FEniCS and Sieve Tutorial

Matthew G Knepley ¹ and Andy R Terrel ²

¹Mathematics and Computer Science Division Argonne National Laboratory ²Department of Computer Science University of Chicago

March 5, 2007 Workshop on Automating the Development of Scientific Computing Software LSU, Baton Rouge, LA

4 A N

Introduce FEniCS Automated Mathematical Modeling paradigm

Enable students to develop new simulations with FEniCS

Demonstrate sample problems and typical operations

• Describe PETSc-Sieve project

• High performance parallel infrastructure

Introduce FEniCS Automated Mathematical Modeling paradigm

Enable students to develop new simulations with FEniCS

• Demonstrate sample problems and typical operations

Describe PETSc-Sieve project

• High performance parallel infrastructure

- Introduce FEniCS Automated Mathematical Modeling paradigm
- Enable students to develop new simulations with FEniCS
 Demonstrate sample problems and typical operations

Describe PETSc-Sieve project

• High performance parallel infrastructure

Outline

2 Getting Started

- 4 Stokes
- 5 Function and Operator Abstractions
- 6 Optimal Solvers

FEM at a Glance Strong Form

Find u on domain Ω , given f and BC

∃ >

Find u on domain Ω , given f and BC, such that for all v in the function space S

Find u_h on a triangulization of domain $\Omega,$ given f and BC,

such that for all v in the function space S

$$a(u_h,v) = (f,v)$$
 $u'=0$ $u'=0$
 $u = T_1$

FEM at a Glance Discretization

Find u h on a triangulization of domain Ω , given f and BC, such that for all v h in the function space $V \subset S$ u = T0a(u h, v h) = (f, v h)u'=0 u' = 0u = T1

FEM at a Glance Discrete System

크

Outline

FEM Concepts

2 Getting Started

- Quick Introduction to FEniCS
- Quick Introduction to PETSc
- Download & Install

3 Poisson

4 Stokes

5 Function and Operator Abstractions

Optimal Solvers

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

Outline

Quick Introduction to FEniCS

- Quick Introduction to PETSc
- Download & Install

< 47 ▶

Started in 2003 as a collaboration between

- Chalmers
- University of Chicago
- Now spans
 - KTH
 - University of Oslo and Simula Research
 - University of Chicago and Argonne National Laboratory
 - Cambridge University
 - TU Delft
- Focused on Automated Mathematical Modelling
- Allows researchers to easily and rapidly develop simulations

DOLFIN: The simulation engine which pulls all the pieces together.

PETSc, Trilinos, MTL, uBlas, UMFPACK (separate projects outside FEniCS)

< A >

FIAT: Finite element Integrator And Tabulator SyFi: SYmbolic FInite elements

FFC: Fenics Form Compiler, or SyFi

< < >>

DOLFIN Mesh Library

FEniCS and Sieve Tutorial

Other projects

Project	Description
UFC	Links equation discretization to algebraic solver
Viper	Uses pyvtk to produce quick plots
Instant	JIT C compiler for inline functions in python
Puffin	Educational project
FErari	Optimizations for evaluation of variational forms
Sieve	Abstractions for parallel mesh and function representation

< A

æ

Outline

Getting Started

Quick Introduction to FEniCS

Quick Introduction to PETSc

Download & Install

< 47 ▶

A freely available and supported research code for the parallel solution of nonlinear algebraic equations

Free

- Download from http://www.mcs.anl.gov/petsc
- Free for everyone, including industrial users

Supported

- Hyperlinked manual, examples, and manual pages for all routines
- Hundreds of tutorial-style examples
- Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

What is PETSc?

- Portable to any parallel system supporting MPI, including:
 - Tightly coupled systems
 - Cray XT6, BG/Q, NVIDIA Fermi, K Computer
 - · Loosely coupled systems, such as networks of workstations
 - IBM, Mac, iPad/iPhone, PCs running Linux or Windows
- PETSc History
 - Begun September 1991
 - Over 60,000 downloads since 1995 (version 2)
 - Currently 400 per month
- PETSc Funding and Support
 - Department of Energy
 - SciDAC, MICS Program, AMR Program, INL Reactor Program
 - National Science Foundation
 - CIG, CISE, Multidisciplinary Challenge Program

★ ∃ > < ∃ >

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns

- UNIC on BG/P and XT5
- PFLOTRAN for flow in porous media
- PETSc has run on over 290,000 cores efficiently
 - UNIC on the IBM BG/P Jugene at Jülich
 - PFLOTRAN on the Cray XT5 Jaguar at ORNL
- PETSc applications have run at 23% of peak (600 Teraflops)
 - Jed Brown on NERSC Edison
 - HPGMG code

< 回 > < 三 > < 三 >

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns

- UNIC on BG/P and XT5
- PFLOTRAN for flow in porous media
- PETSc has run on over 290,000 cores efficiently
 - UNIC on the IBM BG/P Jugene at Jülich
 - PFLOTRAN on the Cray XT5 Jaguar at ORNL

• PETSc applications have run at 23% of peak (600 Teraflops)

- Jed Brown on NERSC Edison
- HPGMG code

・ 同 ト ・ ヨ ト ・ ヨ ト

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns

- UNIC on BG/P and XT5
- PFLOTRAN for flow in porous media
- PETSc has run on over 290,000 cores efficiently
 - UNIC on the IBM BG/P Jugene at Jülich
 - PFLOTRAN on the Cray XT5 Jaguar at ORNL
- PETSc applications have run at 23% of peak (600 Teraflops)
 - Jed Brown on NERSC Edison
 - HPGMG code

Outline

Getting Started

- Quick Introduction to FEniCS
- Quick Introduction to PETSc
- Download & Install

A ►

Download and Install Debian Packages

• UFC:

apt-get install ufc

• FIAT:

apt-get install fiat

• FFC:

apt-get install ffc

• DOLFIN:

apt-get install dolfin

• Viper:

apt-get install dolfin

You also need

deb http://www.fenics.org/debian/ unstable main deb-src http://www.fenics.org/debian/ unstable main in your /etc/apt/source.list, and the key

wget http://www.fenics.org/debian/pubring.gpg -0- | sudo apt-key add -

э.

Download and Install Source Tarballs

• UFC:

http://www.fenics.org/pub/software/ufc/v1.0/ufc-1.1.tar

• FIAT:

http://www.fenics.org/pub/software/fiat/FIAT-0.3.4.tar.

• FFC:

http://www.fenics.org/pub/software/ffc/v0.4/ffc-0.4.4.t

DOLFIN: http://www.fenics.org/pub/software/dolfin/v0.7/dolfin-0

• Viper:

http://www.fenics.org/pub/software/viper/v0.2/viper-0.2

э.

