
Firedrake: Burning the Thread at Both Ends

M. Lange1 G. J. Gorman1

1AMCG, Imperial College London

April 13 2016

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



To Thread or Not To Thread

In order to thread the application . . .

I A while ago, everybody wanted threading:
I Utilise shared memory parallelism
I Avoid MPI communication overhead
I Improved memory footprint

I And it was supposed to be easy:

#pragma openmp for

I Fluidity: A widely used finite element code:
I CFD, ocean modelling, geophysical flows,

renewable energies, reservoir modelling, . . .
I Adaptive anisotropic mesh refinement

0
2

4
6

8
0 1 2

0

1

2

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



To Thread or Not To Thread

. . . we need to thread the solver

I PETSc-OMP:
I An OpenMP threaded fork of PETSc-3.3
I Low-level threading on Mat and Vec objects

I Optimised sparse MatVec
I Explicit computation-communication overlap
I Fined-grained load balance based on non-zero weights

PETSc-OMP IS NOT SUPPORTED ANYMORE!

I Was superseded by PETSc-Threadcomm
I Threadcomm already decommissioned

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Sparse MatVec results on Cray XE6

32 64 128 256 512 1024 2048 4096 8192
No. of Cores

101

102

103

Ru
nt

im
e 

(s
)

XE6: Vector-based
XE6: Task-based
XE6: Task-based, NZ-balanced

XE6: Pure-MPI
XE6: Pure-MPI (Decomposed)

32 64 128 256 512 1024 2048 4096 8192
No. of Cores

20

40

60

80

100

120

140

Pa
ra

lle
l E

ffi
ci

en
cy

 (%
)

XE6: Vector-based
XE6: Task-based
XE6: Task-based, NZ-balanced

XE6: Pure-MPI
XE6: Pure-MPI (Decomposed)

It’s extremely hard to beat pure MPI!

1M. Lange, G. Gorman, M. Weiland, L. Mitchell, and J. Southern. ”Supercomputing: 28th ISC 2013. Proceedings”, chapter ”Achieving
Efficient Strong Scaling with PETSc Using Hybrid MPI/OpenMP Optimisation”, pages 97–108. Springer, 2013

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Fluidity performance on Cray XE6

Total run-time for 10 time-steps

512 1024 2048 4096 8192 16384
No. of Cores

102

103

104

Ru
nt

im
e 

(s
)

MPI Hybrid

I/O for initial mesh read

512 1024 2048 4096 8192 16384
No. of Cores

100

101

102

103

104

Ru
nt

im
e 

(s
)

I/O: MPI I/O: Hybrid

1X. Guo, M. Lange, G. Gorman, L. Mitchell, and M. Weiland. Developing a scalable hybrid MPI/OpenMP unstructured finite element
model. Computers & Fluids, 110(0):227 – 234, 2015. ParCFD 2013

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Fluidity performance on Cray XE6

Hybrid MPI-OpenMP looks faster at scale, but . . .

I Huge gains due to initial mesh I/O
I Fluidity does off-line mesh decomposition
I Partitioning and halo read from file
I Using threads we need less partitions (x8)

I Sparse MatVec beats pure MPI
I Only in strong scaling limit with little local work
I Need threading to enforce asynchronous communication
I Improvement due to better load balance, not MPI overheads!

No actual gain from threading!
I We just ameliorated some other underlying problem

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Threading: Should we even care?

Threading is never the whole story . . .
I What is my application really limited by?

I Different tasks can have different limitations (flops vs. bandwidth)
I Profiling (roofline plots, analysis tools) must guide optimisation!

I Can we do better algorithmically?
I Am I using the right numerical scheme?
I Can I use better solvers?

I What about data-intensive tasks?
I Is my communication model appropriate?
I Am I doing I/O right? Are there better file formats?

. . . but threading looks so much easier!
I Changing any of the above is invasive
I Fundamental changes are impractical in monolithic codes

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Firedrake - A finite element framework

Automated symbolic computation1

I Re-envisioned FEniCS/DOLFIN2

φn+1/2 = φn ´ ∆t
2

pn

pn+1 = pn +

ż

Ω
∇φn+1/2 ¨∇v dx

ż

Ω
v dx

@v P V

φn+1 = φn+1/2 ´ ∆t
2

pn+1

where

∇φ ¨ n = 0 on ΓN

p = sin(10πt) on ΓD

from firedrake import *
mesh = Mesh("wave_tank.msh")
V = FunctionSpace(mesh , ’Lagrange ’, 1)
p = Function(V, name="p")
phi = Function(V, name="phi")
u = TrialFunction(V)
v = TestFunction(V)
p_in = Constant (0.0)
bc = DirichletBC(V, p_in , 1)
T = 10.
dt = 0.001
t = 0
while t <= T:

p_in.assign(sin(2*pi*5*t))
phi -= dt / 2 * p
p += assemble(dt * inner(grad(v), grad(phi))*dx) \

/ assemble(v*dx)
bc.apply(p)
phi -= dt / 2 * p
t += dt

1F. Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2A. Logg, K.-A. Mardal, and G. Wells. Automated Solution of Differential Equations by the Finite Element Method. Springer, 2012

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Firedrake - A finite element framework

