Improved Solvation Models using Boundary Integral Equations

Matthew Knepley and Jaydeep Bardhan

Computational and Applied Mathematics Rice University

Applied Mathematics Colloquium Department of Mathematics UNC Chapel Hill September 16, 2016

M. Knepley (Rice)

Solvation computation can benefit from

operator simplification,

and non-Poisson models.

M. Knepley (Rice)

Solvation computation can benefit from

operator simplification,

and non-Poisson models.

M. Knepley (Rice)

Solvation computation can benefit from

operator simplification,

and non-Poisson models.

Bioelectrostatics The Natural World

Induced Surface Charge on Lysozyme

M. Knepley (Rice)

Solvation

UNC6 4 / 60

We can write a Boundary Integral Equation (BIE) for the induced surface charge σ ,

$$\sigma(\vec{r}) + \hat{\epsilon} \int_{\Gamma} \frac{\partial}{\partial n(\vec{r})} \frac{\sigma(\vec{r}') d^2 \vec{r}'}{4\pi ||\vec{r} - \vec{r}'||} = -\hat{\epsilon} \sum_{k=1}^{Q} \frac{\partial}{\partial n(\vec{r})} \frac{q_k}{4\pi ||\vec{r} - \vec{r}_k||} (\mathcal{I} + \hat{\epsilon} \mathcal{D}^*) \sigma(\vec{r}) =$$

where we define

$$\hat{\epsilon} = 2\frac{\epsilon_I - \epsilon_{II}}{\epsilon_I + \epsilon_{II}} < 0$$

Approximating the Poisson Operator

- Approximate Operators
- Approximate Boundary Conditions

Boundary element discretizations of solvation:

- can be expensive to solve
- are more accurate than required by intermediate design iterations

Outline

< 47 ▶

Generalized Born Approximation

The pairwise energy between charges is defined by the Still equation:

$$G_{es}^{ij} = rac{1}{8\pi} \left(rac{1}{\epsilon_{II}} - rac{1}{\epsilon_{I}}
ight) \sum_{i,j}^{N} rac{q_{i}q_{j}}{r_{ij}^{2} + R_{i}R_{j}e^{-r_{ij}^{2}/4R_{i}R_{j}}}$$

where the effective Born radius is

$$R_i = \frac{1}{8\pi} \left(\frac{1}{\epsilon_{II}} - \frac{1}{\epsilon_I} \right) \frac{1}{E_i}$$

where E_i is the *self-energy* of the charge q_i , the electrostatic energy when atom *i* has unit charge and all others are neutral.

M. Knepley (R

GB Problems

- No global potential solution, only energy
- No analysis of the error
 - For example, Salsbury 2006 consists of parameter tuning
- No path for systematic improvement
 - For example, Sigalov 2006 changes the model

The same atoms have different radii in different

- molecules,
- solvents
- temperatures

LOTS of parameters

• Nina, Beglov, Roux 1997

GB Problems

TABLE 2: Atomic Born Radii Derived from Solvent Electrostatic Charge Distribution Tested with Free Energy Perturbation Methods in an Explicit Solvent^a

^a Patches N-term and C-term CAT, CAY: 2.06 Å. CY: 2.04 Å. OY: 1.52 Å. NT: 2.23 Å. * refers to a wild card character.

Bioelectrostatics Mathematical Model

The reaction potential is given by

1

$$\phi^{R}(ec{r}) = \int_{\Gamma} rac{\sigma(ec{r}')d^{2}ec{r}'}{4\pi\epsilon_{1}||ec{r}-ec{r}'||} = C\sigma$$

which defines Ges, the electrostatic part of the solvation free energy

$$egin{aligned} \Delta G_{es} &= rac{1}{2} \left\langle q, \phi^R
ight
angle \ &= rac{1}{2} \left\langle q, Lq
ight
angle \ &= rac{1}{2} \left\langle q, CA^{-1}Bq
ight
angle \end{aligned}$$

where

$$Bq = -\hat{\epsilon} \int_{\Omega} \frac{\partial}{\partial n(\vec{r})} \frac{q(\vec{r}') d^{3}\vec{r}'}{4\pi ||\vec{r} - \vec{r}'||}$$
$$A\sigma = \mathcal{I} + \hat{\epsilon}\mathcal{D}^{*}$$

