
The
Portable Extensible Toolkit for Scientific Computing

Matthew Knepley

Mathematics and Computer Science Division Computation Institute
Argonne National Laboratory University of Chicago

PETSc Tutorial
Minnesota Supercomputing Institute, University of Minnesota

Minneapolis, MN September 30, 2013

M. Knepley (UC) PETSc MSI ’13 1 / 178

Main Point

Never believe anything,

unless you can run it.

M. Knepley (UC) PETSc MSI ’13 2 / 178

Main Point

Never believe anything,

unless you can run it.

M. Knepley (UC) PETSc MSI ’13 2 / 178

The PETSc Team

Matt Knepley Barry Smith Satish Balay Jed Brown

Hong Zhang Lisandro Dalcin Stefano Zampini Mark Adams

Toby Isaac Hong Zhang Pierre Jolivet Junchao Zhang

M. Knepley (UC) PETSc MSI ’13 3 / 178

Timeline (Old People)

1991 1995 2000 2005 2010 2015

PETSc-1

MPI-1
MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

M. Knepley (UC) PETSc MSI ’13 4 / 178

Timeline (Young People)

2000 2005 2010 2015

PETSc-3
Lisandro

Jed
Shri

Peter
Jason
Mark

Patrick
Michael

Toby
Karl

Stefano
Dave

M. Knepley (UC) PETSc MSI ’13 5 / 178

What I Need From You

Tell me if you do not understand
Tell me if an example does not work
Suggest better wording or figures
Followup problems at petsc-maint@mcs.anl.gov

M. Knepley (UC) PETSc MSI ’13 6 / 178

mailto:petsc-maint@mcs.anl.gov

Ask Questions!!!

Helps me understand what you are missing

Helps you clarify misunderstandings

Helps others with the same question

M. Knepley (UC) PETSc MSI ’13 7 / 178

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley (UC) PETSc MSI ’13 8 / 178

mailto:petsc-maint@mcs.anl.gov

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley (UC) PETSc MSI ’13 8 / 178

mailto:petsc-maint@mcs.anl.gov

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley (UC) PETSc MSI ’13 8 / 178

mailto:petsc-maint@mcs.anl.gov

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

M. Knepley (UC) PETSc MSI ’13 8 / 178

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

2 PETSc Integration

3 DM

4 Advanced Solvers

M. Knepley (UC) PETSc MSI ’13 9 / 178

Getting Started with PETSc

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries

M. Knepley (UC) PETSc MSI ’13 10 / 178

http://amzn.com/0521602866

Getting Started with PETSc

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

M. Knepley (UC) PETSc MSI ’13 11 / 178

http://www.mcs.anl.gov/~bsmith

Getting Started with PETSc

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks like.
You wouldn’t start with a bunch of tiles and say. “Well I’ll
put this tile down on the ground, and then I’ll find a tile
to go next to it.” But all too many people try to build their
parallel programs by creating the smallest possible tiles
and then trying to have the structure of their code emerge
from the chaos of all these little pieces. You have to have
an organizing principle if you’re going to survive making
your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

M. Knepley (UC) PETSc MSI ’13 12 / 178

http://www.rce-cast.com/Podcast/rce-28-mpich2.html

Getting Started with PETSc

What is PETSc?

A freely available and supported research code
for the parallel solution of nonlinear algebraic
equations

Free
Download from http://www.petsc.org
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

M. Knepley (UC) PETSc MSI ’13 13 / 178

http://www.petsc.org
mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

ECP, PSAAPIII, AMR, BES, SciDAC, MICS
National Science Foundation

CSSI, SI2, CIG, CISE

Intel Parallel Computing Center

M. Knepley (UC) PETSc MSI ’13 14 / 178

Getting Started with PETSc Who uses PETSc?

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 15 / 178

Getting Started with PETSc Who uses PETSc?

Who Uses PETSc?

Computational Scientists

Earth Science
PyLith (CIG)
Underworld (Monash)
Salvus (ETHZ)
TerraFERMA (LDEO, Columbia, Oxford)

Multiphysics
MOOSE
GRINS

Subsurface Flow and Porous Media
PFLOTRAN (DOE)
STOMP (DOE)

M. Knepley (UC) PETSc MSI ’13 16 / 178

http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
https://salvus.io/
http://terraferma.github.io/
http://mooseframework.org/
https://grinsfem.github.io/
http://ees.lanl.gov/pflotran/
http://stomp.pnnl.gov/

Getting Started with PETSc Who uses PETSc?

Who Uses PETSc?

Computational Scientists

CFD
IBAMR
Fluidity
OpenFVM

Fusion
XGC
BOUT++
NIMROD
M3D − C1

M. Knepley (UC) PETSc MSI ’13 17 / 178

https://github.com/IBAMR/IBAMR
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://openfvm.sourceforge.net/
http://w3.physics.lehigh.edu/~xgc/
https://bout.llnl.gov/
http://www.nimrodteam.org/
https://w3.pppl.gov/~nferraro/m3dc1.html

Getting Started with PETSc Who uses PETSc?

Who Uses PETSc?

Algorithm Developers

Iterative methods
Deflated GMRES
LGMRES
QCG
SpecEst

Preconditioning researchers
FETI-DP (Klawonn and Rheinbach)
STRUMPACK (Ghysels and Li)
HPDDM (Jolivet and Nataf)
ParPre (Eijkhout)

M. Knepley (UC) PETSc MSI ’13 18 / 178

http://www.uni-due.de/numerik/klawonn.shtml
http://www.mathe.tu-freiberg.de/nmo/mitarbeiter/oliver-rheinbach/kontakt
https://github.com/pghysels/STRUMPACK
https://github.com/hpddm/hpddm
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/

Getting Started with PETSc Who uses PETSc?

Who Uses PETSc?

Algorithm Developers

Discretization
Firedrake
FEniCS
libMesh
Deal II
PETSc-FEM
OOFEM
PetRBF

Outer Loop Solvers
Eigensolvers (SLEPc)
Optimization (PERMON)

M. Knepley (UC) PETSc MSI ’13 19 / 178

http://firedrakeproject.org/
http://fenicsproject.org/
http://libmesh.sourceforge.net/
http://www.dealii.org/
http://www.cimec.org.ar/petscfem
http://www.oofem.org/
http://barbagroup.bu.edu/Barba_group/PetRBF.html
http://www.grycap.upv.es/slepc/
http://industry.it4i.cz/en/products/permon/

Getting Started with PETSc Who uses PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (UC) PETSc MSI ’13 20 / 178

https://hpgmg.org/

Getting Started with PETSc Who uses PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (UC) PETSc MSI ’13 20 / 178

https://hpgmg.org/

Getting Started with PETSc Who uses PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 1,500,000 cores efficiently
Gordon Bell Prize Mantle Convection on IBM BG/Q Sequoia

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

M. Knepley (UC) PETSc MSI ’13 20 / 178

https://hpgmg.org/

Getting Started with PETSc Who uses PETSc?

PyLith

Multiple problems
Dynamic rupture
Quasi-static relaxation
Numerical Green
functions
Earthquake cycle

Multiple models
Nonlinear visco-plastic
Finite deformation
Fault constitutive
models

Multiple meshes
1D, 2D, 3D
Hex and tet meshes
Refinement and fault
insertion

Scalable, parallel solvers

a

aAagaard, Knepley, Williams

M. Knepley (UC) PETSc MSI ’13 21 / 178

Getting Started with PETSc Who uses PETSc?

Multiple Mesh Types

Triangular Tetrahedral

Rectangular Hexahedral

M. Knepley (UC) PETSc MSI ’13 22 / 178

Getting Started with PETSc Who uses PETSc?

Magma Dynamics

Couples scales
Subduction
Magma Migration

Physics
Incompressible fluid
Porous solid
Variable porosity

Deforming matrix
Compaction pressure

Code generation
FEniCS

Multiphysics Preconditioning
PETSc FieldSplit

a

z

y x

(b)

(a)

300 km
200 km

10
0

km

2
4

6
8

10
12

kg yr -1

aKatz

M. Knepley (UC) PETSc MSI ’13 23 / 178

Getting Started with PETSc Who uses PETSc?

Magma Dynamics

Couples scales
Subduction
Magma Migration

Physics
Incompressible fluid
Porous solid
Variable porosity

Deforming matrix
Compaction pressure

Code generation
FEniCS

Multiphysics Preconditioning
PETSc FieldSplit a

aKatz, Speigelman

M. Knepley (UC) PETSc MSI ’13 23 / 178

Getting Started with PETSc Who uses PETSc?

Fracture Mechanics

Full variational formulation
Phase field
Linear or Quadratic penalty

Uses TAO optimization
Necessary for linear penalty
Backtacking

No prescribed cracks (movie)
Arbitrary crack geometry
Arbitrary intersections

Multiple materials
Composite toughness a

aBourdin

M. Knepley (UC) PETSc MSI ’13 24 / 178

http://www.youtube.com/embed/DSHFjQBXkn4

Getting Started with PETSc Who uses PETSc?

Fracture Mechanics

1

1Bourdin
M. Knepley (UC) PETSc MSI ’13 24 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 000

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 100

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 200

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 300

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 400

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 500

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 600

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 700

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Vortex Method
t = 800

Incompressible Flow
Gaussian vortex blobs
High Re

PetFMM
2D/3D domains
Automatic load balancing
Variety of kernels
Optimized with templates

PetRBF
Variety of RBFs
Uses PETSc solvers
Scalable preconditioner

Parallelism
MPI
GPU

a

aCruz, Yokota, Barba, Knepley

M. Knepley (UC) PETSc MSI ’13 25 / 178

Getting Started with PETSc Who uses PETSc?

Gravity Anomaly Modeling

Potential Solution
Kernel of inverse problem
Needs optimal algorithm

Implementations
Direct Summation
FEM
FMM

Parallelism
MPI
4000+ cores
All methods scalable

a

aMay, Knepley

M. Knepley (UC) PETSc MSI ’13 26 / 178

Getting Started with PETSc Who uses PETSc?

FEniCS-Apps
Rheagen

Rheologies
Maxwell
Grade 2
Oldroyd-B

Stabilization
DG
SUPG
EVSS
DEVSS
Macroelement

Automation
FIAT (elements)
FFC (weak forms)

a

aTerrel

M. Knepley (UC) PETSc MSI ’13 27 / 178

Getting Started with PETSc Who uses PETSc?

FEniCS-Apps
Rheagen

Rheologies
Maxwell
Grade 2
Oldroyd-B

Stabilization
DG
SUPG
EVSS
DEVSS
Macroelement

Automation
FIAT (elements)
FFC (weak forms)

a

aTerrel

M. Knepley (UC) PETSc MSI ’13 27 / 178

Getting Started with PETSc Who uses PETSc?

Real-time Surgery

Brain Surgery
Elastic deformation
Overlaid on MRI
Guides surgeon

Laser Thermal Therapy
PDE constrained
optimization
Per-patient calibration
Thermal inverse problem a

aWarfield, Ferrant, et.al.

M. Knepley (UC) PETSc MSI ’13 28 / 178

Getting Started with PETSc Who uses PETSc?

Real-time Surgery

Brain Surgery
Elastic deformation
Overlaid on MRI
Guides surgeon

Laser Thermal Therapy
PDE constrained
optimization
Per-patient calibration
Thermal inverse problem

frastructure [1, 6] inherent to the control system relies critically on the precise real-time orchestration of

large-scale parallel computing, high-speed data transfer, a diode laser, dynamic imaging, visualizations,

inverse-analysis algorithms, registration, and mesh generation. We demonstrated that this integrated tech-

nology has significant potential to facilitate a reliable minimally invasive treatment modality that delivers

a precise, predictable and controllable thermal dose prescribed by oncologists and surgeons. However, MR

guided LITT (MRgLITT) has just recently entered into patient use [4] and substantial translational research

and validation is needed to fully realize the potential of this technology [20, 23] within a clinical setting. The

natural progression of the computer driven MRgLITT technology will begin with prospective pre-treatment

planning. Future innovations on the delivery side will likely involve combining robotic manipulation of fiber

location within the applicator as well as multiple treatment applicators firing simultaneously.

2D Slice

Catheter Entry

Prostate

Thermal Field

Skin

Figure 1: 3D volume rendering of in vivo MR-guided LITT delivery in a canine model of prostate. Contrast
enhanced T1-W MR images have been volume rendered to better visualize the relationship of the target
volume and applicator trajectory to the surrounding anatomy.. As displayed, the subject was stabilized in
the supine position with legs upward. A stainless steel stylet was used to insert the laser catheter consisting
of a 700 µm core diameter, 1 cm diffusing-tip silica fiber within a 2mm diameter water-cooled catheter (light
blue cylinder). A volume rendering of the multi-planar thermal images (in degrees Celsius) is registered and
fused with the 3D anatomy to visualize the 3D volume of therapy while an axial slice cut from the principle
treatment plane demonstrates a 2D representation of the local heating in that slice. The full field of view
shown is 240mm x 240mm (scale on image in mm).

2

a

aFuentes, Oden, et.al.