Download and Install Mercurial Repositories

• UFC:

```
hg clone http://www.fenics.org/hg/ufc
python setup.py install
```

• FIAT:

```
hg clone http://www.fenics.org/hg/fiat
python setup.py install
```

• FFC:

```
hg clone http://www.fenics.org/hg/ffc
python setup.py install
```

• DOLFIN:

```
hg clone http://www.fenics.org/hg/dolfin
See http://www.fenics.org/wiki/DOLFIN
```

• Viper:

```
hg clone http://www.fenics.org/hg/viper
python setup.py install
```

イロト 不得 トイヨト イヨト ニヨー

Cloning PETSc

- The full development repository is open to the public
 - https://bitbucket.org/petsc/petsc/
- Why is this better?
 - You can clone to any release (or any specific ChangeSet)
 - You can easily rollback changes (or releases)
 - You can get fixes from us the same day
- All releases are just tags:
 - Source at tag v3.4.4

Automatic Downloads

- Starting in 2.2.1, some packages are automatically
 - Downloaded
 - Configured and Built (in \$PETSC_DIR/externalpackages)
 - Installed with PETSc
- Currently works for
 - petsc4py
 - PETSc documentation utilities (Sowing, Igrind, c2html)
 - BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
 - MPICH, MPE, OpenMPI
 - ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
 - MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
 - BLOPEX, FFTW, SPRNG
 - Prometheus, HYPRE, ML, SPAI
 - Sundials
 - Triangle, TetGen
 - FIAT, FFC, Generator
 - Boost

Outline

FEM Concepts

2 Getting Started

Poisson

- Problem Statement
- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking

4 Stokes

Outline

Poisson

Problem Statement

- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking

A (10) A (10) A (10)

Poisson

Problem Statement

Simple Example: Poisson

$$-\Delta u = f$$
 on $\Omega = [0, 1] \times [0, 1]$

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)

A > + = + + =
Simple Example: Poisson Defining the form

element = FiniteElement("Lagrange", "triangle", 1)

- v = TestFunction(element)
- u = TrialFunction(element)
- f = Function(element)
- g = Function (element)
- a = dot(grad(v), grad(u)) * dx
- L = v * f * dx
- a = dot(grad(v), grad(u)) * dx
- L = v * f * dx + v * g * ds

see ffc/src/demo/Poisson.form, and compile with

```
$ ffc Poisson.form
```

イロト 不得 トイヨト イヨト ニヨー

Writing the Simulation: Define our mesh

UnitSquare mesh(32, 32);

- Need to give boundary conditions
- Could use other meshing tools and convert to Dolfin xml format

Writing the Simulation: Assemble and solve

```
// Create user defined functions
Source f(mesh); Flux q(mesh);
// Create boundary condition
Function
                  u0(mesh, 0.0);
DirichletBoundary boundary;
DirichletBC bc(u0, mesh, boundary);
// Define PDE
PoissonBilinearForm a;
PoissonLinearForm L(f, g);
LinearPDE
                    pde(a, L, mesh, bc);
// Solve PDE
Function u:
pde.solve(u);
```

- 4 同 6 4 回 6 4 回 6 - 回

Writing the Simulation: Post process

```
// Plot solution
plot(u);
// Save solution to file
File file("poisson.pvd");
file « u;
```

A (10) A (10) A (10)

Now let's define our source term as:

$$f(x,y) = 500 * \exp\left(-\frac{(x-0.5)^2 + (y-0.5)^2}{0.02}\right)$$

```
class Source : public Function {
   Source(Mesh& mesh) : Function(mesh) {};
   real eval(const real* x) const {
      real dx = x[0] - 0.5;
      real dy = x[1] - 0.5;
      return 500.0*exp(-(dx*dx + dy*dy)/0.02);
   }
};
```

э

Boundary conditions given by

$$\begin{array}{rcl} u(x,y) &=& 0 & \text{for} & x=0 \\ du/dn(x,y) &=& 25\sin(5\pi y) & \text{for} & x=1 \\ du/dn(x,y) &=& 0 & \text{otherwise} \end{array}$$

```
class DirichletBoundary : public SubDomain {
   bool inside(const real* x, bool on_boundary) const
   return x[0] < DOLFIN_EPS && on_boundary;}
};
class Flux : public Function {
   Flux(Mesh& mesh) : Function(mesh) {};
   real eval(const real* x) const {
    if (x[0] > DOLFIN_EPS)
      return 25.0*sin(5.0*DOLFIN_PI*x[1]);
   else return 0.0;}
```

};

э.

Include headers and your done¹

#include <dolfin.h>
#include "Poisson.h"
using namespace dolfin;

¹See dolfin/src/demo/pde/poisson/cpp

< 6 b

Poisson

Problem Statement

Simple Example: Poisson

Simulate!

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 26 / 129

Outline

Poisson

- Problem Statement
- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking

A (10) A (10) A (10)

This time use higher order Lagrangian elements

$$-\Delta u = f$$
 on $\Omega = [0, 1] \times [0, 1]$

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)

・ 同 ト ・ ヨ ト ・ ヨ ト

Example: High Order Poisson

element = FiniteElement("Lagrange", "triangle", p)

- v = TestFunction(element)
- u = TrialFunction(element)
- f = Function(element)
- g = Function (element)

```
a = dot(grad(v), grad(u)) * dx
```

```
L = v * f * dx
```

- a = dot(grad(v), grad(u))*dx
- $L = v \cdot f \cdot dx + v \cdot g \cdot ds$

Compile with

\$ ffc HOPoisson.form

(日)

э.

Poisson Hi

Higher Order Elements

Example: High Order Poisson

Use the same DOLFIN code.

Simulate!

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 30 / 129

3 > 4 3

Image: A mathematical states in the second states in the second

Outline

Poisson

- Problem Statement
- Higher Order Elements

Discontinuous Galerkin Methods

Error Checking

A (10) A (10) A (10)

Poisson Discontinuous Galerkin Methods

Example: Discontinuous Galerkin Poisson

$$-\Delta u = f$$
 on $\Omega = [0, 1] \times [0, 1]$

Using a discontinuous Galerkin formulation (interior penalty method).

- Define our Form and compile (FIAT + FFC)
- Define our Simulation (DOLFIN)
 - Define our mesh
 - Assemble and solve
 - Post process (visualize, error, ...)

