Imperial College

Firedrake: Burning the Thread at Both Ends

M. Lange! G. J. Gorman?
LAMCG, Imperial College London

April 13 2016

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College
London

To Thread or Not To Thread

In order to thread the application ..

»> A while ago, everybody wanted threading:
» Utilise shared memory parallelism
» Avoid MPI communication overhead

» Improved memory footprint

> And it was supposed to be easy:

#pragma openmp for

> Fluidity: A widely used finite element code:

» CFD, ocean modelling, geophysical flows,
renewable energies, reservoir modelling, . ..
» Adaptive anisotropic mesh refinement

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends

Imperial College

To Thread or Not To Thread

...we need to thread the solver

> PETSc-OMP:

» An OpenMP threaded fork of PETSc-3.3
> Low-level threading on Mat and Vec objects

» Optimised sparse MatVec

» Explicit computation-communication overlap
» Fined-grained load balance based on non-zero weights

PETSc-OMP IS NOT SUPPORTED ANYMORE!

> Was superseded by PETSc-Threadcomm
» Threadcomm already decommissioned

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Sparse MatVec results on Cray XE6

10° @8 XE6: Vector-based =-m XEG6: Pure-MPI
\x—x XE6: Task-based ¥ ¥ XE6: Pure-MPI (Decomposed)

9@ XE6: Task-based, NZ-balanced

Runtime (s)
[
Y

32 64 128 256 1024 2048 4096 8192

512
No. of Cores

g
=
3
H
g
o
=
b}
9 60[(e—e XE6: Vector-based m—m XE6: Pure-MPI
S 4ol| ¥ XE6: Task-based ¥ ¥ XE6: Pure-MPI (Decomposed)
& 94 XE6: Task-based, NZ-balanced
32 64 128 256 1024 2048 2096 8192

512
No. of Cores

It’s extremely hard to beat pure MPI!

IM. Lange, G. Gorman, M. Weiland, L. Mitchell, and J. Southern. ”Supercomputing: 28th ISC 2013. Proceedings”, chapter " Achieving
Efficient Strong Scaling with PETSc Using Hybrid MPI1/OpenMP Optimisation”, pages 97-108. Springer, 2013

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Fluidity performance on Cray XE6

Total run-time for 10 time-steps

10
MPI @ -@ Hybrid

Runtime (s)

>
10517 1024 2048 3096 8102 16384
No. of Cores

1/0 for initial mesh read

10
=8 1/0: MPI @ -@ I/O: Hybrid

Runtime (s)

o
10513 1024 2048 4096 8192 16384
No. of Cores

1X. Guo, M. Lange, G. Gorman, L. Mitchell, and M. Weiland. Developing a scalable hybrid MPI/OpenMP unstructured finite element
model. Computers & Fluids, 110(0):227 — 234, 2015. ParCFD 2013

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Fluidity performance on Cray XE6

Hybrid MPI-OpenMP looks faster at scale, but ...

> Huge gains due to initial mesh /O

> Fluidity does off-line mesh decomposition
» Partitioning and halo read from file
» Using threads we need less partitions (x8)

» Sparse MatVec beats pure MPI

» Only in strong scaling limit with little local work
» Need threading to enforce asynchronous communication
» Improvement due to better load balance, not MPI overheads!

No actual gain from threading!
P> We just ameliorated some other underlying problem

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Threading: Should we even care?

Threading is never the whole story ...

» What is my application really limited by?

» Different tasks can have different limitations (flops vs. bandwidth)
» Profiling (roofline plots, analysis tools) must guide optimisation!

»> Can we do better algorithmically?

» Am | using the right numerical scheme?
» Can | use better solvers?

» What about data-intensive tasks?

» Is my communication model appropriate?
» Am | doing 1/O right? Are there better file formats?

... but threading looks so much easier!

» Changing any of the above is invasive
» Fundamental changes are impractical in monolithic codes

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Firedrake - A finite element framework

Automated symbolic computation! from firedrake import +
mesh = Mesh("wave_tank.msh")
»> Re-envisioned FEniCS/DOLFIN2 V = FunctionSpace(mesh, ’Lagrange’, 1)

p = Function(V, name="p")
phi = Function(V, name="phi")
u TrialFunction (V)

i1/2 L A, v = TestFunction(V)

=g o F p-in = Constant (0.0)
bc = DirichletBC(V, p_in, 1)

J V¢'t2 . Todx T = 10.

Pt =y 0 VoeV dt = 0.001

t =0

vdx

o while t <= T:

At p-in.assign(sin(2*pix*5*t))
ras :¢n+l/277yu+1 phi = dt / 2 * p
p += assemble(dt * inner(grad(v), grad(phi))#*dx) \
/ assemble (v*dx)

where
be.apply (p)
hi -= dt / 2
V¢-n=0onTy Siz at / P

p = sin(107tt) on T'p

3 Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2a. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College
London

Firedrake - A finite element framework

Automated symbolic computation!