M. Knepley (UC) PETSc MSI ’13 28 / 178

Getting Started with PETSc Stuff for Windows

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 29 / 178

Getting Started with PETSc Stuff for Windows

Questions for Windows Users

Have you installed cygwin?
Need python, make, and build-utils packages

Will you use the GNU compilers?
If not, remove link.exe

If MS, check compilers from cmd window and use win32fe

Which MPI will you use?
You can use --with-mpi=0

If MS, need to install MPICH2
If GNU, can use --download-mpich

Minimal build works on Linux subsystem

M. Knepley (UC) PETSc MSI ’13 30 / 178

http://www.cygwin.com
http://www.mcs.anl.gov/research/projects/mpich2

Getting Started with PETSc How can I get PETSc?

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 31 / 178

Getting Started with PETSc How can I get PETSc?

Downloading PETSc

There is a Git repository

The latest tarball is on the PETSc site:
https://web.cels.anl.gov/projects/petsc/download/release-
snapshots/

There is a pip package (pip install petsc petsc4py)

There is a Debian package (aptitude install petsc-dev)

M. Knepley (UC) PETSc MSI ’13 32 / 178

http://git-scm.com/
https://gitlab.com/petsc/petsc/
https://web.cels.anl.gov/projects/petsc/download/release-snapshots/
https://web.cels.anl.gov/projects/petsc/download/release-snapshots/
https://pypi.org/project/petsc/
https://packages.debian.org/search?keywords=petsc

Getting Started with PETSc How can I get PETSc?

Cloning PETSc

The full development repository is open to the public
https://gitlab.com/petsc/petsc/

Why is this better?
You can clone to any release (or any specific ChangeSet)
You can easily rollback changes (or releases)
You can get fixes from us the same day
You can easily submit changes using a pull request

All releases are just tags:
Source at tag v3.18.0

M. Knepley (UC) PETSc MSI ’13 33 / 178

https://gitlab.com/petsc/petsc/
https://gitlab.com/petsc/petsc/-/tree/v3.24.0

Getting Started with PETSc How can I get PETSc?

Unpacking PETSc

Just clone development repository
git clone http://gitlab.com/petsc/petsc.git
git checkout -rv3.24.0

or

Unpack the tarball
tar xzf petsc.tar.gz

M. Knepley (UC) PETSc MSI ’13 34 / 178

Getting Started with PETSc How can I get PETSc?

Exercise 1

Download and Unpack PETSc!

M. Knepley (UC) PETSc MSI ’13 35 / 178

Getting Started with PETSc How do I Configure PETSc?

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 36 / 178

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc

Set $PETSC_DIR to the installation root directory
Run the configuration utility

$PETSC_DIR/configure

$PETSC_DIR/configure --help

$PETSC_DIR/configure --download-mpich

$PETSC_DIR/configure --prefix=/usr

There are many examples in $PETSC_DIR/config/examples

Config files in $PETSC_DIR/$PETSC_ARCH/lib/petsc/conf

Config header in $PETSC_DIR/$PETSC_ARCH/include

$PETSC_ARCH has a default if not specified

M. Knepley (UC) PETSc MSI ’13 37 / 178

https://bitbucket.org/petsc/petsc/src/master/config/examples/

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc

You can easily reconfigure with the same options
./$PETSC_ARCH/lib/petsc/conf/reconfigure-$PETSC_ARCH.py

Can maintain several different configurations
./configure -PETSC_ARCH=arch-linux-opt --with-debugging=0

All configuration information is in the logfile
./$PETSC_ARCH/lib/petsc/conf/configure.log

ALWAYS send this file with bug reports

M. Knepley (UC) PETSc MSI ’13 37 / 178

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc for FEM

$PETSC_DIR/configure
–download-triangle –download-ctetgen
–download-p4est –download-egads
–download-eigen –download-pragmatic
–download-metis –download-parmetis
–download-hdf5 –download-netcdf
–download-pnetcdf –download-exodusii
–download-ml –download-superlu –download-superlu_dist
–download-scalapack –download-mumps
–download-fftw –download-slepc –download-bamg

M. Knepley (UC) PETSc MSI ’13 38 / 178

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc for FEM

$PETSC_DIR/configure
–download-triangle –download-ctetgen
–download-p4est –download-egads
–download-eigen –download-pragmatic
–download-metis –download-parmetis
–download-hdf5 –download-netcdf
–download-pnetcdf –download-exodusii
–download-ml –download-superlu –download-superlu_dist
–download-scalapack –download-mumps
–download-fftw –download-slepc –download-bamg

M. Knepley (UC) PETSc MSI ’13 38 / 178

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc for FEM

$PETSC_DIR/configure
–download-triangle –download-ctetgen
–download-p4est –download-egads
–download-eigen –download-pragmatic
–download-metis –download-parmetis
–download-hdf5 –download-netcdf
–download-pnetcdf –download-exodusii
–download-ml –download-superlu –download-superlu_dist
–download-scalapack –download-mumps
–download-fftw –download-slepc –download-bamg

M. Knepley (UC) PETSc MSI ’13 38 / 178

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc for FEM

$PETSC_DIR/configure
–download-triangle –download-ctetgen
–download-p4est –download-egads
–download-eigen –download-pragmatic
–download-metis –download-parmetis
–download-hdf5 –download-netcdf
–download-pnetcdf –download-exodusii
–download-ml –download-superlu –download-superlu_dist
–download-scalapack –download-mumps
–download-fftw –download-slepc –download-bamg

M. Knepley (UC) PETSc MSI ’13 38 / 178

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc for FEM

$PETSC_DIR/configure
–download-triangle –download-ctetgen
–download-p4est –download-egads
–download-eigen –download-pragmatic
–download-metis –download-parmetis
–download-hdf5 –download-netcdf
–download-pnetcdf –download-exodusii
–download-ml –download-superlu –download-superlu_dist
–download-scalapack –download-mumps
–download-fftw –download-slepc –download-bamg

M. Knepley (UC) PETSc MSI ’13 38 / 178

Getting Started with PETSc How do I Configure PETSc?

Automatic Downloads
Starting in 2.2.1, some packages are automatically

Downloaded
Configured and Built (in $PETSC_DIR/externalpackages)
Installed with PETSc

Currently works for
petsc4py, mpi4py
PETSc documentation utilities (Sowing, c2html)
BLAS, LAPACK, Elemental, ScaLAPACK
GMP, MPFR
ConcurrencyKit, hwloc
MPICH, OpenMPI
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
SuiteSparse, MUMPS, SuperLU, SuperLU_Dist, PaStiX, Pardiso
SLEPc, HYPRE, ML
BLOPEX, FFTW, STRUMPACK, SPAI, CUSP, Sundials
Triangle, TetGen, p4est, Pragmatic
HDF5, NetCDF, ExodusII
AfterImage, gifLib, libjpeg, opengl

M. Knepley (UC) PETSc MSI ’13 39 / 178

Getting Started with PETSc How do I Configure PETSc?

Exercise 2

Configure your downloaded PETSc.

M. Knepley (UC) PETSc MSI ’13 40 / 178

Getting Started with PETSc How do I Build PETSc?

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 41 / 178

Getting Started with PETSc How do I Build PETSc?

Building PETSc

There is now One True Way to build PETSc:
make

make install if you configured with --prefix

Check build when done with make check

Can build multiple configurations
PETSC_ARCH=arch-linux-opt make

Libraries are in $PETSC_DIR/$PETSC_ARCH/lib/

Complete log for each build is in logfile
./$PETSC_ARCH/lib/petsc/conf/make.log

ALWAYS send this with bug reports

M. Knepley (UC) PETSc MSI ’13 42 / 178

Getting Started with PETSc How do I Build PETSc?

Exercise 3

Build your configured PETSc.

M. Knepley (UC) PETSc MSI ’13 43 / 178

Getting Started with PETSc How do I Build PETSc?

Exercise 4

Reconfigure PETSc to use ParMetis.

1 linux-debug/lib/petsc/conf/reconfigure-linux-debug.py

--PETSC_ARCH=arch-linux-parmetis

--download-metis --download-parmetis

2 PETSC_ARCH=linux-parmetis make

3 PETSC_ARCH=linux-parmetis make check

M. Knepley (UC) PETSc MSI ’13 44 / 178

Getting Started with PETSc How do I run an example?

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 45 / 178

Getting Started with PETSc How do I run an example?

Running PETSc

Try running PETSc examples first
cd $PETSC_DIR/src/snes/tutorials

Build examples using make targets
make ex5

Run using MPI directly
./ex5 -snes_max_it 5

mpirun -np 2 ./ex5 -snes_max_it 5

mpiexec -n 2 ./ex5 -snes_monitor

M. Knepley (UC) PETSc MSI ’13 46 / 178

Getting Started with PETSc How do I run an example?

Running PETSc with Python

Can run any PETSc example
./config/builder2.py check ./src/snes/examples/tutorials/ex5.c

Checks against test output
Ignores if no output is present

Can specify multiple files
builder2.py check [./src/snes/examples/tutorials/ex5.c,code.c]

Can also run using MPI directly
Use --retain to keep executable
mpiexec ./$PETSC_ARCH/lib/lib-ex5/ex5 -snes_monitor

M. Knepley (UC) PETSc MSI ’13 47 / 178

Getting Started with PETSc How do I run an example?

Using MPI

The Message Passing Interface is:
a library for parallel communication
a system for launching parallel jobs (mpirun/mpiexec)
a community standard

Launching jobs is easy
mpiexec -n 4 ./ex5

You should never have to make MPI calls when using PETSc
Almost never

M. Knepley (UC) PETSc MSI ’13 48 / 178

Getting Started with PETSc How do I run an example?

MPI Concepts

Communicator
A context (or scope) for parallel communication (“Who can I talk to”)
There are two defaults:

yourself (PETSC_COMM_SELF),
and everyone launched (PETSC_COMM_WORLD)

Can create new communicators by splitting existing ones
Every PETSc object has a communicator
Set PETSC_COMM_WORLD to put all of PETSc in a subcomm

Point-to-point communication
Happens between two processes (like in MatMult())

Reduction or scan operations
Happens among all processes (like in VecDot())

Can remap PETSc objects to smaller communicators

M. Knepley (UC) PETSc MSI ’13 49 / 178

Getting Started with PETSc How do I run an example?

Common Viewing Options

Gives a text representation
-vec_view

Generally views subobjects too
-snes_view

Can visualize some objects
-mat_view draw::

Alternative formats
-vec_view binary:sol.bin:, -vec_view ::matlab, -vec_view socket

Sometimes provides extra information
-mat_view ::ascii_info, -mat_view ::ascii_info_detailed

Generic viewing option
-foo_view <type>:<filename>:<format>:<file mode>

M. Knepley (UC) PETSc MSI ’13 50 / 178

Getting Started with PETSc How do I run an example?

Common Monitoring Options

Display the residual
-ksp_monitor

Can disable dynamically
-ksp_monitors_cancel

Does not display subsolvers
-snes_monitor

Can use the true residual
-ksp_monitor_true_residual

Can display different subobjects
-snes_monitor_residual, -snes_monitor_solution,
-snes_monitor_solution_update

-snes_monitor_range

-ksp_gmres_krylov_monitor

Can display the spectrum
-ksp_monitor_singular_value

M. Knepley (UC) PETSc MSI ’13 51 / 178

Getting Started with PETSc How do I get more help?

Outline

1 Getting Started with PETSc
Who uses PETSc?
Stuff for Windows
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

M. Knepley (UC) PETSc MSI ’13 52 / 178

Getting Started with PETSc How do I get more help?

