierarchy is the centerpiece

- Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 Rich enough for FEM
- Single operation, completion, for parallelism
 Enforces consistency of the relation

Sieve Overview

- Hierarchy is the centerpiece
 - Strip out unneeded complexity (dimension, shape, ...)
- Single relation, covering, handles all hierarchy
 - Rich enough for FEM
- Single operation, completion, for parallelism
 - Enforces consistency of the relation
Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

< 🗇 🕨 < 🖻 > <

- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

- A 🖻 🕨

- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes

 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, covering, on sieve points

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)
- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - · can be more easily optimized

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM

• Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology
- data layout

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

Outline

Mesh Distribution

- Sieve
- Distribution
- Interfaces
- Full Assembly

- ∢ ∃ ▶

Tufts

```
cells = mesh \rightarrow heightStratum(0);
for(c = cells ->begin(); c != cells ->end(); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]*detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

- (E

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  SectionRestrictClosure(coordinates, dm, c, &coords);
  v0, J, invJ, detJ = computeGeometry(coords);
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]*detJ;
    }
    Update output vector */
  Aggregate updates */
```

< 🗇 🕨 < 🖻 🕨

- (E

Tuffs

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  SectionRestrictClosure(U, dm, c, &inputVec);
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

・ロト ・ 同ト ・ ヨト ・ ヨ

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    realCoords = J * refCoords[q] + v0;
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    Update output vector */
  Aggregate updates */
```

A (10) A (10) A (10)

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      elemVec[f] += basis[q, f] * rhsFunc(realCoords);
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
  /* Update output vector*/
  Aggregate updates */
```

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Transform J */
      for (d = 0; d < \dim; ++d)
        for (e = 0; e < dim; ++e)
          tDerReal[d] += invJ[e,d] * basisDer[q,f,e];
      for (g = 0; g < numBasisFuncs; ++g) {
        for(d = 0; d < dim; ++d)
          for (e = 0; e < dim; ++e)
             bDerReal[d] += invJ[e,d]*basisDer[q,g,e];
          /* Update element matrix */
        /* Update element vector */
      }
      /* Nonlinear term */
      elemVec[f] *= weight[q]*detJ;
```

M. Knepley (UC)

.

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Transform J */
      for (g = 0; g < numBasisFuncs; ++g) {
        for(d = 0; d < dim; ++d)
          elemMat[f,g] += tDerReal[d] * bDerReal[d];
        elemVec[f] += elemMat[f,g]*inputVec[g];
      }
      /* Nonlinear term */
      elemVec[f] *= weight[q]*detJ;
    Update output vector */
  Aggregate updates */
```

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      elemVec[f] += basis[q, f] * lambda * exp(inputVec[f]);
      elemVec[f] *= weight[q]* detJ;
     Update output vector */
  Aggregate updates */
```

イロト イポト イヨト イヨト

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  SectionRealUpdate(locF, c, elemVec, ADD_VALUES);
  Aggregate updates */
```

・ロト ・ 同ト ・ ヨト ・ ヨ

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]* detJ;
    }
  /* Update output vector*/
  Aggregate updates */
```

・ロト ・ 同ト ・ ヨト ・ ヨ

Tufts