Example: Discontinuous Galerkin Poisson

```
element = FiniteElement("Discontinuous Lagrange",
                              "triangle", 1)
    . . .
    n = FacetNormal("triangle")
    h = MeshSize("triangle")
    alpha = 4.0; gamma = 8.0
    a = dot(grad(v), grad(u)) * dx
      - dot (avq(qrad(v)), jump(u, n)) * dS
      - dot(jump(v, n), avg(grad(u)))*dS
      + alpha/h('+') * dot(jump(v, n), jump(u, n)) * dS
      - dot(grad(v), mult(u, n))*ds
      - dot(mult(v, n), grad(u))*ds + gamma/h*v*u*ds
see ffc/src/demo/PoissonDG.form, and compile with
```

```
$ ffc PoissonDG.form
```

= nar

Example: Discontinuous Galerkin Poisson Writing the Simulation: Assemble and solve

```
// Create user defined functions
Source f(mesh); Flux g(mesh);
FacetNormal n(mesh);
AvgMeshSize h(mesh);
// Define PDE
PoissonBilinearForm a:
PoissonLinearForm L(f, q);
LinearPDE
                    pde(a, L, mesh, bc);
// Solve PDE
Function u;
pde.solve(u);
```

・ 同 ト ・ ヨ ト ・ ヨ ト

Poisson Discontinuous Galerkin Methods

Example: Discontinuous Galerkin Poisson

Simulate!

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 35 / 129

A >

Outline

Poisson

- Problem Statement
- Higher Order Elements
- Discontinuous Galerkin Methods
- Error Checking

A (10) A (10) A (10)

Error Checking

Example: L2 Error Check

L2 Error:

 $||u - u_h||_{L^2(\Omega)}$

- Define our Form and compile (FIAT + FFC)
- Add to our Simulation (DOLFIN)
 - Post process (visualize, error, ...)

A .

Example: L2 Error Check

Defining the form

```
P0 = FiniteElement("Discontinuous Lagrange", "triang
Element1 = FiniteElement("Lagrange", "triangle", 1)
```

- U = Function (Element1)
- u = Function (Element1)
- v = BasisFunction(P0)
- e = U u
- L = v * dot (e, e) * dx
- \$ ffc L2Error.form

Error Checking

Example: L2 Error Check

Writing the Simulation: Post process

```
ExactSolution U_ex;
Vector tmp;
L2Error::LinearForm L2Error(U,u);
FEM::assemble(L2Error, tmp, mesh);
real error = sqrt(fabs(tmp.sum()));
```

不得る とうちょうちょ

Outline

FEM Concepts

- 2 Getting Started
- 3 Poisson

4 Stokes

- Mixed Methods
- Iterated Penalty Methods

5 Function and Operator Abstractions

Optimal Solvers

Stokes Equations: Basic Fluids Modeling Function Space Matters

Stokes Equation

- Taylor-Hood
- Crouzeix-Raviart
- Iterated Penalty

 $-\Delta \mathbf{u} + \nabla \mathbf{p} = \mathbf{f}$ $\nabla \cdot \mathbf{u} = \mathbf{0}$

< 回 ト < 三 ト < 三

Stokes Equations: Basic Fluids Modeling Function Space Matters

$$\frac{du}{dt} + u \cdot \nabla u = -\frac{\nabla \mathbf{p}}{\rho} + \nu \Delta \mathbf{u}$$

Navier-Stokes

- Stokes Solver
- Nonlinear Solver
- Time Stepping

Stokes Equation

Taylor-Hood Crouzeix-Raviart Iterated Penalty

FEniCS'08 LSU 41 / 129

A (10) A (10) A (10)

Stokes Equations: Basic Fluids Modeling Function Space Matters

Stokes Equation Taylor-Hood Crouzeix-Raviart Iterated Penalty

Navier-Stokes

Stokes Solver Nonlinear Solver Time Stepping Non-Newtonian Flow

- Oldroyd-B
- Grade 2

Image: A mathematical states in the second states in the second

Stokes Equations: Basic Fluids Modeling Function Space Matters

Navier-Stokes

Stokes Solver Nonlinear Solver Time Stepping Non-Newtonian Odroyd-B Grade 2 Fluid Solid Interfaces

- Free Boundary Problems
- Couple to legacy Codes

Stokes Equation Taylor-Hood

Crouzeix-Raviart Iterated Penalty

FEniCS'08 LSU 41 / 129

Mixed Methods

Iterated Penalty Methods

크

< ロ > < 回 > < 回 > < 回 > < 回</p>

Mixed Methods

Stokes Mixed Methods Stokes: Mixed Method Formulation

Let $V = H^1(\Omega)^n$ and $\Pi = \{q \in L^2(\Omega) : \int_{\Omega} q dx = 0\}$. Given $F \in V'$, find functions $\mathbf{u} \in V$ and $p \in \Pi$ such that

$$egin{aligned} & a(\mathbf{u},\mathbf{v})+b(\mathbf{v},p)=F(\mathbf{v}) & orall \mathbf{v}\in V \ & b(\mathbf{u},q)=0 & orall q\in \Pi \end{aligned}$$

Where,

$$a(\mathbf{u}, \mathbf{v}) := \int_{\Omega} \nabla \mathbf{u} \cdot \nabla \mathbf{v} dx,$$

 $b(\mathbf{v}, q) := \int_{\Omega} (\nabla \cdot \mathbf{v}) q dx$

Stokes Mixed Method Defining the form

```
P2 = VectorElement("Lagrange", "triangle", 2)
P1 = FiniteElement("Lagrange", "triangle", 1)
TH = P2 + P1
```

(v, q) = TestFunctions(TH)
(u, p) = TrialFunctions(TH)

```
f = Function(P2)
```

```
a = (dot(grad(v), grad(u)) - div(v)*p + q*div(u))*dx
L = dot(v, f)*dx
```

see

dolfin/src/demo/pde/stokes/taylor-hood/cpp/Stokes.form
and compile with

	Ś	ffc	Stokes	form	· · · · · · · · · · · · · · · · · · ·	► Ξ	$\mathcal{O}\mathcal{A}\mathcal{O}$
M. Knepley A. Terrel		FEniC	CS and Sieve Tuto	orial	FEniCS'08 L	SU	44 / 129

Stokes Mixed Method Define our mesh

Use a predefined mesh, can be made with Triangle, Gmsh, ... and converted to DOLFIN mesh form with dolfin-convert Use a MeshFunction to mark up different dof on boundary

伺 ト イ ヨ ト イ ヨ ト

// Create functions for boundary conditions
Noslip noslip(mesh); Inflow inflow(mesh);
Function zero(mesh, 0.0);

// Define sub systems for boundary conditions
SubSystem velocity(0);
SubSystem pressure(1);

// BC's per field DirichletBC bc0(noslip, sub_domains, 0, velocity); DirichletBC bc1(inflow, sub_domains, 1, velocity); DirichletBC bc2(zero, sub_domains, 2, pressure); Array <BoundaryCondition*> bcs(&bc0, &bc1, &bc2);

Stokes Mixed Method Assemble and solve

```
// Set up PDE
Function f(mesh, 0.0);
StokesBilinearForm a;
StokesLinearForm L(f);
LinearPDE pde(a, L, mesh, bcs);
// Solve PDE
Function u;
Function p;
pde.set("PDE linear solver", "direct");
```

pde.solve(u, p);

FEniCS'08 LSU 47 / 129

э.