Getting More Help

http://www.petsc.org
Hyperlinked documentation

Online Manual
Manual pages for every method
HTML of all example code (linked to manual pages)

FAQ
Full support at petsc-maint@mcs.anl.gov

M. Knepley (UC) PETSc MSI ’13 53 / 178

http://www.petsc.org
https://petsc.org/main/docs/manual/
https://petsc.org/main/docs/manualpages/
https://petsc.org/main/faq/
mailto:petsc-maint@mcs.anl.gov

PETSc Integration

Outline

1 Getting Started with PETSc

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

3 DM

4 Advanced Solvers

M. Knepley (UC) PETSc MSI ’13 54 / 178

PETSc Integration Initial Operations

Outline

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

M. Knepley (UC) PETSc MSI ’13 55 / 178

PETSc Integration Initial Operations

Application Integration

Be willing to experiment with algorithms
No optimality without interplay between physics and algorithmics

Adopt flexible, extensible programming
Algorithms and data structures not hardwired

Be willing to play with the real code
Toy models are rarely helpful

If possible, profile before integration
Automatic in PETSc

M. Knepley (UC) PETSc MSI ’13 56 / 178

PETSc Integration Initial Operations

PETSc Integration

PETSc is a set a library interfaces
We do not seize main()

We do not control output
We propagate errors from underlying packages
We present the same interfaces in:

C
C++
Fortran
Python
Julia

See Gropp in SIAM, OO Methods for Interop SciEng, ’99

M. Knepley (UC) PETSc MSI ’13 57 / 178

PETSc Integration Initial Operations

Integration Stages

Version Control
It is impossible to overemphasize
We use Git

Initialization
Linking to PETSc

Profiling
Profile before changing
Also incorporate command line processing

Linear Algebra
First PETSc data structures

Solvers
Very easy after linear algebra is integrated

M. Knepley (UC) PETSc MSI ’13 58 / 178

http://git-scm.com/

PETSc Integration Initial Operations

Initialization

Call PetscInitialize ()

Setup static data and services
Setup MPI if it is not already

Call PetscFinalize()

Calculates logging summary
Shutdown and release resources

Checks compile and link

M. Knepley (UC) PETSc MSI ’13 59 / 178

PETSc Integration Initial Operations

Profiling

Use -log_view for a performance profile
Event timing
Event flops
Memory usage
MPI messages

Call PetscLogStagePush() and PetscLogStagePop()

User can add new stages
Call PetscLogEventBegin() and PetscLogEventEnd()

User can add new events

M. Knepley (UC) PETSc MSI ’13 60 / 178

PETSc Integration Initial Operations

Command Line Processing

Retrieve a value
PetscOptionsHasName()
PetscOptionsGetInt(), PetscOptionsGetIntArray()

Modern form uses
PetscOptionsBegin(), PetscOptionsEnd()
PetscOptionsInt(), PetscOptionsReal()
Integrates with -help

Set a value
PetscOptionsSetValue()

Check for unused options with -options_left

Clear, alias, reject, etc.
View an arbitrary object

PetscObjectViewFromOptions()

M. Knepley (UC) PETSc MSI ’13 61 / 178

PETSc Integration Vector Algebra

Outline

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

M. Knepley (UC) PETSc MSI ’13 62 / 178

PETSc Integration Vector Algebra

Vector Algebra

What are PETSc vectors?
Fundamental objects representing

solutions
right-hand sides
coefficients

Each process locally owns a subvector of contiguous global data

M. Knepley (UC) PETSc MSI ’13 63 / 178

PETSc Integration Vector Algebra

Vector Algebra

How do I create vectors?

VecCreate(MPI_Commcomm, Vec*v)

VecSetSizes(Vecv, PetscInt n, PetscInt N)

VecSetType(Vecv, VecType typeName)

VecSetFromOptions(Vecv)

Can set the type at runtime

M. Knepley (UC) PETSc MSI ’13 64 / 178

PETSc Integration Vector Algebra

Vector Algebra

A PETSc Vec
Supports all vector space operations

VecDot(), VecNorm(), VecScale()

Has a direct interface to the values
VecGetArray(), VecGetArrayF90()

Has unusual operations
VecSqrtAbs(), VecStrideGather()

Communicates automatically during assembly
Has customizable communication (PetscSF, VecScatter)

M. Knepley (UC) PETSc MSI ’13 65 / 178

PETSc Integration Vector Algebra

Parallel Assembly
Vectors and Matrices

Processes may set an arbitrary entry
Must use proper interface

Entries need not be generated locally
Local meaning the process on which they are stored

PETSc automatically moves data if necessary
Happens during the assembly phase

M. Knepley (UC) PETSc MSI ’13 66 / 178

PETSc Integration Vector Algebra

Vector Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

VecSetValues (Vec v , Pe tsc In t n , Pe tsc In t rows [] ,
PetscScalar values [] , InsertMode mode)

Mode is either INSERT_VALUES or ADD_VALUES

Two phases allow overlap of communication and computation
VecAssemblyBegin(v)
VecAssemblyEnd(v)

M. Knepley (UC) PETSc MSI ’13 67 / 178

PETSc Integration Vector Algebra

One Way to Set the Elements of a Vector

i e r r = VecGetSize (x , &N) ;CHKERRQ(i e r r) ;
i e r r = MPI_Comm_rank (PETSC_COMM_WORLD, &rank) ;CHKERRQ(i e r r) ;
i f (rank == 0) {

va l = 0 . 0 ;
f o r (i = 0 ; i < N; ++ i) {

i e r r = VecSetValues (x , 1 , &i , &val , INSERT_VALUES) ;CHKERRQ(i e r r) ;
va l += 10 .0 ;

}
}
/ * These rou t i nes ensure t h a t the data i s

d i s t r i b u t e d to the other processes * /
i e r r = VecAssemblyBegin (x) ;CHKERRQ(i e r r) ;
i e r r = VecAssemblyEnd (x) ;CHKERRQ(i e r r) ;

M. Knepley (UC) PETSc MSI ’13 68 / 178

PETSc Integration Vector Algebra

One Way to Set the Elements of a Vector

VecGetSize (x , &N) ;
MPI_Comm_rank (PETSC_COMM_WORLD, &rank) ;
i f (rank == 0) {

va l = 0 . 0 ;
f o r (i = 0 ; i < N; ++ i) {

VecSetValues (x , 1 , &i , &val , INSERT_VALUES) ;
va l += 10 .0 ;

}
}
/ * These rou t i nes ensure t h a t the data i s

d i s t r i b u t e d to the other processes * /
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

M. Knepley (UC) PETSc MSI ’13 69 / 178

PETSc Integration Vector Algebra

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x , &low , &high) ;
va l = low * 1 0 . 0 ;
f o r (i = low ; i < high ; ++ i) {

VecSetValues (x , 1 , &i , &val , INSERT_VALUES) ;
va l += 10 .0 ;

}
/ * No data w i l l be communicated here * /
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

M. Knepley (UC) PETSc MSI ’13 70 / 178

PETSc Integration Vector Algebra

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y = y + a ∗ x
VecAYPX(Vec y, PetscScalar a, Vec x) y = x + a ∗ y
VecWAYPX(Vec w, PetscScalar a, Vec x, Vec y) w = y + a ∗ x
VecScale(Vec x, PetscScalar a) x = a ∗ x
VecCopy(Vec y, Vec x) y = x
VecPointwiseMult(Vec w, Vec x, Vec y) wi = xi ∗ yi
VecMax(Vec x, PetscInt *idx, PetscScalar *r) r = maxri
VecShift(Vec x, PetscScalar r) xi = xi + r
VecAbs(Vec x) xi = |xi |
VecNorm(Vec x, NormType type, PetscReal *r) r = ||x ||

M. Knepley (UC) PETSc MSI ’13 71 / 178

PETSc Integration Vector Algebra

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a Vec.
PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])

You must return the array to PETSc when you finish
VecRestoreArray(Vec, double *[])

Allows PETSc to handle data structure conversions
Commonly, these routines are fast and do not involve a copy

M. Knepley (UC) PETSc MSI ’13 72 / 178

PETSc Integration Vector Algebra

VecGetArray in C

Vec v ;
PetscScalar * ar ray ;
Pe tsc In t n , i ;

VecGetArray (v , &ar ray) ;
VecGetLocalSize (v , &n) ;
PetscSynchron izedPr in t f (PETSC_COMM_WORLD,

" F i r s t element o f l o c a l a r ray i s %f \ n " , a r ray [0]) ;
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
f o r (i = 0 ; i < n ; ++ i) {

a r ray [i] += (PetscScalar) rank ;
}
VecRestoreArray (v , &ar ray) ;

M. Knepley (UC) PETSc MSI ’13 73 / 178

PETSc Integration Vector Algebra

VecGetArray in F77

inc lude " f i n c l u d e / petsc . h "

Vec v ;
PetscScalar ar ray (1)
PetscOf fse t o f f s e t
Pe tsc In t n , i
PetscErrorCode i e r r

c a l l VecGetArray (v , array , o f f s e t , i e r r)
c a l l VecGetLocalSize (v , n , i e r r)
do i =1 ,n

ar ray (i + o f f s e t) = ar ray (i + o f f s e t) + rank
end do
c a l l VecRestoreArray (v , array , o f f s e t , i e r r)

M. Knepley (UC) PETSc MSI ’13 74 / 178

PETSc Integration Vector Algebra

VecGetArray in F90

inc lude " f i n c l u d e / petsc . h90 "

Vec v ;
PetscScalar p o i n t e r : : a r ray (:)
Pe tsc In t n , i
PetscErrorCode i e r r

c a l l VecGetArrayF90 (v , array , i e r r)
c a l l VecGetLocalSize (v , n , i e r r)
do i =1 ,n

ar ray (i) = ar ray (i) + rank
end do
c a l l VecRestoreArrayF90 (v , array , i e r r)

M. Knepley (UC) PETSc MSI ’13 75 / 178

PETSc Integration Vector Algebra

VecGetArray in Python

wi th v as a :
f o r i i n range (len (a)) :

a [i] = 5 .0* i

M. Knepley (UC) PETSc MSI ’13 76 / 178

PETSc Integration Vector Algebra

DMDAVecGetArray in C

DM da ;
Vec v ;
DMDALocalInfo * i n f o ;
PetscScalar * * ar ray ;

DMDAVecGetArray (da , v , &ar ray) ;
f o r (j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j) {

f o r (i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i) {
u = x [j] [i] ;
uxx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
uyy = (2 . 0 * u − x [j − 1] [i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] = uxx + uyy ;

}
}
DMDAVecRestoreArray (da , v , &ar ray) ;

M. Knepley (UC) PETSc MSI ’13 77 / 178

PETSc Integration Vector Algebra

DMDAVecGetArray in F90

DM da
Vec v
PetscScalar , p o i n t e r : : a r ray (: , :)

c a l l DMDAGetCorners (ada , xs , ys ,PETSC_NULL_INTEGER,
xm,ym,PETSC_NULL_INTEGER, i e r r)

c a l l DMDAVecGetArrayF90 (da , v , array , i e r r) ;
do i = xs , xs+xm

do j = ys , ys+ym
u = x (i , j)
uxx = (2 . 0 * u − x (i −1 , j) − x (i +1 , j)) * hydhx ;
uyy = (2 . 0 * u − x (i , j −1) − x (i , j +1)* hxdhy ;
f (i , j) = uxx + uyy ;

enddo
enddo
c a l l DMDAVecRestoreArrayF90 (da , v , array , i e r r) ;

M. Knepley (UC) PETSc MSI ’13 78 / 178

PETSc Integration Matrix Algebra

Outline

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

M. Knepley (UC) PETSc MSI ’13 79 / 178

PETSc Integration Matrix Algebra

Matrix Algebra

What are PETSc matrices?

Fundamental objects for storing stiffness matrices and Jacobians
Each process locally owns a contiguous set of rows
Supports many data types

AIJ, Block AIJ, Symmetric AIJ, Block Matrix, etc.
Supports structures for many packages

Elemental, MUMPS, SuperLU, UMFPack, PasTiX

M. Knepley (UC) PETSc MSI ’13 80 / 178

PETSc Integration Matrix Algebra

How do I create matrices?

MatCreate(MPI_Commcomm, Mat*A)

MatSetSizes(MatA, PetscInt m, PetscInt n, PetscInt M, PetscInt N)

MatSetType(MatA, MatType typeName)

MatSetFromOptions(MatA)

Can set the type at runtime

MatSeqAIJPreallocation(MatA, PetscIntnz, const PetscInt nnz[])

MatXAIJPreallocation(MatA, bs, dnz [], onz [], dnzu[], onzu[])

MatSetValues(MatA, m, rows[], n, cols [], values [], InsertMode)

MUST be used, but does automatic communication

M. Knepley (UC) PETSc MSI ’13 81 / 178

PETSc Integration Matrix Algebra

Matrix Polymorphism

The PETSc Mat has a single user interface,
Matrix assembly

MatSetValues()
MatGetLocalSubMatrix()

Matrix-vector multiplication
MatMult()

Matrix viewing
MatView()

but multiple underlying implementations.
AIJ, Block AIJ, Symmetric Block AIJ,
Dense
Matrix-Free
etc.

A matrix is defined by its interface, not by its data structure.

M. Knepley (UC) PETSc MSI ’13 82 / 178

PETSc Integration Matrix Algebra

Matrix Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

MatSetValues(A, m, rows[], n, cols [], values [], mode)

mode is either INSERT_VALUES or ADD_VALUES
Logically dense block of values

Two phase assembly allows overlap of communication and
computation

MatAssemblyBegin(A, type)
MatAssemblyEnd(A, type)
type is either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

M. Knepley (UC) PETSc MSI ’13 83 / 178

PETSc Integration Matrix Algebra

One Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v [0] = −1.0; v [1] = 2 . 0 ; v [2] = −1.0;
i f (rank == 0) {

f o r (row = 0; row < N; row++) {
co ls [0] = row −1; co ls [1] = row ; co ls [2] = row +1;
i f (row == 0) {

MatSetValues (A,1 ,& row ,2 ,& co ls [1] ,& v [1] , INSERT_VALUES) ;
} e lse i f (row == N−1) {

MatSetValues (A,1 ,& row ,2 , cols , v , INSERT_VALUES) ;
} e lse {

MatSetValues (A,1 ,& row ,3 , cols , v , INSERT_VALUES) ;
}

}
}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

M. Knepley (UC) PETSc MSI ’13 84 / 178

PETSc Integration Matrix Algebra

Parallel Sparse Matrix Layout

proc 5

proc 4

proc 3
proc 2
proc 1

proc 0
diagonal blocks
offdiagonal blocks

M. Knepley (UC) PETSc MSI ’13 85 / 178

PETSc Integration Matrix Algebra

A Better Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v [0] = −1.0; v [1] = 2 . 0 ; v [2] = −1.0;
MatGetOwnershipRange (A,& s t a r t ,&end) ;
f o r (row = s t a r t ; row < end ; row++) {

co ls [0] = row −1; co ls [1] = row ; co ls [2] = row +1;
i f (row == 0) {

MatSetValues (A,1 ,& row ,2 ,& co ls [1] ,& v [1] , INSERT_VALUES) ;
} e lse i f (row == N−1) {

MatSetValues (A,1 ,& row ,2 , cols , v , INSERT_VALUES) ;
} e lse {

MatSetValues (A,1 ,& row ,3 , cols , v , INSERT_VALUES) ;
}

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

M. Knepley (UC) PETSc MSI ’13 86 / 178

PETSc Integration Matrix Algebra

Why Are PETSc Matrices That Way?