```
for (c = cells \rightarrow begin (); c != cells \rightarrow end (); ++c) {
  /* Compute cell geometry */
  /* Retrieve values from input vector */
  for (q = 0; q < numQuadPoints; ++q) {
    /* Transform coordinates */
    for (f = 0; f < numBasisFuncs; ++f) {
      /* Constant term */
      /* Linear term */
      /* Nonlinear term */
      elemVec[f] *= weight[q]*detJ;
  /* Update output vector*/
DMLocalToGlobalBegin(dm, locF, INSERT VALUES, F);
DMLocalToGlobalEnd(dm, locF, INSERT VALUES, F);
```

Tufts

Full Assembly

PyLith

Mesh Distribution

Full Assembly

Multiple Mesh Types

Fracture Mechanics

- Full variational formulation
 - Phase field
 - Linear or Quadratic penalty
- Uses TAO optimization
 - Necessary for linear penalty
 - Backtacking
- No prescribed cracks (movie)
 - Arbitrary crack geometry
 - Arbitrary intersections
- Multiple materials
 - Composite toughness

^aBourdin

Full Assembly

Fracture Mechanics

¹Bourdin

<□▶ <□▶ < □▶ < □▶ < □▶ = つへ

M. Knepley (UC)

Tufts 74 / 121
Outline

- 1 Introduction
- 2 Operator Assembly
- 3 Mesh Distribution
- 4 Parallel FMM
 - Short Introduction to FMM
 - Parallelism
 - PetFMM

Tufts

75/121

Main Point

Using estimates and proofs,

a simple software architecture,

achieves good scaling

and adaptive load balance.

Tufts

76 / 121

Using estimates and proofs, a simple software architecture, achieves good scaling and adaptive load balance.

Using estimates and proofs,

a simple software architecture,

achieves good scaling

and adaptive load balance.

Outline

Parallel FMM

Short Introduction to FMM

- Parallelism
- PetFMM

イロン イ理 とくほとく ほ

Tufts

77 / 121

FMM Applications

FMM can accelerate both integral and boundary element methods for:

- Laplace
- Stokes
- Elasticity

- 3 >

FMM Applications

FMM can accelerate both integral and boundary element methods for:

- Laplace
- Stokes
- Elasticity
- Advantages
 - Mesh-free
 - *O*(*N*) time
 - Distributed and multicore (GPU) parallelism
 - Small memory bandwidth requirement

Tufts

78 / 121

Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j K(x_i, x_j) q(x_j)$$
(8)

• Accelerates
$$\mathcal{O}(N^2)$$
 to $\mathcal{O}(N)$ time

- The kernel $K(x_i, x_j)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques

Fast Multipole Method

FMM accelerates the calculation of the function:

$$\Phi(x_i) = \sum_j \frac{q_j}{|x_i - x_j|} \tag{8}$$

• Accelerates
$$\mathcal{O}(N^2)$$
 to $\mathcal{O}(N)$ time

- The kernel $K(x_i, x_j)$ must decay quickly from (x_i, x_i)
 - Can be singular on the diagonal (Calderón-Zygmund operator)
- Discovered by Leslie Greengard and Vladimir Rohklin in 1987
- Very similar to recent wavelet techniques

Spatial Decomposition

Pairs of boxes are divided into *near* and *far*:

- 3 >

Short Introduction to FMM

Spatial Decomposition

Pairs of boxes are divided into *near* and *far*:

Neighbors are treated as very near.

FMM Control Flow

Kernel operations will map to GPU tasks.

FMM Control Flow Parallel Operation

Kernel operations will map to GPU tasks.

Tufts

81 / 121

Outline

Parallel FMM

- Short Introduction to FMM
- Parallelism
- PetFMM

イロン イ理 とくほとく ほ

- The Quadtree is a Sieve
 with optimized operations
- Multipoles are stored in Sections

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Two Overlaps are defined
 - Neighbors
 - Interaction List.
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections

< ロ > < 同 > < 回 > < 回 >

- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections

< ロ > < 同 > < 回 > < 回 >

- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections

- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections

- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections

• • • • • • • • • • • • • •

- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

- The Quadtree is a Sieve
 - with optimized operations
- Multipoles are stored in Sections

- Two Overlaps are defined
 - Neighbors
 - Interaction List
- Completion moves data for
 - Neighbors
 - Interaction List

FMM Control Flow

Kernel operations will map to GPU tasks.

FMM Control Flow Parallel Operation

Kernel operations will map to GPU tasks.

Parallel Tree Implementation

- Divide tree into a root and local trees
- Distribute local trees among processes
