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To Thread or Not To Thread

In order to thread the application ..

»> A while ago, everybody wanted threading:
»  Utilise shared memory parallelism
» Avoid MPI communication overhead

» Improved memory footprint

> And it was supposed to be easy:

#pragma openmp for

> Fluidity: A widely used finite element code:

» CFD, ocean modelling, geophysical flows,
renewable energies, reservoir modelling, . ..
» Adaptive anisotropic mesh refinement

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends




Imperial College

To Thread or Not To Thread

...we need to thread the solver

> PETSc-OMP:

» An OpenMP threaded fork of PETSc-3.3
> Low-level threading on Mat and Vec objects

» Optimised sparse MatVec

»  Explicit computation-communication overlap
»  Fined-grained load balance based on non-zero weights

PETSc-OMP IS NOT SUPPORTED ANYMORE!

> Was superseded by PETSc-Threadcomm
» Threadcomm already decommissioned
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Sparse MatVec results on Cray XE6
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It’s extremely hard to beat pure MPI!

IM. Lange, G. Gorman, M. Weiland, L. Mitchell, and J. Southern. ”Supercomputing: 28th ISC 2013. Proceedings”, chapter " Achieving
Efficient Strong Scaling with PETSc Using Hybrid MPI1/OpenMP Optimisation”, pages 97-108. Springer, 2013
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Fluidity performance on Cray XE6
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1X. Guo, M. Lange, G. Gorman, L. Mitchell, and M. Weiland. Developing a scalable hybrid MPI/OpenMP unstructured finite element
model. Computers & Fluids, 110(0):227 — 234, 2015. ParCFD 2013
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Fluidity performance on Cray XE6

Hybrid MPI-OpenMP looks faster at scale, but ...

> Huge gains due to initial mesh /O

> Fluidity does off-line mesh decomposition
» Partitioning and halo read from file
» Using threads we need less partitions (x8)

» Sparse MatVec beats pure MPI

» Only in strong scaling limit with little local work
» Need threading to enforce asynchronous communication
» Improvement due to better load balance, not MPI overheads!

No actual gain from threading!
P> We just ameliorated some other underlying problem
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Threading: Should we even care?

Threading is never the whole story ...

» What is my application really limited by?

» Different tasks can have different limitations (flops vs. bandwidth)
» Profiling (roofline plots, analysis tools) must guide optimisation!

»> Can we do better algorithmically?

» Am | using the right numerical scheme?
» Can | use better solvers?

» What about data-intensive tasks?

» Is my communication model appropriate?
» Am | doing 1/O right? Are there better file formats?

... but threading looks so much easier!

» Changing any of the above is invasive
» Fundamental changes are impractical in monolithic codes
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Firedrake - A finite element framework

Automated symbolic computation! from firedrake import +
mesh = Mesh("wave_tank.msh")
»> Re-envisioned FEniCS/DOLFIN2 V = FunctionSpace(mesh, ’Lagrange’, 1)

p = Function(V, name="p")
phi = Function(V, name="phi")
u TrialFunction (V)

i1/2 L A, v = TestFunction(V)

=g o F p-in = Constant (0.0)
bc = DirichletBC(V, p_in, 1)

J V¢'t2 . Todx T = 10.

Pt =y 0 VoeV dt = 0.001

t =0

vdx

o while t <= T:

At p-in.assign(sin(2*pix*5*t))
ras :¢n+l/277yu+1 phi = dt / 2 * p
p += assemble(dt * inner(grad(v), grad(phi))#*dx) \
/ assemble (v*dx)

where
be.apply (p)
hi -= dt / 2
V¢-n=0onTy Siz at / P

p = sin(107tt) on T'p

3 Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2a. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012
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Firedrake - A finite element framework

Automated symbolic computation!