く 戸 と く ヨ と く ヨ と …

Stokes Mixed Method

Writing the Simulation: Post process

```
// Plot solution
plot(u);
plot(p);
// Save solution to file
File file("velocity.pvd");
file « u;
File file("pressure.pvd");
file « p;
```

э

A (10) A (10)

Stokes Mixed Method

// Functions for boundary condition for velocity class Noslip : public Function { public: Noslip(Mesh& mesh) : Function(mesh) {} void eval(real* values, const real* x) const { values[0] = 0.0;values[1] = 0.0;} }; class Inflow : public Function { public: Inflow(Mesh& mesh) : Function(mesh) {} void eval(real* values, const real* x) const {

```
values[0] = -1.0;
values[1] = 0.0; }
```

};

Mixed Methods

Stokes Mixed Method

Simulate!

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 50 / 129

Olukes

- Mixed Methods
- Iterated Penalty Methods
Iterated Penalty Stokes: Iterated Penalty Formulation

Let $r \in \mathbb{R}$ and $\rho > 0$ define u^n and $p = w^n$ by

$$\begin{aligned} a(\mathbf{u}^{\mathbf{n}},\mathbf{v}) + r(\nabla\cdot\mathbf{u}^{\mathbf{n}},\nabla\cdot\mathbf{v}) &= F(\mathbf{v}) - (\nabla\cdot\mathbf{v},\nabla\cdot\mathbf{w}^{\mathbf{n}}) \\ \mathbf{w}^{n+1} &= \mathbf{w}^{n} + \rho\mathbf{u}^{n} \end{aligned}$$

Stokes IP Method Defining the form

Element = FiniteElement("Vector Lagrange", "triangle",

- U = TrialFunction(Element)
- v = TestFunction(Element)
- f = Function(Element)
- w = Function (Element)
- c = Constant()
- a = (dot(grad(v), grad(U)) c * div(U) * (div(v))) * dx
- L = dot(v, f) * dx + dot(div(v), div(w)) * dx

\$ ffc Stokes.form

э.

Setup is relatively the same.

```
Function f(mesh, 0.0), w, u;
real rho, r, div_u_error;
Stokes::BilinearForm a(rho);
rho = r = 1.0e3;
w.init(mesh, a.trial());
```

く 同 ト く ヨ ト く ヨ ト -

Stokes IP Method Assemble and solve

But we iterate our solution based on L2Error.

```
for(int j; j<MAX ITERS; j++)</pre>
{
  Stokes::LinearForm L(f,w);
 PDE pde(a, L, mesh, bcs);
  // Compute solution
 pde.solve(U);
 Vector tmp = w.vector() + r * (U.vector());
  w = Function(tmp);
 L2div::LinearForm div_u(U);
 FEM::assemble(div_u, tmp, mesh);
  div u error = sqrt(fabs(tmp.sum()));
  if (div u error < 5.0e-7) break;
```

э.

イベト イラト イラト

Stokes Iterated Penalty Methods

Stokes IP Method

Simulate!

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 56 / 129

Fenics Webpage: http://www.fenics.org/ Join the mailing lists!

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 57 / 129

4 A N

Outline

FEM Concepts

2 Getting Started

3 Poisson

4 Stokes

Function and Operator Abstractions
 Linear Algebra & Iterative Solvers

- Rethinking the Mesh
- Parallelism
- FEM

Outline

Function and Operator Abstractions

Linear Algebra & Iterative Solvers

- Rethinking the Mesh
- Parallelism
- FEM

< 17 ▶

Linear Algebra Abstractions

- Need clear interfaces to ALL levels in the conceptual hierarchy
- Abstractions allow reuse of iterative solvers (Krylov methods)
 - Vec and Mat objects
 - KSP uses only the action of Mat on Vec, MatMult()
- PETSc provides a range of data types
 - MPIAIJ, MPIAIJPERM, SuperLU, ...
 - Arbitrary user code accomodated using MATSHELL objects

Solver Choice

• Can choose solver at runtime

- -ksp_type bicgstab
- Can customize solver
 - -ksp_gmres_restart 500
 - Inapplicable options are ignored (same with API calls)
- Monitoring
 - -ksp_monitor -ksp_view

★ ∃ > < ∃ >

A .

Outline

Function and Operator Abstractions

- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism
- FEM

Hierarchy Abstractions

• Generalize to a set of linear spaces

- Sieve provides topology, can also model Mat
- Section generalizes Vec
- Spaces interact through an Overlap (just a Sieve)
- Basic operations
 - Restriction to finer subspaces, restrict ()/update()
 - Assembly to the subdomain, complete()
- Allow reuse of geometric and multilevel algorithms

Unstructured Interface (before)

• Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - o dimension
 - shapes

< 回 ト < 三 ト < 三

Unstructured Interface (before)

Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - o dimension
 - shapes

.

Unstructured Interface (before)

Explicit references to element type

- getVertices(edgeID), getVertices(faceID)
- getAdjacency(edgeID, VERTEX)
- getAdjacency(edgeID, dim = 0)
- No interface for transitive closure
 - Awkward nested loops to handle different dimensions
- Have to recode for meshes with different
 - dimension
 - shapes

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

• Abstract to a relation, covering, on sieve points

- Points can represent any mesh element
- Covering can be thought of as adjacency
- Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

A (10) A (10) A (10)

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)

• Simple query set:

- provides a general API for geometric algorithms
- leads to simpler implementations
- can be more easily optimized

< 回 > < 三 > < 三 >

Go Back to the Math

Combinatorial Topology gives us a framework for geometric computing.