BIBEE Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Lower Bound: no good physical motivation

$$\left(1+rac{\hat{\epsilon}}{2}
ight)\sigma_{LB}=Bq$$

Eigenvectors: BEM *e_i* · *e_j* BIBEE/P

BIBEE Approximate \mathcal{D}^* by a diagonal operator

Boundary Integral-Based Electrostatics Estimation

Coulomb Field Approximation: uniform normal field

$$\left(1-rac{\hat{\epsilon}}{2}
ight)\sigma_{CFA}=Bq$$

Preconditioning: consider only local effects

$$\sigma_{P} = Bq$$

Eigenvectors: BEM $e_i \cdot e_i$ BIBEE/P

BIBEE Bounds on Solvation Energy

Theorem: The electrostatic solvation energy ΔG_{es} has upper and lower bounds given by

$$\frac{1}{2}\left(1+\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,\textit{CBq}\right\rangle \leq \frac{1}{2}\left\langle q,\textit{CA}^{-1}\textit{Bq}\right\rangle \leq \frac{1}{2}\left(1-\frac{\hat{\epsilon}}{2}\right)^{-1}\left\langle q,\textit{CBq}\right\rangle,$$

and for spheres and prolate spheroids, we have the improved lower bound,

$$rac{1}{2}\left\langle q,\textit{CBq}
ight
angle \leqrac{1}{2}\left\langle q,\textit{CA}^{-1}\textit{Bq}
ight
angle ,$$

and we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

Energy Bounds:

Proof: Bardhan, Knepley, Anitescu, JCP, 130(10), 2008

I will break the proof into three steps,

- Replace C with B
- Symmetrization
- Eigendecomposition

shown in the following slides.

We will need the single layer operator S for step 1,

$$\mathcal{S} au(ec{r}) = \int rac{ au(ec{r}')d^2ec{r}'}{4\pi|ec{r}-ec{r}'||}$$

(

Energy Bounds: First Step Replace C with B

The potential at the boundary Γ given by

$$\phi^{Coulomb}(\vec{r}) = C^T q$$

can also be obtained by solving an exterior Neumann problem for τ ,

$$\phi^{Coulomb}(\vec{r}) = S\tau$$

= $S(\mathcal{I} - 2\mathcal{D}^*)^{-1}(\frac{2}{\hat{\epsilon}}Bq)$
= $\frac{2}{\hat{\epsilon}}S(\mathcal{I} - 2\mathcal{D}^*)^{-1}Bq$

so that the solvation energy is given by

$$\frac{1}{2}\left\langle q, \textit{CA}^{-1}\textit{B}q\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle \mathcal{S}(\mathcal{I} - 2\mathcal{D}^*)^{-1}\textit{B}q, (\mathcal{I} + \hat{\epsilon}\mathcal{D}^*)^{-1}\textit{B}q\right\rangle$$

M. Knepley (Rice)

Energy Bounds: Second Step Quasi-Hermiticity

Plemelj's symmetrization principle holds that

$$\mathcal{SD}^*=\mathcal{DS}$$

and we have

$$\mathcal{S} = \mathcal{S}^{1/2} \mathcal{S}^{1/2}$$

which means that we can define a Hermitian operator H similar to \mathcal{D}^*

$$H = \mathcal{S}^{1/2} \mathcal{D}^* \mathcal{S}^{-1/2}$$

leading to an energy

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \frac{1}{\hat{\epsilon}}\left\langle Bq, \mathcal{S}^{1/2}(\mathcal{I} - 2H)^{-1}(\mathcal{I} + \hat{\epsilon}H)^{-1}\mathcal{S}^{1/2}Bq\right\rangle$$