_ Domain Firedrake/FEniCS (parallell Unified Form
.. specialist: language loop Language
»> Implements UFL2, a finite element DSL 8 mathematical G etr “e o
. modelusng metry, mbly,
embedded in Python (non)linear | compiled e oE)
X . solves expressions
» Run-time C code generation Numerical
. PETSc4py (KSP,
» PyOP2: Assembly kernel execution ;'g:e‘{;;mf SNES, DMPlex)
framework FEM kernels Meshes, Local assembly
matrices, ke s (AST)
Expert for each layer  vectors erne
Domain data structures parallel PyOP2
. specialist: Set, Map, Dat] looj
Separation of concerns 8 penoco B Interface
model on un- Parallel loops: kernels COFFEE
> Expert for each | ayer structured grid executed over mesh AST optimiser
> Use third-party packages Parallel Parallel scheduling, code generation
WAL P S i
> “Write as little code as possible f;:i::mm " Explicitly
hardware parallel
architectures, CPI GPU hardware-
optimisation (OpenMP/ | (PyCUDA / specific
opencL) | Pyopencr) 't':gfn'"e"’

1. Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2M. Alnzs, A. Logg, K. @lgaard, M. Rognes, and G. Wells. Unified Form Language: A domain-specific language for weak formulations
of partial differential equations. ACM Transactions on Mathematical Software (TOMS), 40(2):9, 2014

M. Lange, G. J. Gorman

Firedr Burning the Thread at Both Ends




Imperial College
London

Firedrake - A finite element framework

End-to-end optimisation

Domain Firedrake/FEniCS (parallell Unified Form
. . specialist: language loop Language
> Exploration of numerical schemes 8 mathematical U= g “embl
A 3 mode(usmg metry, noly, FEM problem
> Automated para_lle_llsaFlon (nonlinear ::f:rl;'slsins (weak form PDE)
» Data layout optimisations Numerical T e
» Automated kernel optimisation 8 ;’g:e‘{;[‘lmf SNES, DMPlex)
FEM Kernels Meshes, Local assembly
matrices, kernels (AST)
Expert for each layer vectors
Para"elisation model Domain data structures parallel PyOP2
specialist: (Set, Map, Dat) 100p " Interface
> 8 mathematical
Mostly MPI on CPUs model on un- Parallel loops: kernels COFFEE
» We have threads, but no gains structured grid executed over mesh AST optimiser
) Parallel Parallel scheduling, code generation
»> Extendable to MPI+X, or just X programming Explicith
expert: plcly
» for some unknown X hardware b
architectures, CPI / ( GPU I hard!lfl.are-
. YT (OpenMP/ | (PyCUDA specific
> Model defi n doesn’t change! opencL) | Pyopenct) Imlemer-

» Can even adjust numerics if needed
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Case study: Seigen

Seismology through code generation’

» Seismic model using elastic wave equation
> Implemented purely on top of Firedrake (UFL)
> Explore end-to-end optimisation through symbolic computation

source of shock waves (air gun) hydrophones

As used in energy exploration

> Full Waveform Inversion (FWI)
> Traditionally finite difference (FD)
> Explore use of unstructured meshes

et Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation
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Case study: Seigen

Seismology through code generation’

> Discontinuous finite element (DG-FEM) with implicit and explicit solves
» 4th order time-stepping and up to 4th order spatial discretisation
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1C. T. Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation
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Conclusion

Threading: Yes, no, maybe ...

» Performance optimsiation is usually more
complicated than #pragma openmp for

What matters is end-to-end optimisation

»> Consider model, numerics, data optimisation and compiler tricks
» Optimisation needs to fit parallelisation, needs to fit hardware!

Separation of concerns through abstraction layering

» Enables end-to-end optimisation
> Allows expertise from all relevant fields
> Requires run-time decisions’

1. Brown, M. Knepley, and B. Smith. Run-time extensibility and librarization of simulation software. IEEE Computing in Science and
Engineering, 2015
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Thank You

Don’t miss:

> Poster session - Seigen: Seismic modelling through code generation
> Friday, 4.50pm - F. Luporini: Generating High Performance Finite Element Kernels
Using Optimality Criteria

& Firedrake OPESCI

www.firedrakeproject.org http://www.opesci.org
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