- Abstract to a relation, covering, on sieve points
 - Points can represent any mesh element
 - Covering can be thought of as adjacency
 - Relation can be expressed in a DAG (Hasse Diagram)
- Simple query set:
 - provides a general API for geometric algorithms
 - leads to simpler implementations
 - · can be more easily optimized

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM

• Algorithms independent of mesh

- dimension
- shape (even hybrid)
- global topology
- data layout

A (10) A (10) A (10)

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

< 回 > < 回 > < 回 >

Unstructured Interface (after)

NO explicit references to element type

- A point may be any mesh element
- getCone(point): adjacent (d-1)-elements
- getSupport(point): adjacent (d+1)-elements
- Transitive closure
 - closure(cell): The computational unit for FEM
- Algorithms independent of mesh
 - dimension
 - shape (even hybrid)
 - global topology
 - data layout

M. Knepley A. Terrel

•

FEniCS'08 LSU 67 / 129

- Incidence/covering arrows
- $cone(0) = \{2, 3, 4\}$

M. Knepley A. Terrel

____ ▶

∃ >

• $support(7) = \{2, 3\}$

M. Knepley A. Terrel

•

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$

< 47 ▶

- Incidence/covering arrows
- $closure(0) = \{0, 2, 3, 4, 7, 8, 9\}$
- $star(7) = \{7, 2, 3, 0\}$

M. Knepley A. Terrel

∃ >

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$

join(8, 9) = {4}
 M. Knepley A. Terrel

FEniCS'08 LSU 67 / 129

____ ▶

- Incidence/covering arrows
- $meet(0, 1) = \{4\}$
- $join(8, 9) = \{4\}$

M. Knepley A. Terrel

____ ▶

3 D 🖌 🕀 🖻

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

▲圖▶ ▲ 国▶ ▲ 国

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 47 ▶

• Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 3 > < 3</p>

< 47 ▶

Section interface

- $restrict(0) = \{f_0\}$
- $restrict(2) = \{v_0\}$
- $restrict(6) = \{e_0, e_1\}$

< 67 ▶

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Image: A matrix and a matrix

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

э

• Topological traversals: follow connectivity

- $restrictClosure(0) = \{f_0 e_0 e_1 e_2 e_3 e_4 e_5 v_0 v_1 v_2\}$
- $restrictStar(7) = \{v_0 e_0 e_1 e_4 e_5 f_0\}$

Outline

Function and Operator Abstractions

- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism
- FEM

A (10) A (10) A (10)
Restriction

Localization

- Restrict to patches (here an edge closure)
- Compute locally

Delta

• Delta

- Restrict further to the overlap
- Overlap now carries twice the data

Fusion

- Merge/reconcile data on the overlap
 - Addition (FEM)
 - Replacement (FD)
 - Coordinate transform (Sphere)
 - Linear transform (MG)

< 47 ▶

∃ >

Update

• Update

- Update local patch data
- Completion = restrict \longrightarrow fuse \longrightarrow update, <u>in parallel</u>

Completion

- A ubiquitous parallel form of *restrict* \longrightarrow *fuse* \longrightarrow *update*
- Operates on Sections
 - Sieves can be "downcast" to Sections
- Based on two operations
 - Data exchange through overlap
 - Fusion of shared data

∃ ► < ∃ ►</p>

- FEM accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

FEM accumulating integrals on shared faces

FVM accumulating fluxes on shared cells

FDM setting values on ghost vertices

- distributing mesh entities after partition
- redistributing mesh entities and data for load balance
- accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- FVM accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

- FEM accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- **FDM** setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

- **FEM** accumulating integrals on shared faces
- **FVM** accumulating fluxes on shared cells
- FDM setting values on ghost vertices
 - distributing mesh entities after partition
 - redistributing mesh entities and data for load balance
 - accumlating matvec for a partially assembled matrix

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

A (10) > A (10) > A (10)

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

< 回 ト < 三 ト < 三

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone () s!

Distributing a mesh means

- distributing the topology (Sieve)
- distributing data (Section)

However, a Sieve can be interpreted as a Section of cone() s!

A .

Parallelism

The Mesh Dual

Mesh Partition

- 3rd party packages construct a vertex partition
- For FEM, partition dual graph vertices
- For FVM, construct hyperpgraph dual with faces as vertices
- Assign closure (v) and star (v) to same partition

A simple triangular mesh

Distributed Mesh

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 76 / 129

æ

イロト イポト イヨト イヨ

A simple hexahedral mesh

Distributed Mesh

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 77 / 129

æ

< E

Outline

Function and Operator Abstractions

- Linear Algebra & Iterative Solvers
- Rethinking the Mesh
- Parallelism

A (10) A (10) A (10)

FEM Components

Section definition

Integration

Assembly and Boundary conditions

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 79 / 129

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

FIAT

Finite Element Integrator And Tabulator by Rob Kirby

http://fenicsproject.org/

FIAT understands

- Reference element shapes (line, triangle, tetrahedron)
- Quadrature rules
- Polynomial spaces
- Functionals over polynomials (dual spaces)
- Derivatives

Can build arbitrary elements by specifying the Ciarlet triple (K, P, P')

FIAT is part of the FEniCS project

< ロ > < 同 > < 回 > < 回 >

FIAT Integration

The quadrature.fiat file contains:

- An element (usually a family and degree) defined by FIAT
- A quadrature rule

It is run

- automatically by make, or
- independently by the user

It can take arguments

- -element_family and -element_order, or
- make takes variables ELEMENT and ORDER

Then make produces quadrature.h with:

- Quadrature points and weights
- Basis function and derivative evaluations at the quadrature points
- Integration against dual basis functions over the cell
- Local dofs for Section allocation

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

э

Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

Determined by discretization

- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

4 3 5 4 3

A .

Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

.

Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

.

Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

Section Allocation

We only need the fiber dimension (# of unknowns) of each sieve point (piece of the mesh)

- Determined by discretization
- By symmetry, only depend on point depth
- Obtained from FIAT
- Modified by BC
- Decouples storage and parallelism from discretization

We must map local unknowns to the global basis

FIAT reports the <u>kind</u> of unknown

- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

• FIAT reports the kind of unknown

- Scalars are invariant
 - Lagrange

Vectors transform as J^{-T}

- Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

We must map local unknowns to the global basis

• FIAT reports the kind of unknown

- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite

Normal vectors require Piola transform and a choice of orientation

- Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)
Kinds of Unknowns

We must map local unknowns to the global basis

• FIAT reports the kind of unknown

- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas

• Moments transform as $|J^{-1}|$

- Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

Kinds of Unknowns

We must map local unknowns to the global basis

FIAT reports the <u>kind</u> of unknown

- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

Kinds of Unknowns

We must map local unknowns to the global basis

- FIAT reports the kind of unknown
- Scalars are invariant
 - Lagrange
- Vectors transform as J^{-T}
 - Hermite
- Normal vectors require Piola transform and a choice of orientation
 - Raviart-Thomas
- Moments transform as $|J^{-1}|$
 - Nedelec
- May involve a transformation over the entire closure
 - Argyris
- Conjecture by Kirby relates transformation to affine equivalence
- We have not yet automated this step (FFC, Mython)