M. Knepley (Rice)

Energy Bounds: Third Step Eigendecomposition

The spectrum of \mathcal{D}^* is in $\left[-\frac{1}{2}, \frac{1}{2}\right)$, and the energy is

$$\frac{1}{2}\left\langle q, CA^{-1}Bq\right\rangle = \sum_{i}\frac{1}{\hat{\epsilon}}\left(1-2\lambda_{i}\right)^{-1}\left(1+\hat{\epsilon}\lambda_{i}\right)^{-1}x_{i}^{2}$$

where

$$H = V \wedge V^T$$

and

$$\vec{x} = V^T \mathcal{S}^{1/2} B q$$

A .

→ ∃ →

Energy Bounds: Diagonal Approximations

The BIBEE approximations yield the following bounds

$$\frac{1}{2} \left\langle q, CA_{CFA}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 - \frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}$$
$$\frac{1}{2} \left\langle q, CA_{P}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} x_{i}^{2}$$
$$\frac{1}{2} \left\langle q, CA_{LB}^{-1} Bq \right\rangle = \sum_{i} \frac{1}{\hat{\epsilon}} \left(1 - 2\lambda_{i}\right)^{-1} \left(1 + \frac{\hat{\epsilon}}{2}\right)^{-1} x_{i}^{2}$$

where we note that

$$|\hat{\epsilon}| < \frac{1}{2}$$

BIBEE Accuracy

Electrostatic solvation free energies of met-enkephalin structures

Snapshots taken from a 500-ps MD simulation at 10-ps intervals. Bardhan, Knepley, Anitescu, JCP, 2009.

M. Knepley	(Rice)
------------	--------

Approximating the Poisson Operator

Approximate Operators

Crowded Protein Solution

Important for drug design of antibody therapies

M. Knepley (Rice)

UNC6 21 / 60

BIBEE Scalability

Yokota, Bardhan, Knepley, Barba, Hamada, CPC, 2011.

M. Knepley (Rice)

- Approximate Operators
- Approximate Boundary Conditions

-

Bioelectrostatics Physical Model

Kirkwood's Solution (1934)

The potential inside Region I is given by

$$\Phi_I = \sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} + \psi,$$

and the potential in Region II is given by

$$\Phi_{II} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{C_{nm}}{r^{n+1}} P_n^m(\cos\theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

The reaction potential ψ is expanded in a series

$$\psi = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} B_{nm} r^{n} P_{n}^{m} (\cos \theta) e^{im\phi}.$$

and the source distribution is also expanded

$$\sum_{k=1}^{Q} \frac{q_k}{\epsilon_1 \left| \vec{r} - \vec{r}_k \right|} = \sum_{n=0}^{\infty} \sum_{m=-n}^{n} \frac{E_{nm}}{\epsilon_1 r^{n+1}} P_n^m(\cos \theta) e^{im\phi}.$$

Kirkwood's Solution (1934)

By applying the boundary conditions, letting the sphere have radius *b*,

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b}$$
$$\epsilon_{I}\frac{\partial\Phi_{I}}{\partial r}|_{r=b} = \epsilon_{II}\frac{\partial\Phi_{II}}{\partial r}|_{r=b}$$

we can eliminate C_{nm} , and determine the reaction potential coefficients in terms of the source distribution,

$$B_{nm} = \frac{1}{\epsilon_I b^{2n+1}} \frac{(\epsilon_I - \epsilon_{II})(n+1)}{\epsilon_I n + \epsilon_{II}(n+1)} E_{nm}.$$