Automated symbolic computation1

I Implements UFL2, a finite element DSL
embedded in Python

I Run-time C code generation
I PyOP2: Assembly kernel execution

framework

Separation of concerns

I Expert for each layer
I Use third-party packages

I “Write as little code as possible”

Unified Form
Language

PyOP2
Interface

TSFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

FEM problem
(weak form PDE)

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake/FEniCS
language

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimiser

data structures
(Set, Map, Dat)

Domain 
specialist: 
mathematical
model using
FEM

Numerical 
analyst: 
generation of
FEM kernels

Domain 
specialist: 
mathematical
model on un-
structured grid

Parallel
programming
expert: 
hardware
architectures, 
optimisation

Expert for each layer

1F. Rathgeber, D. Ham, L. Mitchell, M. Lange, F. Luporini, A. McRae, G. Bercea, G. Markall, and P. Kelly. Firedrake: Automating the
finite element method by composing abstractions. Submitted to ACM TOMS, 2015

2M. Alnæs, A. Logg, K. Ølgaard, M. Rognes, and G. Wells. Unified Form Language: A domain-specific language for weak formulations
of partial differential equations. ACM Transactions on Mathematical Software (TOMS), 40(2):9, 2014

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Firedrake - A finite element framework

End-to-end optimisation

I Exploration of numerical schemes
I Automated parallelisation
I Data layout optimisations
I Automated kernel optimisation

Parallelisation model
I Mostly MPI on CPUs

I We have threads, but no gains

I Extendable to MPI+X, or just X
I for some unknown X

I Model definition doesn’t change!
I Can even adjust numerics if needed

Unified Form
Language

PyOP2
Interface

TSFC

Parallel scheduling, code generation

CPU
(OpenMP/
OpenCL)

GPU
(PyCUDA /
PyOpenCL)

Future
arch.

FEM problem
(weak form PDE)

Local assembly
kernels (AST)

Parallel loops: kernels
executed over mesh

Explicitly
parallel
hardware-
specific
implemen-
tation

Meshes,
matrices,
vectors

PETSc4py (KSP,
SNES, DMPlex)

Firedrake/FEniCS
language

MPI

Geometry,
(non)linear
solves

assembly,
compiled
expressions

FIAT

parallel
loop

parallel
loop

COFFEE
AST optimiser

data structures
(Set, Map, Dat)

Domain 
specialist: 
mathematical
model using
FEM

Numerical 
analyst: 
generation of
FEM kernels

Domain 
specialist: 
mathematical
model on un-
structured grid

Parallel
programming
expert: 
hardware
architectures, 
optimisation

Expert for each layer

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Case study: Seigen

Seismology through code generation1

I Seismic model using elastic wave equation
I Implemented purely on top of Firedrake (UFL)
I Explore end-to-end optimisation through symbolic computation

As used in energy exploration

I Full Waveform Inversion (FWI)
I Traditionally finite difference (FD)
I Explore use of unstructured meshes

1C. T. Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Case study: Seigen

Seismology through code generation1

I Discontinuous finite element (DG-FEM) with implicit and explicit solves
I 4th order time-stepping and up to 4th order spatial discretisation

10-6 10-5 10-4 10-3 10-2 10-1

Stress error in L2 norm

2

4

8

16

32

W
a
ll 

ti
m

e
 /

 s
e
co

n
d
s

dx=0.031

dx=0.016

dx=0.008

dx=0.062

dx=0.031

dx=0.016

dx=0.125

dx=0.062

dx=0.031

dx=0.250

dx=0.125

dx=0.062

Error-cost comparison of spatial discretisations

P1-DG P2-DG P3-DG P4-DG

P1-DG P4-DG
0.03125

0.0625

0.125

0.25

0.5

1.0

2.0

4.0

8.0

16.0

W
a
ll 

ti
m

e
 /

 s
e
co

n
d
s

Raw

Opt

0.5 1.0 2.0 4.0 8.0 16.0

Operational intensity (FLOPS/Byte)

8

16

32

64

128

256

512

1024

P
e
rf

o
rm

a
n
ce

 (
G

Fl
o
p
s/

s)

P
1
-D

G
: O

p
t

P
4
-D

G
: O

p
t

P
1
-D

G
: R

a
w

P
4
-D

G
: R

a
w

1C. T. Jacobs, M. Lange, F. Luporini, and G. J. Gorman. Application of code generation to high-order seismic modelling with the
discontinuous galerkin finite element method. Under Preparation

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Conclusion

Threading: Yes, no, maybe . . .

I Performance optimsiation is usually more
complicated than #pragma openmp for

What matters is end-to-end optimisation

I Consider model, numerics, data optimisation and compiler tricks
I Optimisation needs to fit parallelisation, needs to fit hardware!

Separation of concerns through abstraction layering

I Enables end-to-end optimisation
I Allows expertise from all relevant fields
I Requires run-time decisions1

1J. Brown, M. Knepley, and B. Smith. Run-time extensibility and librarization of simulation software. IEEE Computing in Science and
Engineering, 2015

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends



Thank You

Don’t miss:

I Poster session - Seigen: Seismic modelling through code generation
I Friday, 4.50pm - F. Luporini: Generating High Performance Finite Element Kernels

Using Optimality Criteria

www.firedrakeproject.org http://www.opesci.org

M. Lange, G. J. Gorman
Firedrake: Burning the Thread at Both Ends

www.firedrakeproject.org
http://www.opesci.org