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  coords = mesh->restrict(coordinates, c);
  v0, J, invJ, detJ = computeGeometry(coords);
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
  <Update output vector>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  inputVec = mesh->restrict(U, c);
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    realCoords = J*refCoords[q] + v0;
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
```

<Aggregate updates>

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      elemVec[f] += basis[q,f] *rhsFunc(realCoords);
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      for (d = 0; d < \dim; ++d)
        for(e) testDerReal[d] += invJ[e,d]*basisDer[q,
      for (q = 0; q < numBasisFuncs; ++q) {
        for (d = 0; d < \dim; ++d)
          for(e) basisDerReal[d] += invJ[e,d]*basisDer
          elemMat[f,g] += testDerReal[d] * basisDerReal[
        elemVec[f] += elemMat[f,g]*inputVec[g];
                                     ◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● のへで
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

M. Knepley A. Terrel

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      elemVec[f] += basis[q, f] *lambda*exp(inputVec[f])
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
                                     ▲□▶▲圖▶▲≣▶▲≣▶ = 悪 - 釣�?
```

FEniCS and Sieve Tutorial

84 / 129

FEniCS'08 LSU

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
 mesh->updateAdd(F, c, elemVec);
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
<Aggregate updates>
```

Integration

```
cells = mesh->heightStratum(0);
for(c = cells->begin(); c != cells->end(); ++c) {
  <Compute cell geometry>
  <Retrieve values from input vector>
  for (q = 0; q < numQuadPoints; ++q) {
    <Transform coordinates>
    for(f = 0; f < numBasisFuncs; ++f) {</pre>
      <Constant term>
      <Linear term>
      <Nonlinear term>
      elemVec[f] *= weight[q]*detJ;
    }
  <Update output vector>
}
Distribution<Mesh>::completeSection (mesh, F); > = oac
```

M. Knepley A. Terrel

Boundary Conditions

Dirichlet conditions may be expressed as

 $u|_{\Gamma} = g$

and implemented by constraints on dofs in a Section

• The user provides a function.

Neumann conditions may be expressed as

 $\nabla u \cdot \hat{n}|_{\Gamma} = h$

and implemented by explicit integration along the boundary

• The user provides a weak form.

Dirichlet Values

- Topological boundary is marked during generation
- Cells bordering boundary are marked using markBoundaryCells()
- To set values:
 - Loop over boundary cells
 - 2 Loop over the element closure
 - So For each boundary point *i*, apply the functional N_i to the function *g*
- The functionals are generated with the quadrature information
- Section allocation applies Dirichlet conditions automatically
 - Values are stored in the Section
 - restrict() behaves normally, update() ignores constraints

< 回 ト < 三 ト < 三

Dual Basis Application

We would like the action of a dual basis vector (functional)

$$<\mathcal{N}_i,f>=\int_{\mathrm{ref}}N_i(x)f(x)dV$$

• Projection onto \mathcal{P}

• Code is generated from FIAT specification

- Python code generation package inside PETSc
- Common interface for all elements

Outline

FEM Concepts

- 2 Getting Started
- 3 Poisson
- 4 Stokes

6 Optimal Solvers

- Multigrid for Structured Meshes
- Multigrid for Unstructured Meshes

I will define *optimal* as an $\mathcal{O}(N)$ solution algorithm

These are generally hierarchical, so we need

- hierarchy generation
- assembly on subdomains
- restriction and prolongation

Current algorithms do not efficiently utilize modern machines

- Processor flops are increasing much faster than bandwidth
- Multicore processors are the future
- Optimal multilevel solvers are necessary

- Current algorithms do not efficiently utilize modern machines
- Processor flops are increasing much faster than bandwidth
- Multicore processors are the future
- Optimal multilevel solvers are necessary

- Current algorithms do not efficiently utilize modern machines
- Processor flops are increasing much faster than bandwidth
- Multicore processors are the future
- Optimal multilevel solvers are necessary

- Current algorithms do not efficiently utilize modern machines
- Processor flops are increasing much faster than bandwidth
- Multicore processors are the future
- Optimal multilevel solvers are necessary

- Current algorithms do not efficiently utilize modern machines
- 2 Processor flops are increasing much faster than bandwidth
- Multicore processors are the future
- Optimal multilevel solvers are necessary

Claim: Hierarchical operations can be handled by a single interface

Why Optimal Algorithms?

- The more powerful the computer, the greater the importance of optimality
- Example:
 - Suppose Alg_1 solves a problem in time CN^2 , N is the input size
 - Suppose Alg₂ solves the same problem in time CN
 - Suppose Alg₁ and Alg₂ are able to use 10,000 processors
- In constant time compared to serial,
 - Alg1 can run a problem 100X larger
 - Alg2 can run a problem 10,000X larger
- Alternatively, filling the machine's memory,
 - Alg1 requires 100X time
 - Alg2 runs in constant time

Multigrid is *optimal* in that is does $\mathcal{O}(N)$ work for $||r|| < \epsilon$

- Brandt, Briggs, Wan & Chan & Smith
- Constant work per level
 - Sufficiently strong solver
 - Need a constant factor decrease in the residual
- Constant factor decrease in dof
 - Log number of levels
- Sufficiently good interpolation
 - Preserves low modes
 - Cannot dump too much energy into high modes

Optimal Solvers

Linear Convergence of the Poisson Problem

Convergence to $||r|| < 10^{-9} ||b||$ using GMRES(30)/ILU

Elements	Iterations
128	10
256	17
512	24
1024	34
2048	67
4096	116
8192	167
16384	329
32768	558
65536	920
131072	1730

Optimal Solvers

Linear Convergence of the Poisson Problem

Convergence to $||r|| < 10^{-9} ||b||$ using GMRES(30)/MG

Elements	Iterations
128	5
256	7
512	6
1024	7
2048	6
4096	7
8192	6
16384	7
32768	6
65536	7
131072	6

Outline

Multigrid for Structured Meshes

Multigrid for Unstructured Meshes

M. Knepley A. Terrel

э

< 🗇 🕨

Optimal Solvers

Multigrid for Structured Meshes

Flow Control for a PETSc Application

SNES Paradigm

The SNES interface is based upon callback functions

• FormFunction(), **set by** SNESSetFunction()

• FormJacobian(), **Set by** SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual F(x),

- Solver calls the **user's** function
- User function gets application state through the ctx variable
 - PETSc <u>never</u> sees application data
Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.

- Structured grid interface
 - Fixed simple topology
- Supports stencils, communication, reordering
 - Limited idea of operators
- Nice for simple finite differences

The PETSc Mesh class is a topology interface.

- Unstructured grid interface
 - Arbitrary topology and element shape
- Supports partitioning, distribution, and global orders

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.

- Supports multigrid
 - PCMG combines it with a multigrid preconditioner
- Abstracts the logic of multilevel methods

The PetscSection class is a helper class for data layout.

- Functions over unstructured grids
 - Arbitrary layout of degrees of freedom
- Enables distribution and assembly

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1 discretization.

It is used as a template to create

- Vectors (functions)
- Matrices (linear operators)

Multigrid with DM

Allows multigrid with some simple command line options

- -pc_type mg, -pc_mg_levels
- -pc_mg_type, -pc_mg_cycle_type, -pc_mg_galerkin
- -mg_levels_1_ksp_type, -mg_levels_1_pc_type
- -mg_coarse_ksp_type, -mg_coarse_pc_type
- -da_refine, -ksp_view

Interface also works with GAMG and 3rd party packages like ML

Creating a DMDA

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, lm[], ln[], DMDA *da)

- bd: Specifies boundary behavior
 - DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or DM_BOUNDARY_PERIODIC
- cype: Specifies stencil
 - DMDA_STENCIL_BOX or DMDA_STENCIL_STAR
- M/N: Number of grid points in x/y-direction
- m/n: Number of processes in x/y-direction
- dof: Degrees of freedom per node
 - s: The stencil width
- Lm/n: Alternative array of local sizes
 - Use NULL for the default

A (10) A (10)

Ghost Values

To evaluate a local function f(x), each process requires

- its local portion of the vector x
- its ghost values, bordering portions of *x* owned by neighboring processes

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 103 / 129

DMDA Global Numberings

Proc 2			Pro	ic 3
25	26	27	28	29
20	21	22	23	24
15	16	17	18	19
10	11	12	13	14
5	6	7	8	9
0	1	2	3	4
Proc 0			Proc 1	
Notural numbering				

Natural numbering

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Proc 1	

PETSc numbering

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

DMDA Global vs. Local Numbering

- Global: Each vertex has a unique id belongs on a unique process
- Local: Numbering includes vertices from neighboring processes
 - These are called ghost vertices

Proc 2			Pro	c 3
Х	Х	Х	Х	Х
Х	Х	Х	Х	X
12	13	14	15	X
8	9	10	11	Х
4	5	6	7	X
0	1	2	3	X
Proc 0			Pro	c 1
Local numbering				

Proc 2			Proc 3	
21	22	23	28	29
18	19	20	26	27
15	16	17	24	25
6	7	8	13	14
3	4	5	11	12
0	1	2	9	10
Proc 0			Prc	oc 1
Global numbering				

DMDA Vectors

- The DMDA object contains only layout (topology) information
 - All field data is contained in PETSc Vecs
- Global vectors are parallel
 - Each process stores a unique local portion
 - DMCreateGlobalVector(DM da, Vec *gvec)
- Local vectors are sequential (and usually temporary)
 - Each process stores its local portion plus ghost values
 - DMCreateLocalVector(DM da, Vec *Ivec)
 - includes ghost and boundary values!

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* If)(DMDALocalInfo *info, PetscScalar**x, PetscScalar **r, void *ctx)

info: All layout and numbering information

- x: The current solution (a multidimensional array)
- r: The residual
- ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, Ifunc, &ctx)

Multigrid for Structured Meshes

Bratu Residual Evaluation

$$\Delta u + \lambda e^u = \mathbf{0}$$