No one data structure is appropriate for all problems
Blocked and diagonal formats provide performance benefits
PETSc has many formats
Makes it easy to add new data structures

Assembly is difficult enough without worrying about partitioning
PETSc provides parallel assembly routines
High performance still requires making most operations local
However, programs can be incrementally developed.
MatPartitioning and MatOrdering can help
Its better to partition and reorder the underlying grid

Matrix decomposition in contiguous chunks is simple
Makes interoperation with other codes easier
For other ordering, PETSc provides “Application Orderings” (AO)

M. Knepley (UC) PETSc MSI ’13 87 / 178

PETSc Integration Algebraic Solvers

Outline

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

M. Knepley (UC) PETSc MSI ’13 88 / 178

PETSc Integration Algebraic Solvers

Experimentation is Essential!

Proof is not currently enough to examine solvers

N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778–795, 1992.
Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465–469, 1996.

M. Knepley (UC) PETSc MSI ’13 89 / 178

PETSc Integration Algebraic Solvers

Linear Solvers
Krylov Methods

Using PETSc linear algebra, just add:
KSPSetOperators(ksp, A, M, flag)
KSPSolve(ksp, b, x)

Can access subobjects
KSPGetPC(ksp, &pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line
-ksp_type bicgstab

M. Knepley (UC) PETSc MSI ’13 90 / 178

PETSc Integration Algebraic Solvers

Nonlinear Solvers

Using PETSc linear algebra, just add:
SNESSetFunction(snes, r, residualFunc, ctx)
SNESSetJacobian(snes, A, M, jacFunc, ctx)
SNESSolve(snes, b, x)

Can access subobjects
SNESGetKSP(snes, &ksp)

Can customize subobjects from the cmd line
Set the subdomain preconditioner to ILU with −sub_pc_type ilu

M. Knepley (UC) PETSc MSI ’13 91 / 178

PETSc Integration Algebraic Solvers

Basic Solver Usage

Use SNESSetFromOptions() so that everything is set dynamically
Set the type

Use −snes_type (or take the default)
Set the preconditioner

Use −npc_snes_type (or take the default)
Override the tolerances

Use −snes_rtol and −snes_atol

View the solver to make sure you have the one you expect
Use −snes_view

For debugging, monitor the residual decrease
Use −snes_monitor
Use −ksp_monitor to see the underlying linear solver

M. Knepley (UC) PETSc MSI ’13 92 / 178

PETSc Integration Algebraic Solvers

3rd Party Solvers in PETSc
Complete table of solvers

Sequential LU
ESSL (IBM)
SuperLU (Sherry Li, LBNL)
Suitesparse (Tim Davis, U. of Florida)
LUSOL (MINOS, Michael Saunders, Stanford)
PILUT (Hypre, David Hysom, LLNL)

Parallel LU
Elemental/Clique (Jack Poulson, Google)
MUMPS (Patrick Amestoy, IRIT)
SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
Pardiso (MKL, Intel)
STRUMPACK (Pieter Ghysels, LBNL)

Parallel Cholesky
Elemental (Jack Poulson, Google)
DSCPACK (Padma Raghavan, Penn. State)
MUMPS (Patrick Amestoy, Toulouse)

M. Knepley (UC) PETSc MSI ’13 93 / 178

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration Algebraic Solvers

3rd Party Preconditioners in PETSc

Complete table of solvers
Parallel Algebraic Multigrid

GAMG (Mark Adams, LBNL)
BoomerAMG (Hypre, LLNL)
ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

Parallel BDDC (Stefano Zampini, KAUST)
Parallel ILU, PaStiX (Faverge Mathieu, INRIA)
Parallel Redistribution (Dave May, Oxford and Patrick Sanan, USI)
Parallel Sparse Approximate Inverse

Parasails (Hypre, Edmund Chow, LLNL)
SPAI 3.0 (Marcus Grote and Barnard, NYU)

M. Knepley (UC) PETSc MSI ’13 93 / 178

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration Algebraic Solvers

User Solve

MPI_Comm comm;
SNES snes;
DM dm;
Vec u;

SNESCreate(comm, &snes);
SNESSetDM(snes, dm);
SNESSetFromOptions(snes);
DMCreateGlobalVector(dm, &u);
SNESSolve(snes, NULL, u);

M. Knepley (UC) PETSc MSI ’13 94 / 178

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESCreate.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESSetDM.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESSetFromOptions.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/DM/DMCreateGlobalVector.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/SNES/SNESSolve.html

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
Solver code does not change for different algorithms:

SNES snes ;
DM dm;
Vec u ;
PetscErrorCode i e r r ;

i e r r = SNESCreate (PETSC_COMM_WORLD, &snes) ;CHKERRQ(i e r r) ;
i e r r = SNESSetDM(snes , dm) ;CHKERRQ(i e r r) ;
/ * Spec i fy r e s i d u a l computat ion * /
i e r r = SNESSetFromOptions (snes) ;CHKERRQ(i e r r) ; / * Conf igure so l ve r * /
i e r r = DMCreateGlobalVec t o r (dm, &u) ;CHKERRQ(i e r r) ;
i e r r = SNESSolve (snes , PETSC_NULL, u) ;CHKERRQ(i e r r) ;

Never recompile! all configuration is dynamic
DM controls data layout and communication
Type of nested solvers can be changed at runtime

Programming Languages for Scientific Computing,
Knepley, 2012.

M. Knepley (UC) PETSc MSI ’13 95 / 178

http://arxiv.org/abs/1209.1711

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
I will omit error checking and declarations:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
/ * Spec i fy r e s i d u a l computat ion * /
SNESSetFromOptions (snes) ; / * Conf igure so l ve r * /
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
The configuration API can also be used:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
/ * Spec i fy r e s i d u a l computat ion * /
SNESNGMRESSetRestartType (snes , SNES_NGMRES_RESTART_PERIODIC) ;
SNESSetFromOptions (snes) ;
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

Ignored when not applicable (no ugly check)
Type safety of arguments is retained
No downcasting

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
Adding a prefix namespaces command line options:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
/ * Spec i fy r e s i d u a l computat ion * /
SNESSetOpt ionsPre f i x (snes , " stokes_ ") ;
SNESSetFromOptions (snes) ;
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

-stokes_snes_type qn changes the solver type,

whereas -snes_type qn does not

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
User provides a function to compute the residual:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
DMCreateGlobalVec t o r (dm, &r) ;
SNESSetFunct ion (snes , r , FormFunction , &user) ;
SNESSetFromOptions (snes) ;
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

r = F (u)

User handles parallel communication

User handles domain geometry and discretization

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
DM allows the user to compute only on a local patch:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
SNESSetFromOptions (snes) ;
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

DMSNESSetLocalFunct ion (dm, FormFunctionLocal) ;

Code looks serial to the user
PETSc handles global residual assembly
Also works for unstructured meshes

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
Optionally, the user can also provide a Jacobian:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
SNESSetFromOptions (snes) ;
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

DMSNESSetLocalFunct ion (dm, FormFunctionLocal) ;
DMSNESSetLocalJacobian (dm, FormJacobianLocal) ;

SNES ex62 allows both
finite difference (JFNK), and
FEM action

versions of the Jacobian.

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
Convenience form uses Plex defaults:

SNESCreate (PETSC_COMM_WORLD, &snes) ;
SNESSetDM(snes , dm) ;
SNESSetFromOptions (snes) ;
DMCreateGlobalVec t o r (dm, &u) ;
SNESSolve (snes , PETSC_NULL, u) ;

DMPlexSetSNESLocalFEM (dm,& user ,& user ,& user) ;

This also handles Dirichlet boundary conditions.

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Algebraic Solvers

Solver use in SNES ex62
The DM also handles storage:

CreateMesh (PETSC_COMM_WORLD, &user , &dm) ;
DMCreateLocalVec t o r (dm, &l u) ;
DMCreateGlobalVec t o r (dm, &u) ;
DMCreateMat r i x (dm, &J) ;

DM can create local and global vectors

Matrices are correctly preallocated

Easy supported for discretization

M. Knepley (UC) PETSc MSI ’13 95 / 178

PETSc Integration Debugging PETSc

Outline

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

M. Knepley (UC) PETSc MSI ’13 96 / 178

PETSc Integration Debugging PETSc

Correctness Debugging

Automatic generation of tracebacks

Detecting memory corruption and leaks

Optional user-defined error handlers

M. Knepley (UC) PETSc MSI ’13 97 / 178

PETSc Integration Debugging PETSc

Interacting with the Debugger

Launch the debugger
-start_in_debugger [gdb,dbx,noxterm]

-on_error_attach_debugger [gdb,dbx,noxterm]

Attach the debugger only to some parallel processes
-debugger_nodes 0,1

Set the display (often necessary on a cluster)
-display khan.mcs.anl.gov:0.0

M. Knepley (UC) PETSc MSI ’13 98 / 178

PETSc Integration Debugging PETSc

Debugging Tips

Put a breakpoint in PetscError() to catch errors as they occur
PETSc tracks memory overwrites at both ends of arrays

The CHKMEMQ macro causes a check of all allocated memory
Track memory overwrites by bracketing them with CHKMEMQ

PETSc checks for leaked memory
Use PetscMalloc() and PetscFree() for all allocation
Print unfreed memory on PetscFinalize() with -malloc_dump

Simply the best tool today is valgrind
It checks memory access, cache performance, memory usage, etc.
http://www.valgrind.org
Need --trace-children=yes when running under MPI

M. Knepley (UC) PETSc MSI ’13 99 / 178

http://www.valgrind.org

PETSc Integration Profiling PETSc

Outline

2 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
Debugging PETSc
Profiling PETSc

M. Knepley (UC) PETSc MSI ’13 100 / 178

PETSc Integration Profiling PETSc

Performance Debugging

PETSc has integrated profiling
Option -log_view prints a report on PetscFinalize()

PETSc allows user-defined events
Events report time, calls, flops, communication, etc.
Memory usage is tracked by object

Profiling is separated into stages
Event statistics are aggregated by stage

M. Knepley (UC) PETSc MSI ’13 101 / 178

PETSc Integration Profiling PETSc

Using Stages and Events

Use PetscLogStageRegister() to create a new stage
Stages are identifier by an integer handle

Use PetscLogStagePush/Pop() to manage stages
Stages may be nested, but will not aggregate in a nested fashion

Use PetscLogEventRegister() to create a new stage
Events also have an associated class

Use PetscLogEventBegin/End() to manage events
Events may also be nested and will aggregate in a nested fashion
Can use PetscLogFlops() to log user flops

M. Knepley (UC) PETSc MSI ’13 102 / 178

PETSc Integration Profiling PETSc

Adding A Logging Stage
C

i n t stageNum ;

PetscLogStageRegister (&stageNum , "name") ;
PetscLogStagePush (stageNum) ;

/ * Code to Moni tor * /

PetscLogStagePop () ;

M. Knepley (UC) PETSc MSI ’13 103 / 178

PETSc Integration Profiling PETSc

Adding A Logging Stage
Python

wi th PETSc . LogStage (’Fluid Stage’) as f l u i d S t a g e :
A l l opera t ions w i l l be aggregated i n f l u i d S t a g e
f l u i d . so lve ()

M. Knepley (UC) PETSc MSI ’13 104 / 178

PETSc Integration Profiling PETSc

Adding A Logging Event
C

s t a t i c i n t USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name" , CLS_ID) ;
PetscLogEventBegin (USER_EVENT, 0 , 0 , 0 , 0) ;

/ * Code to Moni tor * /

PetscLogFlops (user_event_ f lops) ;
PetscLogEventEnd (USER_EVENT, 0 , 0 , 0 , 0) ;

M. Knepley (UC) PETSc MSI ’13 105 / 178

PETSc Integration Profiling PETSc

Adding A Logging Event
Python

wi th PETSc . logEvent (’Reconstruction’) as recEvent :
A l l opera t ions are t imed i n recEvent
recons t ruc t (so l)
Flops are logged to recEvent
PETSc . Log . logFlops (user_event_ f lops)