- Provide communication pattern for local sections (overlap)
 - Both neighbor and interaction list overlaps
 - Sieve generates MPI from high level description

Parallel Tree Implementation

How should we distribute trees?

- Multiple local trees per process allows good load balance
- Partition weighted graph
 - Minimize load imbalance and communication
 - Computation estimate:

Leaf $N_i p$ (P2M) + $n_i p^2$ (M2L) + $N_i p$ (L2P) + $3^d N_i^2$ (P2P) Interior $n_c p^2$ (M2M) + $n_i p^2$ (M2L) + $n_c p^2$ (L2L)

• Communication estimate:

Diagonal $n_c(L-k-1)$ Lateral $2^{d} \frac{2^{m(L-k-1)}-1}{2^m-1}$ for incidence dimesion *m*

Leverage existing work on graph partitioning

• ParMetis

Parallel Tree Implementation Why should a good partition exist?

Shang-hua Teng, Provably good partitioning and load balancing algorithms for parallel adaptive N-body simulation, SIAM J. Sci. Comput., **19**(2), 1998.

- Good partitions exist for non-uniform distributions
 2D *O* (√n(log n)^{3/2}) edgecut
 3D *O* (n^{2/3}(log n)^{4/3}) edgecut
- As scalable as regular grids
- As efficient as uniform distributions
- ParMetis will find a nearly optimal partition

Parallel Tree Implementation Will ParMetis find it?

George Karypis and Vipin Kumar, Analysis of Multilevel Graph Partitioning, Supercomputing, 1995.

- Good partitions exist for non-uniform distributions 2D $C_i = 1.24^i C_0$ for random matching 3D $C_i = 1.21^i C_0$?? for random matching
- 3D proof needs assurance that averge degree does not increase
- Efficient in practice

Parallel FMM

Parallelism

Parallel Tree Implementation Advantages

Simplicity

Complete serial code reuse

Provably good performance and scalability

- 3 >

Parallel FMM

Parallelism

Parallel Tree Implementation Advantages

Simplicity

• Complete serial code reuse

Provably good performance and scalability

Parallel FMM

Parallelism

Parallel Tree Implementation

- Simplicity
- Complete serial code reuse
- Provably good performance and scalability

Distributing Local Trees

The interaction of locals trees is represented by a weighted graph.

This graph is partitioned, and trees assigned to processes.

PetFMM Load Balance

Local Tree Distribution

Here local trees are assigned to processes for a spiral distribution:

イロト イポト イヨト イヨ

Local Tree Distribution

Here local trees are assigned to processes for a spiral distribution:

* 王

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Local Tree Distribution

Here local trees are assigned to processes for a spiral distribution:

3 D 🖌 🕀 🖻

PetFMM

Outline

Parallel FMM

- Short Introduction to FMM
- Parallelism
- PetFMM

Tufts

93 / 121
PetFMM

PetFMM is an freely available implementation of the Fast Multipole Method

http://barbagroup.bu.edu/Barba_group/PetFMM.html

- Leverages PETSc
 - Same open source license
 - Uses Sieve for parallelism
- Extensible design in C++
 - Templated over the kernel
 - Templated over traversal for evaluation
- MPI implementation
 - Novel parallel strategy for anisotropic/sparse particle distributions
 - PetFMM–A dynamically load-balancing parallel fast multipole library
 - 86% efficient strong scaling on 64 procs
- Example application using the Vortex Method for fluids
- (coming soon) GPU implementation

Parallel FMM PetFMM

PetFMM CPU Performance Strong Scaling

Parallel FMM

PetFMM

PetFMM CPU Performance Strong Scaling

Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Dimension and mesh independent code
 - Complete serial code reuse
- Opportunites for optimization
 - Higher level operations missed by traditional compilers
 - Single communication routine to optimize
- Expansion of capabilities
 - Arbitrary elements
 - Unstructured multigrid
 - Multilevel algorithms

FEM

Outline

イロト イヨト イヨト イヨト

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

A I > A = A A

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

FFC is a compiler for variational forms by Anders Logg.

Here is a mixed-form Poisson equation:

$$a((au, w), (\sigma, u)) = L((au, w)) \qquad orall (au, w) \in V$$

where

$$a((\tau, w), (\sigma, u)) = \int_{\Omega} \tau \sigma - \nabla \cdot \tau u + w \nabla \cdot u \, dx$$
$$L((\tau, w)) = \int_{\Omega} wf \, dx$$

Tufts

99 / 121

