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To Thread or Not To Thread

In order to thread the application . . .

I A while ago, everybody wanted threading:
I Utilise shared memory parallelism
I Avoid MPI communication overhead
I Improved memory footprint

I And it was supposed to be easy:

#pragma openmp for

I Fluidity: A widely used finite element code:
I CFD, ocean modelling, geophysical flows,

renewable energies, reservoir modelling, . . .
I Adaptive anisotropic mesh refinement
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To Thread or Not To Thread

. . . we need to thread the solver

I PETSc-OMP:
I An OpenMP threaded fork of PETSc-3.3
I Low-level threading on Mat and Vec objects

I Optimised sparse MatVec
I Explicit computation-communication overlap
I Fined-grained load balance based on non-zero weights

PETSc-OMP IS NOT SUPPORTED ANYMORE!

I Was superseded by PETSc-Threadcomm
I Threadcomm already decommissioned
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Sparse MatVec results on Cray XE6
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It’s extremely hard to beat pure MPI!

1M. Lange, G. Gorman, M. Weiland, L. Mitchell, and J. Southern. ”Supercomputing: 28th ISC 2013. Proceedings”, chapter ”Achieving
Efficient Strong Scaling with PETSc Using Hybrid MPI/OpenMP Optimisation”, pages 97–108. Springer, 2013

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Fluidity performance on Cray XE6

Total run-time for 10 time-steps
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I/O for initial mesh read
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I/O: MPI I/O: Hybrid

1X. Guo, M. Lange, G. Gorman, L. Mitchell, and M. Weiland. Developing a scalable hybrid MPI/OpenMP unstructured finite element
model. Computers & Fluids, 110(0):227 – 234, 2015. ParCFD 2013
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Fluidity performance on Cray XE6

Hybrid MPI-OpenMP looks faster at scale, but . . .

I Huge gains due to initial mesh I/O
I Fluidity does off-line mesh decomposition
I Partitioning and halo read from file
I Using threads we need less partitions (x8)

I Sparse MatVec beats pure MPI
I Only in strong scaling limit with little local work
I Need threading to enforce asynchronous communication
I Improvement due to better load balance, not MPI overheads!

No actual gain from threading!
I We just ameliorated some other underlying problem
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Threading: Should we even care?

Threading is never the whole story . . .
I What is my application really limited by?

I Different tasks can have different limitations (flops vs. bandwidth)
I Profiling (roofline plots, analysis tools) must guide optimisation!

I Can we do better algorithmically?
I Am I using the right numerical scheme?
I Can I use better solvers?

I What about data-intensive tasks?
I Is my communication model appropriate?
I Am I doing I/O right? Are there better file formats?

. . . but threading looks so much easier!
I Changing any of the above is invasive
I Fundamental changes are impractical in monolithic codes
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Firedrake - A finite element framework

Automated symbolic computation1

I Re-envisioned FEniCS/DOLFIN2
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φn+1 = φn+1/2 ´ ∆t
2

pn+1

where

∇φ ¨ n = 0 on ΓN

p = sin(10πt) on ΓD

from firedrake import *
mesh = Mesh("wave_tank.msh")
V = FunctionSpace(mesh , ’Lagrange ’, 1)
p = Function(V, name="p")
phi = Function(V, name="phi")
u = TrialFunction(V)
v = TestFunction(V)
p_in = Constant (0.0)
bc = DirichletBC(V, p_in , 1)
T = 10.
dt = 0.001
t = 0
while t <= T:

p_in.assign(sin(2*pi*5*t))
phi -= dt / 2 * p
p += assemble(dt * inner(grad(v), grad(phi))*dx) \

/ assemble(v*dx)
bc.apply(p)
phi -= dt / 2 * p
t += dt

1F. Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2A. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012
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Firedrake - A finite element framework

Automated symbolic computation1

I Implements UFL2, a finite element DSL
embedded in Python

I Run-time C code generation
I PyOP2: Assembly kernel execution

framework

Separation of concerns

I Expert for each layer
I Use third-party packages

I “Write as little code as possible”
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1F. Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2M. Alnæs, A. Logg, K. Ølgaard, M. Rognes, and G. Wells. Unified Form Language: A domain-specific language for weak formulations
of partial differential equations. ACM Transactions on Mathematical Software (TOMS), 40(2):9, 2014
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Firedrake - A finite element framework

End-to-end optimisation

I Exploration of numerical schemes
I Automated parallelisation
I Data layout optimisations
I Automated kernel optimisation

Parallelisation model
I Mostly MPI on CPUs

I We have threads, but no gains

I Extendable to MPI+X, or just X
I for some unknown X

I Model definition doesn’t change!
I Can even adjust numerics if needed
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Case study: Seigen

Seismology through code generation1

I Seismic model using elastic wave equation
I Implemented purely on top of Firedrake (UFL)
I Explore end-to-end optimisation through symbolic computation

As used in energy exploration

I Full Waveform Inversion (FWI)
I Traditionally finite difference (FD)
I Explore use of unstructured meshes

1C. T. Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation
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Case study: Seigen

Seismology through code generation1

I Discontinuous finite element (DG-FEM) with implicit and explicit solves
I 4th order time-stepping and up to 4th order spatial discretisation
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1C. T. Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation
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Conclusion

Threading: Yes, no, maybe . . .

I Performance optimsiation is usually more
complicated than #pragma openmp for

What matters is end-to-end optimisation

I Consider model, numerics, data optimisation and compiler tricks
I Optimisation needs to fit parallelisation, needs to fit hardware!

Separation of concerns through abstraction layering

I Enables end-to-end optimisation
I Allows expertise from all relevant fields
I Requires run-time decisions1

1J. Brown, M. Knepley, and B. Smith. Run-time extensibility and librarization of simulation software. IEEE Computing in Science and
Engineering, 2015
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Thank You

Don’t miss:

I Poster session - Seigen: Seismic modelling through code generation
I Friday, 4.50pm - F. Luporini: Generating High Performance Finite Element Kernels

Using Optimality Criteria

www.firedrakeproject.org http://www.opesci.org
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