Approximate Boundary Conditions

Theorem: The BIBEE boundary integral operator approximations

$$egin{aligned} & \mathcal{A}_{CF\!A} = \mathcal{I} \left(1 + rac{\hat{\epsilon}}{2}
ight) \ & \mathcal{A}_{P} = \mathcal{I} \end{aligned}$$

have an equivalent PDE formulation,

$$\epsilon_{I}\Delta\Phi_{CFA,P} = \sum_{k=1}^{Q} q_{k}\delta(\vec{r} - \vec{r}_{k}) \qquad \qquad \frac{\epsilon_{I}}{\epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial\Phi_{II}}{\partial r} - \frac{\partial\psi_{CFA}}{\partial r}|_{r=b}$$

$$\epsilon_{II}\Delta\Phi_{CFA,P} = 0 \qquad \qquad \text{or}$$

$$\Phi_{I}|_{r=b} = \Phi_{II}|_{r=b} \qquad \qquad \frac{3\epsilon_{I} - \epsilon_{II}}{\epsilon_{I} + \epsilon_{II}}\frac{\partial\Phi_{I}^{C}}{\partial r}|_{r=b} = \frac{\partial\Phi_{II}}{\partial r} - \frac{\partial\psi_{P}}{\partial r}|_{r=b},$$

where Φ_1^C is the Coulomb field due to interior charges.

M. Knepley (Rice	ce)
------------------	-----

Approximate Boundary Conditions

Theorem: For spherical solute, the BIBEE boundary integral operator approximations have eigenspaces are identical to that of the original operator.

M. Knepley (Rice)

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, 135(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

- Start with the fundamental solution to Laplace's equation G(r, r')
- Note that ∫_Γ G(r, r')σ(r')dΓ satisfies the bulk equation and decay at infinity
- Insertion into the approximate BC gives the BIBEE boundary integral approximation
Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum

- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

Proof: Bardhan and Knepley, JCP, **135**(12), 2011.

In order to show that these integral operators share a common eigenbasis,

- Note that, for a spherical boundary,
 D* is compact and has a pure point spectrum
- Examine the effect of the operator on a unit spherical harmonic charge distribution
- Use completeness of the spherical harmonic basis

The result does not hold for general boundaries.

- ∢ ∃ ▶

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = \frac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
$$B_{nm}^{CFA} = \frac{1}{\epsilon_2} \frac{1}{2n+1} \gamma_{nm}$$
$$B_{nm}^P = \frac{1}{\epsilon_1 + \epsilon_2} \frac{1}{n+\frac{1}{2}} \gamma_{nm}.$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Series Solutions

Note that the approximate solutions are *separable*:

$$B_{nm} = \frac{1}{\epsilon_1 n + \epsilon_2 (n+1)} \gamma_{nm}$$
$$B_{nm}^{CFA} = \frac{1}{\epsilon_2} \frac{1}{2n+1} \gamma_{nm}$$
$$B_{nm}^P = \frac{1}{\epsilon_1 + \epsilon_2} \frac{1}{n+\frac{1}{2}} \gamma_{nm}.$$

If $\epsilon_I = \epsilon_{II} = \epsilon$, both approximations are exact:

$$B_{nm}=B_{nm}^{CFA}=B_{nm}^{P}=rac{1}{\epsilon(2n+1)}\gamma_{nm}.$$

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$\textbf{B}_{00} = \textbf{B}_{00}^{\textit{CFA}} = \frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$\lim_{n\to\infty} B_{nm} = \lim_{n\to\infty} B_{nm}^{P} = \frac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}.$$

4 A N

- **→ →** •

Asymptotics

BIBEE/CFA is exact for the n = 0 mode,

$$\textbf{B}_{00} = \textbf{B}_{00}^{\textit{CFA}} = \frac{\gamma_{00}}{\epsilon_2},$$

whereas BIBEE/P approaches the exact response in the limit $n \rightarrow \infty$:

$$\lim_{n\to\infty} B_{nm} = \lim_{n\to\infty} B_{nm}^{P} = \frac{1}{(\epsilon_1 + \epsilon_2)n} \gamma_{nm}.$$