```
shape = "triangle"
BDM1 = FiniteElement("Brezzi-Douglas-Marini",shape,1)
DG0 = FiniteElement("Discontinuous Lagrange",shape,0)
element = BDM1 + DG0
(tau, w) = TestFunctions(element)
(sigma, u) = TrialFunctions(element)
a = (dot(tau, sigma) - div(tau)*u + w*div(sigma))*dx
f = Function(DG0)
L = w*f*dx
```

э.

Tufts

100 / 121

Here is a discontinuous Galerkin formulation of the Poisson equation:

$$a(v, u) = L(v) \qquad \forall v \in V$$

where

FFC

$$\begin{aligned} a(v,u) &= \int_{\Omega} \nabla u \cdot \nabla v \, dx \\ &+ \sum_{S} \int_{S} -\langle \nabla v \rangle \cdot [[u]]_{n} - [[v]]_{n} \cdot \langle \nabla u \rangle - (\alpha/h) v u \, dS \\ &+ \int_{\partial \Omega} -\nabla v \cdot [[u]]_{n} - [[v]]_{n} \cdot \nabla u - (\gamma/h) v u \, ds \\ L(v) &= \int_{\Omega} v f \, dx \end{aligned}$$

- DG1 = FiniteElement("Discontinuous Lagrange", shape, 1)
- = TestFunctions (DG1)
- u = TrialFunctions(DG1)
- = Function (DG1)
- = Function (DG1) α
- n = FacetNormal("triangle")
- = MeshSize("triangle") h
- a = dot(grad(v), grad(u)) * dx
 - dot(avg(grad(v)), jump(u, n)) * dS
 - dot(jump(v, n), avg(grad(u))) * dS
 - + $alpha/h \cdot dot(jump(v, n) + jump(u, n)) \cdot dS$
 - $dot(grad(v), jump(u, n)) \cdot ds$
 - dot(jump(v, n), grad(u)) * ds
 - + gamma/h * v * u * ds
- L = v * f * dx + v * g * ds

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Outline

M. Knepley (UC)

æ 103 / 121 Tufts

イロト イヨト イヨト イヨト

A Priori refinement

For the Poisson problem, meshes with reentrant corners have a length-scale requirement in order to maintain accuracy:

$$egin{aligned} C_{\mathit{low}} r^{1-\mu} &\leq h \leq C_{\mathit{high}} r^{1-\mu} \ \mu &\leq rac{\pi}{ heta} \end{aligned}$$

Further Work UMG

The Folly of Uniform Refinement

uniform refinement may fail to eliminate error

M. Knepley (UC)

A D M A A A M M

Geometric Multigrid

- We allow the user to refine for fidelity
- Coarse grids are created automatically
- Could make use of AMG interpolation schemes

LIMG

Requirements of Geometric Multigrid

Sufficient conditions for optimal-order convergence:

- $|M_c| < 2|M_f|$ in terms of cells
- any cell in M_c overlaps a bounded # of cells in M_f
- monotonic increase in cell length-scale

• Each M_k satisfies the **quasi-uniformitv** condition:

- $h_{\mathcal{K}}$ is the length-scale (longest edge) of any cell K
- h_k is the maximum length-scale in the mesh M_k
- ρ_K is the diameter of the inscribed ball in K

LIMG

Requirements of Geometric Multigrid

Sufficient conditions for optimal-order convergence:

- $|M_c| < 2|M_f|$ in terms of cells
- any cell in M_c overlaps a bounded # of cells in M_f
- monotonic increase in cell length-scale
- Each *M_k* satisfies the **quasi-uniformity** condition:

$$C_1 h_k \leq h_K \leq C_2 \rho_K$$

- h_K is the length-scale (longest edge) of any cell K
- h_k is the maximum length-scale in the mesh M_k
- *ρ*_K is the diameter of the inscribed ball in K

Function Based Coarsening

- (Miller, Talmor, Teng; 1997)
- triangulated planar graphs \equiv disk-packings (Koebe; 1934)
- define a spacing function S() over the vertices
- obvious one: $S(v) = \frac{dist(NN(v),v)}{2}$

Function Based Coarsening

• pick a subset of the vertices such that $\beta(S(v) + S(w)) > dist(v, w)$

UMG

Further Work

- for all $v, w \in M$, with $\beta > 1$
- dimension independent
- provides guarantees on the size/quality of the resulting meshes

Loop over the vertices

• include a vertex in the new mesh

- remove colliding adjacent vertices from the mesh
- remesh links of removed vertices
- repeat until no vertices are removed.
- Eventually we have that
 - every vertex is either included or removed
 - bounded degree mesh $\Rightarrow O(n)$ time

• Remeshing may be performed either during or after coarsening

- local Delaunay remeshing can be done in 2D and 3D
- faster to connect edges and remesh later

Loop over the vertices

- include a vertex in the new mesh
- remove colliding adjacent vertices from the mesh
- remesh links of removed vertices
- repeat until no vertices are removed.
- Eventually we have that
 - every vertex is either included or removed
 - bounded degree mesh $\Rightarrow O(n)$ time

• Remeshing may be performed either during or after coarsening

- local Delaunay remeshing can be done in 2D and 3D
- faster to connect edges and remesh later

Loop over the vertices

- include a vertex in the new mesh
- remove colliding adjacent vertices from the mesh
- remesh links of removed vertices
- repeat until no vertices are removed.
- Eventually we have that
 - every vertex is either included or removed
 - bounded degree mesh $\Rightarrow O(n)$ time

• Remeshing may be performed either during or after coarsening

- Iocal Delaunay remeshing can be done in 2D and 3D
- faster to connect edges and remesh later

Loop over the vertices

- include a vertex in the new mesh
- remove colliding adjacent vertices from the mesh
- remesh links of removed vertices
- repeat until no vertices are removed.
- Eventually we have that
 - every vertex is either included or removed