M. Knepley (UC) PETSc MSI ’13 106 / 178

PETSc Integration Profiling PETSc

Adding A Logging Class

s t a t i c i n t CLASS_ID ;

PetscLogClassRegister (&CLASS_ID , "name") ;

Class ID identifies a class uniquely
Must initialize before creating any objects of this type

M. Knepley (UC) PETSc MSI ’13 107 / 178

PETSc Integration Profiling PETSc

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
can add additional nonzeros freely

Dynamically adding many nonzeros
requires additional memory allocations
requires copies
can kill performance

Memory preallocation provides
the freedom of dynamic data structures
good performance

Easiest solution is to replicate the assembly code
Remove computation, but preserve the indexing code
Store set of columns for each row

Call preallocation rourines for all datatypes
MatSeqAIJSetPreallocation()
MatMPIAIJSetPreallocation()
Only the relevant data will be used

M. Knepley (UC) PETSc MSI ’13 108 / 178

PETSc Integration Profiling PETSc

Matrix Memory Preallocation
Sequential Sparse Matrices

MatSeqAIJPreallocation(MatA, int nz, int nnz[])

nz: expected number of nonzeros in any row
nnz(i): expected number of nonzeros in row i

M. Knepley (UC) PETSc MSI ’13 108 / 178

PETSc Integration Profiling PETSc

Matrix Memory Preallocation
ParallelSparseMatrix

Each process locally owns a submatrix of contiguous global rows
Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3
proc 2
proc 1

proc 0
diagonal blocks
offdiagonal blocks

MatGetOwnershipRange(MatA,int *start,int *end)

start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

M. Knepley (UC) PETSc MSI ’13 108 / 178

PETSc Integration Profiling PETSc

Matrix Memory Preallocation
Parallel Sparse Matrices

MatMPIAIJPreallocation(MatA, int dnz, int dnnz[], int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
onnz(i): expected number of nonzeros in row i in the offdiagonal portion

M. Knepley (UC) PETSc MSI ’13 108 / 178

PETSc Integration Profiling PETSc

Matrix Memory Preallocation
Verifying Preallocation

Use runtime option -info

Output:
[proc #] Matrix size: %d X %d; storage space:
%d unneeded, %d used
[proc #] Number of mallocs during MatSetValues()
is %d

M. Knepley (UC) PETSc MSI ’13 108 / 178

DM

Outline

1 Getting Started with PETSc

2 PETSc Integration

3 DM
Structured Meshes (DMDA)

4 Advanced Solvers

M. Knepley (UC) PETSc MSI ’13 109 / 178

DM

DM Interface

Allocation
DMCreateGlobalVector(DM, Vec *)

DMCreateLocalVector(DM, Vec *)

DMCreateMatrix(DM, MatType, Mat *)

Mapping
DMGlobalToLocalBegin/End(DM, Vec, InsertMode, Vec)

DMLocalToGlobalBegin/End(DM, Vec, InsertMode, Vec)

DMGetLocalToGlobalMapping(DM, IS *)

M. Knepley (UC) PETSc MSI ’13 110 / 178

DM

DM Interface

Geometry
DMGetCoordinateDM(DM, DM *)

DMGetCoordinates(DM, Vec *)

DMGetCoordinatesLocal(DM, Vec *)

Layout
DMGetDefaultSection(DM, PetscSection *)

DMGetDefaultGlobalSection(DM, PetscSection *)

DMGetDefaultSF(DM, PetscSF *)

M. Knepley (UC) PETSc MSI ’13 111 / 178

DM

DM Interface

Hierarchy
DMRefine(DM, MPI_Comm, DM *)

DMCoarsen(DM, MPI_Comm, DM *)

DMGetSubDM(DM, MPI_Comm, DM *)

Intergrid transfer
DMGetInterpolation(DM, DM, Mat *, Vec *)

DMGetAggregates(DM, DM, Mat *)

DMGetInjection(DM, DM, VecScatter *)

M. Knepley (UC) PETSc MSI ’13 112 / 178

DM

Multigrid Paradigm

The DM interface uses the local callback functions to
assemble global functions/operators from local pieces

assemble functions/operators on coarse grids

Then PCMG organizes
control flow for the multilevel solve, and

projection and smoothing operators at each level.

M. Knepley (UC) PETSc MSI ’13 113 / 178

DM Structured Meshes (DMDA)

Outline

3 DM
Structured Meshes (DMDA)

M. Knepley (UC) PETSc MSI ’13 114 / 178

DM Structured Meshes (DMDA)

What is a DMDA?

DMDA is a topology interface on structured grids
Handles parallel data layout
Handles local and global indices

DMDAGetGlobalIndices() and DMDAGetAO()

Provides local and global vectors
DMGetGlobalVector() and DMGetLocalVector()

Handles ghost values coherence
DMGlobalToLocalBegin/End() and DMLocalToGlobalBegin/End()

M. Knepley (UC) PETSc MSI ’13 115 / 178

DM Structured Meshes (DMDA)

Residual Evaluation

The DM interface is based upon local callback functions
FormFunctionLocal()

FormJacobianLocal()

Callbacks are registered using
SNESSetDM(), TSSetDM()

DMSNESSetFunctionLocal(), DMTSSetJacobianLocal()

When PETSc needs to evaluate the nonlinear residual F(x),
Each process evaluates the local residual

PETSc assembles the global residual automatically
Uses DMLocalToGlobal() method

M. Knepley (UC) PETSc MSI ’13 116 / 178

DM Structured Meshes (DMDA)

Ghost Values
To evaluate a local function f (x), each process requires

its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring
processes

Local Node
Ghost Node

M. Knepley (UC) PETSc MSI ’13 117 / 178

DM Structured Meshes (DMDA)

DMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

M. Knepley (UC) PETSc MSI ’13 118 / 178

DM Structured Meshes (DMDA)

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

M. Knepley (UC) PETSc MSI ’13 119 / 178

DM Structured Meshes (DMDA)

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf)(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)

M. Knepley (UC) PETSc MSI ’13 120 / 178

DM Structured Meshes (DMDA)

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx) {
f o r (j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j) {

f o r (i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i) {
u = x [j] [i] ;
i f (i ==0 | | j ==0 | | i == M | | j == N) {

f [j] [i] = 2 . 0 * (hydhx+hxdhy) * u ; cont inue ;
}
u_xx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
u_yy = (2 . 0 * u − x [j − 1] [i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] = u_xx + u_yy − hx * hy * lambda * exp (u) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley (UC) PETSc MSI ’13 121 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

DM Structured Meshes (DMDA)

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac)(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

M. Knepley (UC) PETSc MSI ’13 122 / 178

DM Structured Meshes (DMDA)

Bratu Jacobian Evaluation

JacLocal (DMDALocalInfo * in fo , PetscScalar * * x , Mat jac , vo id * c tx) {
f o r (j = in fo −>ys ; j < in fo −>ys + in fo −>ym; j ++) {

f o r (i = in fo −>xs ; i < in fo −>xs + in fo −>xm; i ++) {
row . j = j ; row . i = i ;
i f (i == 0 | | j == 0 | | i == mx−1 | | j == my−1) {

v [0] = 1 . 0 ;
Mat SetVa luesStenc i l (jac ,1 ,& row ,1 ,& row , v , INSERT_VALUES) ;

} e lse {
v [0] = −(hx / hy) ; co l [0] . j = j −1; co l [0] . i = i ;
v [1] = −(hy / hx) ; co l [1] . j = j ; co l [1] . i = i −1;
v [2] = 2 . 0 * (hy / hx+hx / hy)

− hx * hy * lambda * PetscExpScalar (x [j] [i]) ;
v [3] = −(hy / hx) ; co l [3] . j = j ; co l [3] . i = i +1;
v [4] = −(hx / hy) ; co l [4] . j = j +1; co l [4] . i = i ;
Mat SetVa luesStenc i l (jac ,1 ,& row ,5 , col , v , INSERT_VALUES) ;

} } } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

M. Knepley (UC) PETSc MSI ’13 123 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

DM Structured Meshes (DMDA)

DMDA Vectors

The DMDA object contains only layout (topology) information
All field data is contained in PETSc Vecs

Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector(DM da, Vec *gvec)

Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values
DMCreateLocalVector(DM da, Vec *lvec)

includes ghost and boundary values!

M. Knepley (UC) PETSc MSI ’13 124 / 178

DM Structured Meshes (DMDA)

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)

gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)

Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

M. Knepley (UC) PETSc MSI ’13 125 / 178

DM Structured Meshes (DMDA)

DMDA Stencils

Both the box stencil and star stencil are available.

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

M. Knepley (UC) PETSc MSI ’13 126 / 178

DM Structured Meshes (DMDA)

Setting Values on Regular Grids

PETSc provides

Mat SetVa luesStenc i l (Mat A, m, Mat S t e n c i l idxm [] , n , Mat S t e n c i l idxn [] ,
PetscScalar values [] , InsertMode mode)

Each row or column is actually a MatStencil
This specifies grid coordinates and a component if necessary
Can imagine for unstructured grids, they are vertices

The values are the same logically dense block in row/col

M. Knepley (UC) PETSc MSI ’13 127 / 178

DM Structured Meshes (DMDA)

Creating a DMDA

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, lm[], ln[], DMDA *da)

bd: Specifies boundary behavior
DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or
DM_BOUNDARY_PERIODIC

type: Specifies stencil
DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

lm/n: Alternative array of local sizes
Use NULL for the default

M. Knepley (UC) PETSc MSI ’13 128 / 178

DM Structured Meshes (DMDA)

Viewing the DA

We use SNES ex5
ex5 -dm_view

Shows both the DA and coordinate DA:

ex5 -dm_view draw -draw_pause -1

ex5 -da_grid_x 10 -da_grid_y 10 -dm_view draw -draw_pause -1

${PETSC_ARCH}/bin/mpiexec -n 4 ex5 -da_grid_x 10 -da_grid_y 10

-dm_view draw -draw_pause -1

Shows PETSc numbering

M. Knepley (UC) PETSc MSI ’13 129 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

DM Structured Meshes (DMDA)

DA Operators

Evaluate only the local portion
No nice local array form without copies

Use MatSetValuesStencil() to convert (i , j ,k) to indices

Also use SNES ex48
mpiexec -n 2

./ex5 -da_grid_x 10 -da_grid_y 10 -mat_view draw -draw_pause -1

mpiexec -n 3

./ex48 -mat_view draw -draw_pause 1 -da_refine 3 -mat_type aij

M. Knepley (UC) PETSc MSI ’13 130 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex48.c.html

Advanced Solvers

Outline

1 Getting Started with PETSc

2 PETSc Integration

3 DM

4 Advanced Solvers
Fieldsplit
Multigrid
Nonlinear Solvers
Timestepping

M. Knepley (UC) PETSc MSI ’13 131 / 178

Advanced Solvers

The Great Solver Schism: Monolithic or Split?

Monolithic Split

Direct solvers
Coupled Schwarz
Coupled Neumann-Neumann
(use unassembled matrices)
Coupled Multigrid

Physics-split Schwarz
(based on relaxation)
Physics-split Schur
(based on factorization)

SIMPLE, PCD, LSC
segregated smoothers
Augmented Lagrangian

Need to understand

Local spectral properties
Compatibility properties

Global coupling strengths

Preferred data structures depend on which method is used.

M. Knepley (UC) PETSc MSI ’13 132 / 178

Advanced Solvers Fieldsplit

Outline

4 Advanced Solvers
Fieldsplit
Multigrid
Nonlinear Solvers
Timestepping

M. Knepley (UC) PETSc MSI ’13 133 / 178

Advanced Solvers Fieldsplit

FieldSplit Preconditioner

Analysis
Use ISes to define fields

Decouples PC from problem definition

Synthesis
Additive, Multiplicative, Schur

Commutes with Multigrid

M. Knepley (UC) PETSc MSI ’13 134 / 178

Advanced Solvers Fieldsplit

FieldSplit Customization

Analysis
-pc_fieldsplit_<split num>_fields 2,1,5

-pc_fieldsplit_detect_saddle_point

Synthesis
-pc_fieldsplit_type <additive, multiplicative, schur>

-pc_fieldsplit_diag_use_amat

-pc_fieldsplit_off_diag_use_amat

Use diagonal blocks of operator to build PC

Schur complements
-pc_fieldsplit_schur_precondition <user,a11,full,self,selfp>

How to build preconditioner for S

-pc_fieldsplit_schur_factorization_type <diag,lower,upper,full>

Which off-diagonal parts of the block factorization to use

M. Knepley (UC) PETSc MSI ’13 135 / 178

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

(
A B

BT 0

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Block-Jacobi (Exact), Cohouet & Chabard, IJNMF, 1988.