_ Domain Firedrake/FEniCS (parallell Unified Form
.. specialist: language loop Language
»> Implements UFL2, a finite element DSL 8 mathematical G etr “e o
. modelusng metry, mbly,
embedded in Python (non)linear | compiled e oE)
X . solves expressions
» Run-time C code generation Numerical
. PETSc4py (KSP,
» PyOP2: Assembly kernel execution ;'g:e‘{;;mf SNES, DMPlex)
framework FEM kernels Meshes, Local assembly
matrices, ke s (AST)
Expert for each layer vectors erne
Domain data structures parallel PyOP2
. specialist: Set, Map, Dat] looj
Separation of concerns 8 penoco B Interface
model on un- Parallel loops: kernels COFFEE
> Expert for each | ayer structured grid executed over mesh AST optimiser
> Use third-party packages Parallel Parallel scheduling, code generation
WAL P S i
> “Write as little code as possible f;:i::mm " Explicitly
hardware parallel
architectures, CPI GPU hardware-
optimisation (OpenMP/ | (PyCUDA / specific
opencL) | Pyopencr) 't':gfn'"e"’

1. Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2M. Alnzs, A. Logg, K. @lgaard, M. Rognes, and G. Wells. Unified Form Language: A domain-specific language for weak formulations
of partial differential equations. ACM Transactions on Mathematical Software (TOMS), 40(2):9, 2014

M. Lange, G. J. Gorman

Firedr Burning the Thread at Both Ends

Imperial College
London

Firedrake - A finite element framework

End-to-end optimisation

Domain Firedrake/FEniCS (parallell Unified Form
. . specialist: language loop Language
> Exploration of numerical schemes 8 mathematical U= g “embl
A 3 mode(usmg metry, noly, FEM problem
> Automated para_lle_llsaFlon (nonlinear ::f:rl;'slsins (weak form PDE)
» Data layout optimisations Numerical T e
» Automated kernel optimisation 8 ;’g:e‘{;[‘lmf SNES, DMPlex)
FEM Kernels Meshes, Local assembly
matrices, kernels (AST)
Expert for each layer vectors
Para"elisation model Domain data structures parallel PyOP2
specialist: (Set, Map, Dat) 100p " Interface
> 8 mathematical
Mostly MPI on CPUs model on un- Parallel loops: kernels COFFEE
» We have threads, but no gains structured grid executed over mesh AST optimiser
) Parallel Parallel scheduling, code generation
»> Extendable to MPI+X, or just X programming Explicith
expert: plcly
» for some unknown X hardware b
architectures, CPI / (GPU I hard!lfl.are-
. YT (OpenMP/ | (PyCUDA specific
> Model defi n doesn’t change! opencL) | Pyopenct) Imlemer-

» Can even adjust numerics if needed

M. Lange, G. J. Gorman

Firedr Burning the Thread at Both Ends

Imperial College
London

Case study: Seigen

Seismology through code generation’

» Seismic model using elastic wave equation
> Implemented purely on top of Firedrake (UFL)
> Explore end-to-end optimisation through symbolic computation

source of shock waves (air gun) hydrophones

As used in energy exploration

> Full Waveform Inversion (FWI)
> Traditionally finite difference (FD)
> Explore use of unstructured meshes

et Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation

Both Ends

Imperial College
London

Case study: Seigen

Seismology through code generation’

> Discontinuous finite element (DG-FEM) with implicit and explicit solves
» 4th order time-stepping and up to 4th order spatial discretisation

2 Error-cost comparison of spatial discretisations 16.0 1024
[¢#P1DG__e—e P2DG__ a4 P3DG__ v—v Pa-DG] 50
B 512
ax=0016 oo 4.0 i
16 - g 256
] E 20 2
g & +
H 2 1.0 g 128 4
H 2 g
S8 P g
9 g
g £ os P oe i
3 3 o2 s
B ENE 5 2 22 2
& o Q g o
4 0.125 o oo 3
1
(550,062 0.0625 © Q S 3 3
dx=0.031 8 - A 2
" " " " 0.03125
fo 3 105 107 107 107 Ton P1-DG _ P4-DG 0.5 1.0 2.0 4.0 8.0 16.0
Stress error in L2 norm Operational intensity (FLOPS/Byte)

1C. T. Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Conclusion

Threading: Yes, no, maybe ...

» Performance optimsiation is usually more
complicated than #pragma openmp for

What matters is end-to-end optimisation

»> Consider model, numerics, data optimisation and compiler tricks
» Optimisation needs to fit parallelisation, needs to fit hardware!

Separation of concerns through abstraction layering

» Enables end-to-end optimisation
> Allows expertise from all relevant fields
> Requires run-time decisions’

1. Brown, M. Knepley, and B. Smith. Run-time extensibility and librarization of simulation software. IEEE Computing in Science and
Engineering, 2015

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

Imperial College

Thank You

Don’t miss:

> Poster session - Seigen: Seismic modelling through code generation
> Friday, 4.50pm - F. Luporini: Generating High Performance Finite Element Kernels
Using Optimality Criteria

& Firedrake OPESCI

www.firedrakeproject.org http://www.opesci.org

B (intel

M. Lange, G. J. Gorman

Firedrake: Burning the Thread at Both Ends

www.firedrakeproject.org
http://www.opesci.org