Asymptotics

In the limit $\epsilon_1/\epsilon_2 \rightarrow 0$,

$$\begin{split} &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm} = \frac{\gamma_{nm}}{\epsilon_2(n+1)} \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^{CFA} = \frac{\gamma_{nm}}{\epsilon_2(2n+1)}, \\ &\lim_{\epsilon_1/\epsilon_2 \to 0} B_{nm}^P = \frac{\gamma_{nm}}{\epsilon_2(n+\frac{1}{2})}, \end{split}$$

so that the approximation ratios are given by

$$\frac{B_{nm}^{CFA}}{B_{nm}} = \frac{n+1}{2n+1}, \qquad \frac{B_{nm}^{P}}{B_{nm}} = \frac{n+1}{n+\frac{1}{2}}.$$

Improved Accuracy

BIBEE/I interpolates between BIBEE/CFA and BIBEE/P

Bardhan, Knepley, JCP, 2011.

Basis Augmentation

We examined the more complex problem of protein-ligand binding using trypsin and bovine pancreatic trypsin inhibitor (BPTI), using *electrostatic component analysis* to identify residue contributions to binding and molecular recognition.

Basis Augmentation

Looking at an ensemble of synthetic proteins, we can see that BIBEE/CFA becomes more accurate as the monopole moment increases, and BIBEE/P more accurate as it decreases. BIBEE/I is accurate for spheres, but must be extended for ellipses.

M. Knepley (Rice)

Basis Augmentation

For ellipses, we add a few low order multipole moments, up to the octopole, to recover 5% accuracy for all synthetic proteins tested.

Resolution

Boundary element discretizations of the solvation problem:

can be expensive to solve

• Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009

are more accurate than required by intermediate design iterations

 Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

< □ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

・ロト ・ 同ト ・ ヨト ・ ヨ

Resolution

Boundary element discretizations of the solvation problem:

- can be expensive to solve
 - Bounding the electrostatic free energies associated with linear continuum models of molecular solvation, Bardhan, Knepley, Anitescu, JCP, 2009
- are more accurate than required by intermediate design iterations
 - Analysis of fast boundary-integral approximations for modeling electrostatic contributions of molecular binding, Kreienkamp, et al., Molecular-Based Mathematical Biology, 2013

イロト イポト イヨト イヨト

UNC6 39 / 60

< 🗇 🕨 < 🖃 🕨

Origins of Electrostatic Asymmetry

Origins of Electrostatic Asymmetry

< A

- 3 →

Origins of Electrostatic Asymmetry

Solvation-Layer Interface Condition (SLIC)

Instead of assuming the model and energy and deriving the radii,

$$\epsilon_{I}\frac{\partial\Phi_{I}}{\partial n} = \epsilon_{II}\frac{\partial\Phi_{II}}{\partial n}$$

Solvation-Layer Interface Condition (SLIC)

assume the energy and radii and derive the model.

$$(\epsilon_{I} - \Delta \epsilon h(E_{n})) \frac{\partial \Phi_{I}}{\partial n} = (\epsilon_{II} - \Delta \epsilon h(E_{n})) \frac{\partial \Phi_{II}}{\partial n}$$

Solvation-Layer Interface Condition (SLIC)

Using our correspondence with the BIE form,

$$\left(\mathcal{I}+h(E_n)+\hat{\epsilon}\left(-\frac{1}{2}\mathcal{I}+\mathcal{D}^*\right)\right)\sigma=\hat{\epsilon}\sum_{k=1}^{Q}\frac{\partial G}{\partial n}$$

where h is a diagonal nonlinear integral operator.

$$h(E_n) = \alpha \tanh (\beta E_n - \gamma) + \mu$$

where

- α Size of the asymmetry
- β Width of the transition region
- γ The transition field strength