-ksp_type gmres -pc_type fieldsplit -pc_fieldsplit_type additive
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
A 0
0 I

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://onlinelibrary.wiley.com/doi/10.1002/fld.1650080802/full

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Block-Jacobi (Inexact), Cohouet & Chabard, IJNMF, 1988.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type additive
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
Â 0
0 I

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://onlinelibrary.wiley.com/doi/10.1002/fld.1650080802/full

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Gauss-Seidel (Inexact), Elman, DTIC, 1994.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
Â B
0 I

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA598913

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Gauss-Seidel (Inexact), Elman, DTIC, 1994.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type multiplicative
-pc_fieldsplit_0_fields 1 -pc_fieldsplit_1_fields 0
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type preonly -fieldsplit_pressure_pc_type jacobi

(
I BT

0 Â

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA598913

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Diagonal Schur Complement, Olshanskii, et.al., Numer. Math., 2006.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type diag
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none

(
Â 0
0 −Ŝ

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://link.springer.com/article/10.1007/s00211-006-0031-4

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Lower Schur Complement, May and Moresi, PEPI, 2008.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type lower
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none

(
Â 0

BT Ŝ

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.sciencedirect.com/science/article/pii/S003192010800191X

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Upper Schur Complement, May and Moresi, PEPI, 2008.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type gamg
-fieldsplit_pressure_ksp_type minres -fieldsplit_pressure_pc_type none

(
Â B

Ŝ

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.sciencedirect.com/science/article/pii/S003192010800191X

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Uzawa Iteration, Uzawa, 1958

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_type richardson -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_ksp_max_it 1

(
A B

Ŝ

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Full Schur Complement, Schur, 1905.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi

(
I 0

BT A−1 I

)(
A 0
0 S

)(
I A−1B
0 I

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

SIMPLE, Patankar and Spalding, IJHMT, 1972.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-fieldsplit_velocity_ksp_type preonly -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-10 -fieldsplit_pressure_pc_type jacobi
-fieldsplit_pressure_inner_ksp_type preonly
-fieldsplit_pressure_inner_pc_type jacobi
-fieldsplit_pressure_upper_ksp_type preonly
-fieldsplit_pressure_upper_pc_type jacobi

(
I 0

BT A−1 I

)(
A 0
0 BT D−1

A B

)(
I D−1

A B
0 I

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://www.sciencedirect.com/science/article/pii/0017931072900543

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex62: P2/P1 Stokes Problem on Unstructured Mesh

Least-Squares Commutator, Kay, Loghin and Wathen, SISC, 2002.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full
-pc_fieldsplit_schur_precondition self
-fieldsplit_velocity_ksp_type gmres -fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_ksp_rtol 1e-5 -fieldsplit_pressure_pc_type lsc

(
I 0

BT A−1 I

)(
A 0
0 ŜLSC

)(
I A−1B
0 I

)

M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex62.c.html
http://epubs.siam.org/doi/abs/10.1137/S106482759935808X

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Additive Schwarz + Full Schur Complement, Elman, Howle, Shadid,
Shuttleworth, and Tuminaro, SISC, 2006.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type additive
-pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full

-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type preonly
-fieldsplit_temperature_pc_type lu

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
0

0 LT


M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex31.c.html
http://epubs.siam.org/doi/abs/10.1137/040608817

Advanced Solvers Fieldsplit

Solver Configuration: No New Code

ex31: P2/P1 Stokes Problem with Temperature on Unstructured Mesh

Upper Schur Comp. + Full Schur Comp. + Least-Squares Comm.

-ksp_type fgmres -pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2
-pc_fieldsplit_schur_factorization_type upper
-fieldsplit_0_ksp_type fgmres -fieldsplit_0_pc_type fieldsplit
-fieldsplit_0_pc_fieldsplit_type schur
-fieldsplit_0_pc_fieldsplit_schur_factorization_type full

-fieldsplit_0_fieldsplit_velocity_ksp_type preonly
-fieldsplit_0_fieldsplit_velocity_pc_type lu
-fieldsplit_0_fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_0_fieldsplit_pressure_pc_type jacobi

-fieldsplit_temperature_ksp_type gmres
-fieldsplit_temperature_pc_type lsc

(
I 0

BT A−1 I

)(
Â 0
0 Ŝ

)(
I A−1B
0 I

)
G

0 ŜLSC


M. Knepley (UC) PETSc MSI ’13 136 / 178

http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/src/snes/examples/tutorials/ex31.c.html

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Jacobi
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_gmres_restart 100 -ksp_rtol 1.0e-9
-ksp_monitor_short

-pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Block diagonal
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_type fgmres -ksp_gmres_restart 100
-ksp_rtol 1.0e-9 -ksp_monitor_short

-pc_type fieldsplit -pc_fieldsplit_type additive
-fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Block triangular
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_type fgmres -ksp_gmres_restart 100
-ksp_rtol 1.0e-9 -ksp_monitor_short

-pc_type fieldsplit -pc_fieldsplit_type multiplicative
-fieldsplit_velocity_pc_type lu
-fieldsplit_pressure_pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Diagonal Schur complement
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_type fgmres -ksp_gmres_restart 100
-ksp_rtol 1.0e-9 -ksp_monitor_short

-pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type diag

-fieldsplit_velocity_ksp_type gmres
-fieldsplit_velocity_pc_type lu

-fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_pressure_pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Upper triangular Schur complement
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_type fgmres -ksp_gmres_restart 100
-ksp_rtol 1.0e-9 -ksp_monitor_short

-pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type upper

-fieldsplit_velocity_ksp_type gmres
-fieldsplit_velocity_pc_type lu

-fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_pressure_pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Lower triangular Schur complement
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_type fgmres -ksp_gmres_restart 100
-ksp_rtol 1.0e-9 -ksp_monitor_short

-pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type lower

-fieldsplit_velocity_ksp_type gmres
-fieldsplit_velocity_pc_type lu

-fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_pressure_pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

SNES ex62
Preconditioning

Full Schur complement
ex62
-run_type full -bc_type dirichlet -show_solution 0
-refinement_limit 0.00625 -interpolate 1
-vel_petscspace_order 2 -pres_petscspace_order 1
-snes_monitor_short -snes_converged_reason

-snes_view
-ksp_type fgmres -ksp_gmres_restart 100
-ksp_rtol 1.0e-9 -ksp_monitor_short

-pc_type fieldsplit -pc_fieldsplit_type schur
-pc_fieldsplit_schur_factorization_type full

-fieldsplit_velocity_ksp_type gmres
-fieldsplit_velocity_pc_type lu

-fieldsplit_pressure_ksp_rtol 1e-10
-fieldsplit_pressure_pc_type jacobi

M. Knepley (UC) PETSc MSI ’13 137 / 178

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D
constant mobility
triangular elements

Geometric multigrid method for saddle point variational inequalities:

./ex55 -ksp_type fgmres -pc_type mg -mg_levels_ksp_type fgmres
-mg_levels_pc_type fieldsplit -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_pc_fieldsplit_type schur -da_grid_x 65 -da_grid_y 65
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp
-mg_levels_fieldsplit_1_ksp_type gmres -mg_coarse_ksp_type preonly
-mg_levels_fieldsplit_1_pc_type none -mg_coarse_pc_type svd
-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor -pc_mg_levels 5
-mg_levels_fieldsplit_0_pc_sor_forward -pc_mg_galerkin
-snes_vi_monitor -ksp_monitor_true_residual -snes_atol 1.e-11
-mg_levels_ksp_monitor -mg_levels_fieldsplit_ksp_monitor
-mg_levels_ksp_max_it 2 -mg_levels_fieldsplit_ksp_max_it 5

M. Knepley (UC) PETSc MSI ’13 138 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) PETSc MSI ’13 139 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) PETSc MSI ’13 139 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) PETSc MSI ’13 139 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Run flexible GMRES with 5 levels of multigrid as the preconditioner

./ex55 -ksp_type fgmres -pc_type mg -pc_mg_levels 5
-da_grid_x 65 -da_grid_y 65

Use the Galerkin process to compute the coarse grid operators

-pc_mg_galerkin

Use SVD as the coarse grid saddle point solver

-mg_coarse_ksp_type preonly -mg_coarse_pc_type svd

M. Knepley (UC) PETSc MSI ’13 139 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) PETSc MSI ’13 140 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) PETSc MSI ’13 140 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) PETSc MSI ’13 140 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Programming with Options

ex55: Allen-Cahn problem in 2D

Smoother: Flexible GMRES (2 iterates) with a Schur complement PC

-mg_levels_ksp_type fgmres -mg_levels_pc_fieldsplit_detect_saddle_point
-mg_levels_ksp_max_it 2 -mg_levels_pc_type fieldsplit
-mg_levels_pc_fieldsplit_type schur
-mg_levels_pc_fieldsplit_schur_fact_type full
-mg_levels_pc_fieldsplit_schur_precondition selfp

Schur complement solver: GMRES (5 iterates) with no preconditioner

-mg_levels_fieldsplit_1_ksp_type gmres
-mg_levels_fieldsplit_1_pc_type none -mg_levels_fieldsplit_ksp_max_it 5

A00 inverse action: Use only the lower diagonal part of A00

-mg_levels_fieldsplit_0_ksp_type preonly
-mg_levels_fieldsplit_0_pc_type sor
-mg_levels_fieldsplit_0_pc_sor_forward

M. Knepley (UC) PETSc MSI ’13 140 / 178

https://gitlab.com/petsc/petsc/-/blob/v3.5.4/src/snes/examples/tutorials/ex55.c?ref_type=tags

Advanced Solvers Fieldsplit

Null spaces

For a single matrix, use

MatSetNullSpace (J , nul lSpace) ;

to alter the KSP, and

MatSetNearNullSpace (J , nearNullSpace) ;

to set the coarse basis for AMG.

But this will not work for dynamically created operators.

M. Knepley (UC) PETSc MSI ’13 141 / 178

Advanced Solvers Fieldsplit

Null spaces

For a single matrix, use

MatSetNullSpace (J , nul lSpace) ;

to alter the KSP, and

MatSetNearNullSpace (J , nearNullSpace) ;

to set the coarse basis for AMG.

But this will not work for dynamically created operators.

M. Knepley (UC) PETSc MSI ’13 141 / 178

Advanced Solvers Fieldsplit

Null spaces
Field Split

Can attach a nullspace to the IS that creates a split,

PetscObjectCompose(pressure IS , " nu l lspace " ,
(PetscObject) nul lSpacePres) ;

If the DM makes the IS, use

PetscObject pressure ;

DMGetF ie ld (dm, 1 , &pressure) ;
PetscObjectCompose(pressure , " nu l lspace " ,

(PetscObject) nul lSpacePres) ;

M. Knepley (UC) PETSc MSI ’13 142 / 178

Advanced Solvers Multigrid

Outline

4 Advanced Solvers
Fieldsplit
Multigrid
Nonlinear Solvers
Timestepping

M. Knepley (UC) PETSc MSI ’13 143 / 178

Advanced Solvers Multigrid

AMG

Why not use AMG?

Of course we will try AMG
GAMG, -pc_type gamg

ML, -download-ml, -pc_type ml

BoomerAMG, -download-hypre, -pc_type hypre
-pc_hypre_type boomeramg

Problems with
vector character
anisotropy
scalability of setup time

M. Knepley (UC) PETSc MSI ’13 144 / 178

Advanced Solvers Multigrid

AMG

Why not use AMG?

Of course we will try AMG
GAMG, -pc_type gamg

ML, -download-ml, -pc_type ml

BoomerAMG, -download-hypre, -pc_type hypre
-pc_hypre_type boomeramg

Problems with
vector character
anisotropy
scalability of setup time

M. Knepley (UC) PETSc MSI ’13 144 / 178

Advanced Solvers Multigrid

AMG

Why not use AMG?