 - bounded degree mesh $\Rightarrow O(n)$ time

• Remeshing may be performed either during or after coarsening

- Iocal Delaunay remeshing can be done in 2D and 3D
- faster to connect edges and remesh later

A (1) > A (1) > A

- Loop over the vertices
 - include a vertex in the new mesh
 - remove colliding adjacent vertices from the mesh
 - remesh links of removed vertices
 - repeat until no vertices are removed.
- Eventually we have that
 - every vertex is either included or removed
 - bounded degree mesh $\Rightarrow O(n)$ time
- Remeshing may be performed either during or after coarsening
 - local Delaunay remeshing can be done in 2D and 3D
 - faster to connect edges and remesh later

Tuffs

110/121

- Loop over the vertices
 - include a vertex in the new mesh
 - remove colliding adjacent vertices from the mesh
 - remesh links of removed vertices
 - repeat until no vertices are removed.
- Eventually we have that
 - every vertex is either included or removed
 - bounded degree mesh $\Rightarrow O(n)$ time
- Remeshing may be performed either during or after coarsening
 - local Delaunay remeshing can be done in 2D and 3D
 - faster to connect edges and remesh later

Implementation in Sieve Peter Brune, 2008

- vertex neighbors: $cone(support(v)) \setminus v$
- vertex link: $closure(star(v)) \setminus star(closure(v))$
- connectivity graph induced by limiting sieve depth
- remeshing can be handled as local modifications on the sieve
- meshing operations, such as cone construction easy

Implementation in Sieve Peter Brune, 2008

- vertex neighbors: $cone(support(v)) \setminus v$
- vertex link: $closure(star(v)) \setminus star(closure(v))$
- connectivity graph induced by limiting sieve depth
- remeshing can be handled as local modifications on the sieve
- meshing operations, such as cone construction easy

Implementation in Sieve Peter Brune, 2008

- vertex neighbors: $cone(support(v)) \setminus v$
- vertex link: $closure(star(v)) \setminus star(closure(v))$
- connectivity graph induced by limiting sieve depth
- remeshing can be handled as local modifications on the sieve
- meshing operations, such as cone construction easy

3D Test Problem

- Reentrant corner
- $-\Delta u = f$
- $f(x, y, z) = 3\sin(x + y + z)$
- Exact Solution: $u(x, y, z) = \sin(x + y + z)$

GMG Performance

Linear solver iterates are nearly as system size increases:

KSP Iterates on Reentrant Domains

M. Knepley (UC)

GMG Performance

Coarsening work is nearly constant as system size increases:

Vertex Comparisons on Reentrant Domains

Quality Experiments

Table: Hierarchy quality metrics - 2D

Pacman Mesh, $\beta = 1.45$						
level	cells	vertices	$\frac{\min(h_{\kappa})}{h_{k}}$	max $\frac{h_{\kappa}}{\rho_{k}}$	$\min(h_{\mathcal{K}})$	max. overlap
0	19927	10149	0.020451	4.134135	0.001305	-
1	5297	2731	0.016971	4.435928	0.002094	23
2	3028	1572	0.014506	4.295703	0.002603	14
3	1628	856	0.014797	5.295322	0.003339	14
4	863	464	0.011375	6.403574	0.003339	14
5	449	250	0.022317	6.330512	0.007979	13

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

PyLith

Outline

イロト イヨト イヨト イヨト

PvLith

PyLith

Further Work

PyLith

Multiple Mesh Types

Further Work

PvLith

Cohesive Cells

Cohesive cells are used to enforce slip conditions on a fault

- Demand complex mesh manipulation
 - We allow specification of only fault vertices
 - Must "sew" together on output
- Use Lagrange multipliers to enforce constraints
 - Forces illuminate physics
- Allow different fault constitutive models.
 - Simplest is enforced slip
 - Now have fault constitutive models

• In order to create a fault, the generator provides

a set of fault vertices, or

a set of fault faces.

• Fault vertices, unlike fault faces, must be

- combined into faces on a fault mesh, and
- oriented

• The fault mesh is used to

- split vertices along the fault
- introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

• In order to create a fault, the generator provides

- a set of fault vertices, or
- a set of fault faces.

• Fault vertices, unlike fault faces, must be

- combined into faces on a fault mesh, and
- oriented

• The fault mesh is used to

- split vertices along the fault
- introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

• In order to create a fault, the generator provides

- a set of fault vertices, or
- a set of fault faces.

• Fault vertices, unlike fault faces, must be

- · combined into faces on a fault mesh, and
- oriented

• The fault mesh is used to

- split vertices along the fault
- introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - · combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

• In order to create a fault, the generator provides

- a set of fault vertices, or
- a set of fault faces.
- Fault vertices, unlike fault faces, must be
 - combined into faces on a fault mesh, and
 - oriented
- The fault mesh is used to
 - split vertices along the fault
 - introduce prism elements between adjacent fault faces
- Sieve code works for
 - any dimension
 - any element shape

Tuffs

120/121

PyLith

Reverse-slip Benchmark