```
ResLocal(DMDALocalInfo *info, PetscScalar **x, PetscScalar **f, void *ctx)
for(j = info->ys; j < info->ys+info->ym; ++j) {
   for(i = info->xs; i < info->xs+info->xm; ++i) {
      u = x[j][i];
      if (i==0 || j==0 || i == M || j == N) {
         f[j][i] = 2.0*(hydhx+hxdhy)*u; continue;
      }
      u_xx = (2.0*u - x[j][i-1] - x[j][i+1])*hydhx;
      u_yy = (2.0*u - x[j-1][i] - x[j+1][i])*hxdhy;
      f[j][i] = u_xx + u_yy - hx*hy*lambda*exp(u);
}}
```

\$PETSC_DIR/src/snes/examples/tutorials/ex5.c

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac)(DMDALocalInfo *info, PetscScalar**x, Mat J, void *ctx)

info: All layout and numbering information

- x: The current solution
- J: The Jacobian
- ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

Updating Ghosts

Two-step process enables overlapping computation and communication

- DMGlobalToLocalBegin(da, gvec, mode, lvec)
 - gvec provides the data
 - mode is either INSERT_VALUES or ADD_VALUES
 - lvec holds the local and ghost values
- DMGlobalToLocalEnd(da, gvec, mode, lvec)
 - Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

4 3 5 4 3

DMDA Stencils

Both the box stencil and star stencil are available.

Box Stencil

Star Stencil

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Setting Values on Regular Grids

PETSc provides

MatSetValuesStencil(Mat A, m, MatStencil idxm[], n, MatStencil idxn[], PetscScalar values[], InsertMode mode)

- Each row or column is actually a MatStencil
 - This specifies grid coordinates and a component if necessary
 - Can imagine for unstructured grids, they are vertices
- The values are the same logically dense block in row/col

< ロ > < 同 > < 回 > < 回 >

DM Integration with SNES

DM supplies global residual and Jacobian to SNES

- User supplies local version to DM
- The \mathtt{Rhs}_* () and \mathtt{Jac}_* () functions in the example
- Allows automatic parallelism
- Allows grid hierarchy
 - Enables multigrid once interpolation/restriction is defined
- Paradigm is developed in unstructured work
 - Solve needs scatter into contiguous global vectors (initial guess)
- Handle Neumann BC using KSPSetNullSpace()

The Bratu Problem

$$\Delta u + \lambda e^{u} = f \quad \text{in} \quad \Omega \tag{1}$$
$$u = g \quad \text{on} \quad \partial \Omega \tag{2}$$

- Nonlinearly perturbed Poisson
- Can be treated as a nonlinear eigenvalue problem
- Has two solution branches until $\lambda \cong 6.28$

A 2D Problem

Problem has:

- 1,640,961 unknowns (on the fine level)
- 8,199,681 nonzeros

	Options	Explanation
./ex5	-da_grid_x 21-da_grid_y 21	Original grid is 21x21
	-ksp_rtol 1.0e-9	Solver tolerance
	-da_refine 6	6 levels of refinement
	-pc_type mg	4 levels of multigrid
	-pc_mg_levels 4	
	-snes_monitor -snes_view	Describe solver

(4) (5) (4) (5)

A 3D Problem

Problem has:

- 1,689,600 unknowns (on the fine level)
- 89,395,200 nonzeros

	Options	Explanation
./ex48	-M 5-N 5	Coarse problem size
	-da_refine 5	5 levels of refinement
	-ksp_rtol 1.0e-9	Solver tolerance
	-thi_mat_type baij	Needs SOR
	-pc_type mg	4 levels of multigrid
	-pc_mg_levels 4	
	-snes_monitor -snes_view	Describe solver

Outline

Multigrid for Structured Meshes

Multigrid for Unstructured Meshes

A (10) A (10) A (10)

Sections associate data to submeshes

- Name comes from section of a fiber bundle
 - Generalizes linear algebra paradigm
- **Define** restrict(),update()
- **Define** complete()
- Assembly routines take a Sieve and several Sections
 - This is called a Bundle

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)

A (10) A (10) A (10)

- Boundary definition
- Multiple meshes
 Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

Local (analytical)

- Discretization/Approximation
 - FEM integrals
 - FV fluxes
- Boundary conditions
- Largely dim dependent (e.g. quadrature)

Global (topological)

- Data management
 - Sections (local pieces)
 - Completions (assembly)
- Boundary definition
- Multiple meshes
 - Mesh hierarchies
- Largely dim independent (e.g. mesh traversal)

< 17 ▶

(4) (5) (4) (5)

Why not use AMG?

Of course we will try AMG

- GAMG, -pc_type gamg
- ML, -download-ml, -pc_type ml
- BoomerAMG, -download-hypre, -pc_type hypre -pc_hypre_type boomeramg

Problems with

- vector character
- anisotropy
- scalability of setup time

FEniCS'08 LSU 120 / 129

э

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Why not use AMG?

Of course we will try AMG

- GAMG, -pc_type gamg
- ML, -download-ml, -pc_type ml
- BoomerAMG, -download-hypre, -pc_type hypre -pc_hypre_type boomeramg

Problems with

- vector character
- anisotropy
- scalability of setup time

э

A (10) A (10)

Why not use AMG?

Of course we will try AMG

- GAMG, -pc_type gamg
- ML, -download-ml, -pc_type ml
- BoomerAMG, -download-hypre, -pc_type hypre -pc_hypre_type boomeramg