Of course we will try AMG
GAMG, -pc_type gamg

ML, -download-ml, -pc_type ml

BoomerAMG, -download-hypre, -pc_type hypre
-pc_hypre_type boomeramg

Problems with
vector character
anisotropy
scalability of setup time

M. Knepley (UC) PETSc MSI ’13 144 / 178

Advanced Solvers Multigrid

Multigrid with DM

Allows multigrid with some simple command line options

-pc_type mg, -pc_mg_levels
-pc_mg_type, -pc_mg_cycle_type, -pc_mg_galerkin
-mg_levels_1_ksp_type, -mg_levels_1_pc_type
-mg_coarse_ksp_type, -mg_coarse_pc_type
-da_refine, -ksp_view

Interface also works with GAMG and 3rd party packages like ML

M. Knepley (UC) PETSc MSI ’13 145 / 178

Advanced Solvers Multigrid

A 2D Problem

Problem has:
1,640,961 unknowns (on the fine level)
8,199,681 nonzeros

Options Explanation
./ex5 -da_grid_x 21 -da_grid_y 21 Original grid is 21x21

-ksp_rtol 1.0e-9 Solver tolerance
-da_refine 6 6 levels of refinement
-pc_type mg 4 levels of multigrid
-pc_mg_levels 4
-snes_monitor -snes_view Describe solver

M. Knepley (UC) PETSc MSI ’13 146 / 178

Advanced Solvers Multigrid

A 3D Problem

Problem has:
1,689,600 unknowns (on the fine level)
89,395,200 nonzeros

Options Explanation
./ex48 -M 5 -N 5 Coarse problem size

-da_refine 5 5 levels of refinement
-ksp_rtol 1.0e-9 Solver tolerance
-thi_mat_type baij Needs SOR
-pc_type mg 4 levels of multigrid
-pc_mg_levels 4
-snes_monitor -snes_view Describe solver

M. Knepley (UC) PETSc MSI ’13 147 / 178

Advanced Solvers Nonlinear Solvers

Outline

4 Advanced Solvers
Fieldsplit
Multigrid
Nonlinear Solvers
Timestepping

M. Knepley (UC) PETSc MSI ’13 148 / 178

Advanced Solvers Nonlinear Solvers

3rd Party Solvers in PETSc
Complete table of solvers

Sequential LU
ESSL (IBM)
SuperLU (Sherry Li, LBNL)
Suitesparse (Tim Davis, U. of Florida)
LUSOL (MINOS, Michael Saunders, Stanford)
PILUT (Hypre, David Hysom, LLNL)

Parallel LU
Elemental/Clique (Jack Poulson, Google)
MUMPS (Patrick Amestoy, IRIT)
SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)
Pardiso (MKL, Intel)
STRUMPACK (Pieter Ghysels, LBNL)

Parallel Cholesky
Elemental (Jack Poulson, Google)
DSCPACK (Padma Raghavan, Penn. State)
MUMPS (Patrick Amestoy, Toulouse)

M. Knepley (UC) PETSc MSI ’13 149 / 178

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

Advanced Solvers Nonlinear Solvers

3rd Party Preconditioners in PETSc

Complete table of solvers
Parallel Algebraic Multigrid

GAMG (Mark Adams, LBNL)
BoomerAMG (Hypre, LLNL)
ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

Parallel BDDC (Stefano Zampini, KAUST)
Parallel ILU, PaStiX (Faverge Mathieu, INRIA)
Parallel Redistribution (Dave May, Oxford and Patrick Sanan, USI)
Parallel Sparse Approximate Inverse

Parasails (Hypre, Edmund Chow, LLNL)
SPAI 3.0 (Marcus Grote and Barnard, NYU)

M. Knepley (UC) PETSc MSI ’13 149 / 178

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

Advanced Solvers Nonlinear Solvers

Always use SNES

Always use SNES instead of KSP:

No more costly than linear solver

Can accomodate unanticipated nonlinearities

Automatic iterative refinement

Callback interface can take advantage of problem structure

Jed actually recommends TS. . .

M. Knepley (UC) PETSc MSI ’13 150 / 178

Advanced Solvers Nonlinear Solvers

Always use SNES

Always use SNES instead of KSP:

No more costly than linear solver

Can accomodate unanticipated nonlinearities

Automatic iterative refinement

Callback interface can take advantage of problem structure

Jed actually recommends TS. . .

M. Knepley (UC) PETSc MSI ’13 150 / 178

Advanced Solvers Nonlinear Solvers

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function
Evaluation Postprocessing

Jacobian
Evaluation

Application
Initialization

Main Routine

PETSc

M. Knepley (UC) PETSc MSI ’13 151 / 178

Advanced Solvers Nonlinear Solvers

SNES Paradigm

The SNES interface is based upon callback functions
FormFunction(), set by SNESSetFunction()

FormJacobian(), set by SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual F (x),
Solver calls the user’s function

User function gets application state through the ctx variable
PETSc never sees application data

M. Knepley (UC) PETSc MSI ’13 152 / 178

Advanced Solvers Nonlinear Solvers

SNES Function

User provided function calculates the nonlinear residual:

PetscErrorCode (* func) (SNES snes , Vec x , Vec r , vo id * c t x)

x: The current solution
r: The residual

ctx: The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants

M. Knepley (UC) PETSc MSI ’13 153 / 178

Advanced Solvers Nonlinear Solvers

SNES Jacobian

User provided function calculates the Jacobian:

PetscErrorCode (* func) (SNES snes , Vec x , Mat * J , Mat *M, vo id * c t x)

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)

ctx: The user context passed to SNESSetJacobian()

Use this to pass application information, e.g. physical constants

Alternatively, you can use
matrix-free finite difference approximation, -snes_mf
finite difference approximation with coloring, -snes_fd

M. Knepley (UC) PETSc MSI ’13 154 / 178

Advanced Solvers Nonlinear Solvers

SNES Variants

Picard iteration

Line search/Trust region strategies

Quasi-Newton

Nonlinear CG/GMRES

Nonlinear GS/ASM

Nonlinear Multigrid (FAS)

Variational inequality approaches

M. Knepley (UC) PETSc MSI ’13 155 / 178

Advanced Solvers Nonlinear Solvers

New methods in SNES

LS, TR Newton-type with line search and trust region
NRichardson Nonlinear Richardson, usually preconditioned
VIRS, VISS reduced space and semi-smooth methods

for variational inequalities
QN Quasi-Newton methods like BFGS

NGMRES Nonlinear GMRES
NCG Nonlinear Conjugate Gradients

SORQN SOR quasi-Newton
GS Nonlinear Gauss-Seidel sweeps

FAS Full approximation scheme (nonlinear multigrid)
MS Multi-stage smoothers (in FAS for hyperbolic problems)

Shell Your method, often used as a (nonlinear) preconditioner

M. Knepley (UC) PETSc MSI ’13 156 / 178

Advanced Solvers Nonlinear Solvers

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
Dense

Activated by -snes_fd
Computed by SNESDefaultComputeJacobian()

Sparse via colorings (default)
Coloring is created by MatFDColoringCreate()
Computed by SNESDefaultComputeJacobianColor()

Can also use Matrix-free Newton-Krylov via 1st-order FD
Activated by -snes_mf without preconditioning
Activated by -snes_mf_operator with user-defined
preconditioning

Uses preconditioning matrix from SNESSetJacobian()

M. Knepley (UC) PETSc MSI ’13 157 / 178

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e2
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

−∆U − ∂yΩ = 0

−∆V + ∂xΩ = 0

−∆Ω+∇ · ([UΩ,VΩ])− Gr ∂x T = 0

−∆T + Pr ∇ · ([UT ,VT]) = 0

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e2
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 100
0 SNES Function norm 768.116
1 SNES Function norm 658.288
2 SNES Function norm 529.404
3 SNES Function norm 377.51
4 SNES Function norm 304.723
5 SNES Function norm 2.59998
6 SNES Function norm 0.00942733
7 SNES Function norm 5.20667e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e4
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e4
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 10000
0 SNES Function norm 785.404
1 SNES Function norm 663.055
2 SNES Function norm 519.583
3 SNES Function norm 360.87
4 SNES Function norm 245.893
5 SNES Function norm 1.8117
6 SNES Function norm 0.00468828
7 SNES Function norm 4.417e-08

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 100000
0 SNES Function norm 1809.96

Nonlinear solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Driven Cavity Problem
SNES ex19.c

./ex19 -lidvelocity 100 -grashof 1e5
-da_grid_x 16 -da_grid_y 16 -da_refine 2 -pc_type lu
-snes_monitor_short -snes_converged_reason -snes_view

lid velocity = 100, prandtl # = 1, grashof # = 100000
0 SNES Function norm 1809.96
1 SNES Function norm 1678.37
2 SNES Function norm 1643.76
3 SNES Function norm 1559.34
4 SNES Function norm 1557.6
5 SNES Function norm 1510.71
6 SNES Function norm 1500.47
7 SNES Function norm 1498.93
8 SNES Function norm 1498.44
9 SNES Function norm 1498.27
10 SNES Function norm 1498.18
11 SNES Function norm 1498.12
12 SNES Function norm 1498.11
13 SNES Function norm 1498.11
14 SNES Function norm 1498.11
...

M. Knepley (UC) PETSc MSI ’13 158 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced Solvers Nonlinear Solvers

Why isn’t SNES converging?

The Jacobian is wrong (maybe only in parallel)
Check with -snes_check_jacobian
-snes_check_jacobian_view

The linear system is not solved accurately enough
Check with -pc_type lu
Check -ksp_monitor_true_residual, try right preconditioning

The Jacobian is singular with inconsistent right side
Use MatNullSpace to inform the KSP of a known null space
Use a different Krylov method or preconditioner

The nonlinearity is just really strong
Run with -info or -snes_ls_monitor to see line search
Try using trust region instead of line search -snes_type tr
Try grid sequencing if possible -snes_grid_sequence
Use a continuation

M. Knepley (UC) PETSc MSI ’13 159 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning

PC preconditions KSP
-ksp_type gmres

-pc_type richardson

SNES preconditions SNES
-snes_type ngmres

-npc_snes_type nrichardson

M. Knepley (UC) PETSc MSI ’13 160 / 178

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PC.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/KSP/KSP.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/SNES/SNES.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/SNES/SNES.html

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning

PC preconditions KSP
-ksp_type gmres

-pc_type richardson

SNES preconditions SNES
-snes_type ngmres

-npc_snes_type nrichardson

M. Knepley (UC) PETSc MSI ’13 160 / 178

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PC.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/KSP/KSP.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/SNES/SNES.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/SNES/SNES.html

Advanced Solvers Nonlinear Solvers

Nonlinear Use Cases

Warm start Newton

-snes_type newtonls
-npc_snes_type nrichardson -npc_snes_max_it 5

Cleanup noisy Jacobian

-snes_type ngmres -snes_ngmres_m 5
-npc_snes_type newtonls

Additive-Schwarz Preconditioned Inexact Newton

-snes_type aspin -snes_npc_side left
-npc_snes_type nasm -npc_snes_nasm_type restrict

M. Knepley (UC) PETSc MSI ’13 161 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type newtonls -snes_converged_reason
-pc_type lu

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 1132.29
2 SNES Function norm 1026.17
3 SNES Function norm 925.717
4 SNES Function norm 924.778
5 SNES Function norm 836.867
...
61 SNES Function norm 320.325
62 SNES Function norm 320.325
63 SNES Function norm 320.325 21 SNES Function norm 585.143
...

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type fas -snes_converged_reason
-fas_levels_snes_type ngs -fas_levels_snes_max_it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 574.793
2 SNES Function norm 513.02
3 SNES Function norm 216.721
4 SNES Function norm 85.949
...cycles without convergence...

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type fas -snes_converged_reason
-fas_levels_snes_type ngs -fas_levels_snes_max_it 6
-fas_coarse_snes_converged_reason

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 12

1 SNES Function norm 574.793
Nonlinear solve did not converge due to DIVERGED_MAX_IT its 50

2 SNES Function norm 513.02
Nonlinear solve did not converge due to DIVERGED_MAX_IT its 50

3 SNES Function norm 216.721
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 22

4 SNES Function norm 85.949
Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH its 42

Nonlinear solve did not converge due to DIVERGED_INNER iterations 4

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type fas -snes_converged_reason
-fas_levels_snes_type gs -fas_levels_snes_max_it 6
-fas_coarse_snes_linesearch_type basic
-fas_coarse_snes_converged_reason

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6

...
47 SNES Function norm 78.8401

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 5
48 SNES Function norm 73.1185

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
49 SNES Function norm 78.834

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 5
50 SNES Function norm 73.1176

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6
...

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type nrichardson -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
-npc_fas_levels_snes_type ngs -npc_fas_levels_snes_max_it 6

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 552.271
Nonlinear npc_fas_coarse_ solve did not converge due to DIVERGED_MAX_IT iterations 50

2 SNES Function norm 355.543
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_FNORM_RELATIVE iterations 27

...
38 SNES Function norm 3.74123e-05
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_SNORM_RELATIVE iterations 2

39 SNES Function norm 2.61273e-05
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_SNORM_RELATIVE iterations 2

40 SNES Function norm 1.16528e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 40

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
-npc_fas_levels_snes_type gs -npc_fas_levels_snes_max_it 6
-npc_fas_coarse_snes_linesearch_type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_FNORM_RELATIVE iterations 12

1 SNES Function norm 538.605
Nonlinear npc_fas_coarse_ solve did not converge due to DIVERGED_MAX_IT iterations 50

2 SNES Function norm 418.638
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_FNORM_RELATIVE iterations 14

...

24 SNES Function norm 0.000119837
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_FNORM_RELATIVE iterations 2

25 SNES Function norm 2.77111e-05
Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_SNORM_RELATIVE iterations 2

26 SNES Function norm 1.11942e-05
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 26

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason
-npc_snes_type fas -npc_fas_coarse_snes_converged_reason
-npc_fas_levels_snes_type newtonls -npc_fas_levels_snes_max_it 6
-npc_fas_levels_snes_max_linear_solve_fail 30
-npc_fas_levels_ksp_max_it 20 -npc_fas_levels_snes_converged_reason
-npc_fas_coarse_snes_linesearch_type basic

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
Nonlinear npc_fas_levels_4_ solve converged due to CONVERGED_ITS iterations 6
...

Nonlinear npc_fas_coarse_ solve converged due to CONVERGED_SNORM_RELATIVE its 1
...