 μ Assures h(0) = 0, so $\mu = -\alpha \tanh(-\gamma)$

Accuracy of SLIC Residues

M. Knepley (Rice)

Accuracy of SLIC

Accuracy of SLIC Synthetic Molecules

M. Knepley (Rice)

UNC6 47 / 60

Accuracy of SLIC Synthetic Molecules

Accuracy of SLIC Synthetic Molecules

Thermodynamics

The parameters show linear temperature dependence

イロト イヨト イヨト イヨト

Solvent	r_s (Å)	$\epsilon_{out}(T)$	$\epsilon_{out}(25^{\circ}\mathrm{C})$
W	1.370	$\epsilon_{out} = 87.740 - 4.0008e - 1 T + 9.398e - 4 T^2 - 1.410e - 6 T^3$	78.3
MeOH	1.855	$\log_{10} \epsilon_{out} = \log_{10}(32.63) - 2.64e - 3(T - 25)$	32.6
EtOH	2.180	$\log_{10} \epsilon_{out} = \log_{10}(24.30) - 02.70e - 3 \ (T - 25)$	24.3
F	1.725	$\epsilon_{out} = 109 - 7.2e - 1 \ (T - 20)$	105.4
AN	2.135	$\epsilon_{out} = 37.50 - 1.6e - 1 \ (T - 20)$	36.7
DMF	2.585	$\epsilon_{out} = 42.04569 - 2.204448e - 1 T + 7.718531e - 4 T^2 - 1.000389e - 6 T^3$	37.0
DMSO	2.455	$\epsilon_{out} = -60.5 + (5.7\text{e}4/(T + 273.15)) - (7.5\text{e}6/(T + 273.15)^2)$	46.3
NM	2.155	$\log_{10} \epsilon_{out} = \log_{10}(35.8) - 1.89e - 3 \ (T - 30)$	36.6
\mathbf{PC}	2.680	$\epsilon_{out} = 56.670738 + 2.58431e - 1 T - 7.7143e - 4 T^2$	62.6

■ ► ■ つへで UNC6 52/60

イロト イポト イヨト イヨ

< 17 ▶

UNC6 54 / 60

< 17 ▶

A. Molavi Tabrizi, M.G. Knepley, and J.P. Bardhan, Generalising the mean spherical approximation as a multiscale, nonlinear boundary condition at the solute-solvent interface, Molecular Physics (2016).
Improving the Poisson Operator

Thermodynamic Predictions Courtesy A. Molvai Tabrizi

Solvent	lon	∆G (kJ mol ⁻¹)	ΔS (JK ⁻¹ mol ⁻¹)	C _p (J K ⁻¹ mol ⁻¹)
W	F⁻	-430 (-429)	-67 (-115)	-86 (-45)
MeOH	Rb⁺	-326(-319)	-178 (-175)	55
	F⁻	-415	-116	-79 (-131)
EtOH	Rb⁺	-319 (-313)	-197 (-187)	128
	F⁻	-405	-145	-153 (-194)
F	Rb⁺	-340 (-334)	-135 (-130)	27
	F⁻	-418	-128	36 (28)
AN	F⁻	-390	-192	147
DMF	F⁻	-389	-230	105
DMSO	Rb⁺	-348 (-339)	-151 (-180)	32
	F⁻	-400	-160	186(60)
NM	Rb+	-324 (-318)	-186 (-183)	19
	F⁻	-391	-182	95(71)
PC	F⁻	-394	-149	67

Experimental Data in Parentheses

M. Knepley (Rice)

Thermodynamic Predictions Courtesy A. Molvai Tabrizi

- A. Molavi Tabrizi, S. Goossens, M.G. Knepley, and J.P. Bardhan,
- Predicting solvation thermodynamics with dielectric continuum theory and a solvation-layer interface condition (SLIC).
- Submitted to Journal of Physical Chemistry Letters (2016).

Where does SLIC fail?

Large packing fraction

- No charge oscillation or overcharging
- Could use CDFT

No dielectric saturation

- Could be possible with different function
- No long range correlations
 - Use nonlocal dielectric

- More complex solutes
- Mixtures
- Integration into community code
 Psi4, QChem, APBS
- Integrate into conformational search
 - Kavrakis Lab at Rice

Thank You!

http://www.caam.rice.edu/~mk51