Problems with

- vector character
- anisotropy
- scalability of setup time

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Unstructured Meshes

- Same DMMG options as the structured case
- Mesh refinement
 - Ruppert algorithm in Triangle and TetGen
- Mesh coarsening
 - Talmor-Miller algorithm in PETSc
- More advanced options
 - -dmmg_refine
 - -dmmg_hierarchy
- Current version only works for linear elements

Coarsening

- Users want to control the mesh
- Developed efficient, topological coarsening
 - Miller, Talmor, Teng algorithm

< 同 > < 回 > .

 Provably well-shaped hierarchy

Miller-Talmor-Teng Algorithm

Simple Coarsening

- Compute a spacing function *f* for the mesh (Koebe)
- Scale f by a factor C > 1
- Ohoose a maximal independent set of vertices for new f
- Retriangulate

Miller-Talmor-Teng Algorithm

Simple Coarsening

- Compute a spacing function f for the mesh (Koebe)
- 2 Scale *f* by a factor C > 1
- Ohoose a maximal independent set of vertices for new f
- Retriangulate

Miller-Talmor-Teng Algorithm

Simple Coarsening

- Compute a spacing function f for the mesh (Koebe)
- 2 Scale f by a factor C > 1
- Ohoose a maximal independent set of vertices for new f

Retriangulate

A (10) > A (10) > A (10)

Miller-Talmor-Teng Algorithm

Simple Coarsening

- Compute a spacing function f for the mesh (Koebe)
- 2 Scale f by a factor C > 1
- Ohoose a maximal independent set of vertices for new f
- Retriangulate

A (1) > A (2) > A

Miller-Talmor-Teng Algorithm

Caveats

Must generate coarsest grid in hierarchy first

Must choose boundary vertices first (and protect boundary)

Must account for boundary geometry
Optimal Solvers Multigrid for Unstructured Meshes

Miller-Talmor-Teng Algorithm

Caveats

- Must generate coarsest grid in hierarchy first
- 2 Must choose boundary vertices first (and protect boundary)
- Must account for boundary geometry

A (1) > A (2) > A

Miller-Talmor-Teng Algorithm

Caveats

- Must generate coarsest grid in hierarchy first
- 2 Must choose boundary vertices first (and protect boundary)
- Must account for boundary geometry

< 6 b

For simple domains, everything works as expected: Linear solver iterates are constant as system size increases:

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

FEniCS'08 LSU 124 / 129

For simple domains, everything works as expected:

Work to build the preconditioner is constant as system size increases:

M. Knepley A. Terrel

- Reentrant corners need nonnulform refinement to maintain accuracy
- Coarsening preserves accuracy in MG without user intervention

A (1) > A (2) > A

- Reentrant corners need nonnulform refinement to maintain accuracy
- Coarsening preserves accuracy in MG without user intervention

Exact Solution for reentrant problem: $u(x, y) = r^{\frac{2}{3}} sin(\frac{2}{3}\theta)$

Exact Solution for reentrant problem: $u(x, y) = r^{\frac{2}{3}} sin(\frac{2}{3}\theta)$

125 / 129

Linear solver iterates are constant as system size increases:

KSP Iterates on Reentrant Domains

M. Knepley A. Terrel

FEniCS'08 LSU 126 / 129

Work to build the preconditioner is constant as system size increases:

Vertex Comparisons on Reentrant Domains

M. Knepley A. Terrel

FEniCS and Sieve Tutorial

Conclusions

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code
- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes

< ロ > < 同 > < 回 > < 回 >

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code
- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes

< 回 > < 三 > < 三 >

Better mathematical abstractions bring concrete benefits

- Vast reduction in complexity
 - Operate directly at the equation and discretization level
 - Automatic generation of integration/assembly routines
 - Dimension independent code
- Expansion of capabilities
 - Parametric models
 - Optimized implementations of integration
 - Multigrid on arbitrary meshes

→ ∃ →

References

FEniCS Documentation:

http://www.fenics.org/wiki/FEniCS_Project

- Project documentation
- Users manuals
- Repositories, bug tracking
- Image gallery

Publications:

http://www.fenics.org/wiki/Related_presentations_and_publications

Research and publications that make use of FEniCS

PETSc Documentation:

http://www.mcs.anl.gov/petsc/docs

- PETSc Users manual
- Manual pages
- Many hyperlinked examples
- FAQ, Troubleshooting info, installation info, etc.
- Publication using PETSc

Experimentation is Essential!

Proof is not currently enough to examine solvers

- N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen, How fast are nonsymmetric matrix iterations?, SIAM J. Matrix Anal. Appl., 13, pp.778–795, 1992.
- Anne Greenbaum, Vlastimil Ptak, and Zdenek Strakos, Any Nonincreasing Convergence Curve is Possible for GMRES, SIAM J. Matrix Anal. Appl., **17** (3), pp.465–469, 1996.