1 SNES Function norm 2.88944
2 SNES Function norm 0.0803355
3 SNES Function norm 0.0131489
4 SNES Function norm 0.00118131
5 SNES Function norm 1.65056e-05
6 SNES Function norm 9.6292e-09

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 6

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type composite -snes_composite_type additiveoptimal
-snes_composite_sneses fas,newtonls -snes_converged_reason
-sub_0_fas_levels_snes_type ngs -sub_0_fas_levels_snes_max_it 6

-sub_0_fas_coarse_snes_linesearch_type basic
-sub_1_snes_linesearch_type basic -sub_1_pc_type mg

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 538.539
2 SNES Function norm 163.178
3 SNES Function norm 49.5499
4 SNES Function norm 11.5314
5 SNES Function norm 0.182861
6 SNES Function norm 0.00148081
7 SNES Function norm 1.49034e-07

Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short
-snes_type composite -snes_composite_type multiplicative
-snes_composite_sneses fas,newtonls -snes_converged_reason
-sub_0_fas_levels_snes_type gs -sub_0_fas_levels_snes_max_it 6

-sub_0_fas_coarse_snes_linesearch_type basic
-sub_1_snes_linesearch_type basic -sub_1_pc_type mg

lid velocity = 100, prandtl # = 1, grashof # = 50000
0 SNES Function norm 1228.95
1 SNES Function norm 544.417
2 SNES Function norm 18.2329
3 SNES Function norm 1.05348
4 SNES Function norm 0.00460528
5 SNES Function norm 1.40734e-05
6 SNES Function norm 3.07181e-08
Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 6

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning
Solver T N. It L. It Func Jac PC NPC
(N\K − MG) 9.83 17 352 34 85 370 –
NGMRES −R 7.48 10 220 21 50 231 10
(N\K − MG)
FAS 6.23 162 0 2382 377 754 –
FAS + (N\K − MG) 8.07 10 197 232 90 288 –
FAS ∗ (N\K − MG) 4.01 5 80 103 45 125 –
NRICH −L FAS 3.20 50 0 1180 192 384 50
NGMRES −R FAS 1.91 24 0 447 83 166 24

M. Knepley (UC) PETSc MSI ’13 162 / 178

Advanced Solvers Nonlinear Solvers

Nonlinear Preconditioning

See discussion in:

Composing Scalable Nonlinear Algebraic Solvers,
Peter Brune, Matthew Knepley, Barry Smith, and Xuemin Tu,

SIAM Review, 57(4), 535–565, 2015.

http://www.mcs.anl.gov/uploads/cels/papers/P2010-0112.pdf

M. Knepley (UC) PETSc MSI ’13 162 / 178

http://dx.doi.org/10.1137/130936725
http://www.mcs.anl.gov/uploads/cels/papers/P2010-0112.pdf

Advanced Solvers Nonlinear Solvers

Hierarchical Krylov
This tests a hierarchical Krylov method
mpiexec -n 4 ./ex19 -da_refine 4 -snes_view
-ksp_type fgmres -pc_type bjacobi -pc_bjacobi_blocks 2
-sub_ksp_type gmres -sub_pc_type bjacobi -sub_ksp_max_it 2
-sub_sub_ksp_type preonly -sub_sub_pc_type ilu

SNES Object: 4 MPI processes
type: newtonls
KSP Object: 4 MPI processes
type: fgmres

PC Object: 4 MPI processes
type: bjacobi
block Jacobi: number of blocks = 2

KSP Object:(sub_) 2 MPI processes
type: gmres

PC Object:(sub_) 2 MPI processes
type: bjacobi

block Jacobi: number of blocks = 2
KSP Object: (sub_sub_) 1 MPI processes

type: preonly
PC Object: (sub_sub_) 1 MPI processes

type: ilu
ILU: out-of-place factorization

M. Knepley (UC) PETSc MSI ’13 163 / 178

Advanced Solvers Nonlinear Solvers

Hierarchical Krylov
This tests a hierarchical Krylov method
mpiexec -n 4 ./ex19 -da_refine 4 -snes_view
-ksp_type fgmres -pc_type bjacobi -pc_bjacobi_blocks 2
-sub_ksp_type gmres -sub_pc_type bjacobi -sub_ksp_max_it 2
-sub_sub_ksp_type preonly -sub_sub_pc_type ilu

PC Object: 4 MPI processes
type: bjacobi
block Jacobi: number of blocks = 2

PC Object:(sub_) 2 MPI processes
type: bjacobi

block Jacobi: number of blocks = 2
PC Object: (sub_sub_) 1 MPI processes

type: ilu
ILU: out-of-place factorization

Mat Object: 1 MPI processes
type: seqaij
rows=2500, cols=2500, bs=4

Mat Object: 2 MPI processes
type: mpiaij
rows=4900, cols=4900, bs=4

Mat Object: 4 MPI processes
type: mpiaij
rows=9604, cols=9604, bs=4

M. Knepley (UC) PETSc MSI ’13 163 / 178

Advanced Solvers Nonlinear Solvers

Visualizing Solvers

This shows how to visualize a nested solver configuration:

./ex19 -da_refine 1 -pc_type fieldsplit -fieldsplit_x_velocity_pc_type mg -fieldsplit_x_velocity_pc_mg_levels 2
-fieldsplit_x_velocity_mg_coarse_pc_type svd
-snes_view draw -draw_pause -2 -geometry 0,0,600,600

M. Knepley (UC) PETSc MSI ’13 164 / 178

Advanced Solvers Timestepping

Outline

4 Advanced Solvers
Fieldsplit
Multigrid
Nonlinear Solvers
Timestepping

M. Knepley (UC) PETSc MSI ’13 165 / 178

Advanced Solvers Timestepping

What about TS?

Time Integration in PETSc
Has Made a Quantum Leap

and is now a premier library in the field,

thanks to Jed, Emil, and Peter =⇒

M. Knepley (UC) PETSc MSI ’13 166 / 178

http://59a2.org/research/
http://www.mcs.anl.gov/~emconsta/
http://www.mcs.anl.gov/~brune/

Advanced Solvers Timestepping

What about TS?

Time Integration in PETSc
Has Made a Quantum Leap

and is now a premier library in the field,

thanks to Jed, Emil, and Peter =⇒

M. Knepley (UC) PETSc MSI ’13 166 / 178

http://59a2.org/research/
http://www.mcs.anl.gov/~emconsta/
http://www.mcs.anl.gov/~brune/

Advanced Solvers Timestepping

What about TS?

Time Integration in PETSc
Has Made a Quantum Leap

and is now a premier library in the field,

thanks to Jed, Emil, and Peter =⇒

M. Knepley (UC) PETSc MSI ’13 166 / 178

http://59a2.org/research/
http://www.mcs.anl.gov/~emconsta/
http://www.mcs.anl.gov/~brune/

Advanced Solvers Timestepping

Some TS methods

TSSSPRK104 10-stage, fourth order, low-storage, optimal explicit
SSP Runge-Kutta ceff = 0.6 (Ketcheson 2008)

TSARKIMEX2E second order, one explicit and two implicit stages,
L-stable, optimal (Constantinescu)

TSARKIMEX3 (and 4 and 5), L-stable (Kennedy and Carpenter, 2003)
TSROSWRA3PW three stage, third order, for index-1 PDAE, A-stable,

R(∞) = 0.73, second order strongly A-stable embedded
method (Rang and Angermann, 2005)

TSROSWRA34PW2 four stage, third order, L-stable, for index 1
PDAE, second order strongly A-stable embedded method
(Rang and Angermann, 2005)

TSROSWLLSSP3P4S2C four stage, third order, L-stable implicit, SSP
explicit, L-stable embedded method (Constantinescu)

M. Knepley (UC) PETSc MSI ’13 167 / 178

http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSSSPRKS104.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSARKIMEX2E.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSARKIMEX3.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSROSWRA3PW.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSROSWRA34PW2.html
http://www.mcs.anl.gov/petsc/petsc-current/docs/manualpages/TS/TSROSWLLSSP3P4S2C.html

Advanced Solvers Timestepping

IMEX time integration in PETSc
Additive Runge-Kutta IMEX methods

G(t , x , ẋ) = F (t , x)
Jα = αGẋ + Gx

User provides:

FormRHSFunction(ts,t,x,F,void *ctx)

FormIFunction(ts,t,x,xdot,G,void *ctx)

FormIJacobian(ts,t,x,xdot,alpha,J,J_p,mstr,void *ctx)

Single step interface so user can have own time loop
Choice of explicit method, e.g. SSP
L-stable DIRK for stiff part G
Orders 2 through 5, embedded error estimates
Dense output, hot starts for Newton
More accurate methods if G is linear, also Rosenbrock-W
Can use preconditioner from classical “semi-implicit” methods
Extensible adaptive controllers, can change order within a family
Easy to register new methods: TSARKIMEXRegister()

M. Knepley (UC) PETSc MSI ’13 168 / 178

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Equations

TS ex22.c

ut + a1ux = −k1u + k2v + s1

vt + a2vx = k1u − k2v + s2

Upstream boundary condition:

u(0, t) = 1 − sin(12t)4

M. Knepley (UC) PETSc MSI ’13 169 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Equations

TS ex22.c

ut + a1ux = −k1u + k2v + s1

vt + a2vx = k1u − k2v + s2

FormIFunction(TS ts, PetscReal t, Vec X, Vec Xdot, Vec F, void *ptr) {
TSGetDM(ts, &da);
DMDAGetLocalInfo(da, &info);
DMDAVecGetArray(da, X, &x);
DMDAVecGetArray(da, Xdot, &xdot);
DMDAVecGetArray(da, F, &f);
/* Compute function over the locally owned part of the grid */
for (i = info.xs; i < info.xs+info.xm; ++i) {

f[i][0] = xdot[i][0] + k[0]*x[i][0] - k[1]*x[i][1] - s[0];
f[i][1] = xdot[i][1] - k[0]*x[i][0] + k[1]*x[i][1] - s[1];

}
DMDAVecRestoreArray(da, X, &x);
DMDAVecRestoreArray(da, Xdot, &xdot);
DMDAVecRestoreArray(da, F, &f);

}

M. Knepley (UC) PETSc MSI ’13 169 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Equations

TS ex22.c

ut + a1ux = −k1u + k2v + s1

vt + a2vx = k1u − k2v + s2

FormIJacobian(TS ts, PetscReal t, Vec X, Vec Xdot, PetscReal a, Mat *J,
Mat *Jpre, MatStructure *str, void *ptr) {

for (i = info.xs; i < info.xs+info.xm; ++i) {
PetscScalar v[2][2];
v[0][0] = a + k[0]; v[0][1] = -k[1];
v[1][0] = -k[0]; v[1][1] = a+k[1];
MatSetValuesBlocked(*Jpre, 1, &i, 1, &i, &v[0][0], INSERT_VALUES);

}
MatAssemblyBegin(*Jpre, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(*Jpre, MAT_FINAL_ASSEMBLY);
if (*J != *Jpre) {

MatAssemblyBegin(*J, MAT_FINAL_ASSEMBLY);
MatAssemblyEnd(*J, MAT_FINAL_ASSEMBLY);

}
}

M. Knepley (UC) PETSc MSI ’13 169 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Equations

TS ex22.c

ut + a1ux = −k1u + k2v + s1

vt + a2vx = k1u − k2v + s2

FormRHSFunction(TS ts, PetscReal t, Vec X, Vec F, void *ptr) {
PetscReal u0t[2] = {1. - PetscPowScalar(sin(12*t),4.),0};
DMGetLocalVector(da, &Xloc);
DMGlobalToLocalBegin(da, X, INSERT_VALUES, Xloc);
DMGlobalToLocalEnd(da, X, INSERT_VALUES, Xloc);
for (i = info.xs; i < info.xs+info.xm; ++i) {

/* CALCULATE RESIDUAL f[i][j] */
}

}

M. Knepley (UC) PETSc MSI ’13 169 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Equations

TS ex22.c

ut + a1ux = −k1u + k2v + s1

vt + a2vx = k1u − k2v + s2

for (i = info.xs; i < info.xs+info.xm; ++i) {
for (j = 0; j < 2; ++j) {
const PetscReal a = a[j]/hx;
if (i == 0) f[i][j] =

a*(1/3*u0t[j] + 1/2*x[i][j] - x[i+1][j] + 1/6*x[i+2][j]);
else if (i == 1) f[i][j] =

a*(-1/12*u0t[j] + 2/3*x[i-1][j] - 2/3*x[i+1][j] + 1/12*x[i+2][j]);
else if (i == info.mx-2) f[i][j] =

a*(-1/6*x[i-2][j] + x[i-1][j] - 1/2*x[i][j] - 1/3*x[i+1][j]);
else if (i == info.mx-1) f[i][j] =

a*(-x[i][j] + x[i-1][j]);
else f[i][j] =

a*(-1/12*x[i-2][j] + 2/3*x[i-1][j] - 2/3*x[i+1][j] + 1/12*x[i+2][j]);
}
}

M. Knepley (UC) PETSc MSI ’13 169 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Parameters

TS ex22.c

a1 = 1, k1 = 106, s1 = 0,
a2 = 0, k2 = 2k1, s2 = 1

M. Knepley (UC) PETSc MSI ’13 170 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Initial conditions

TS ex22.c

u(x ,0) = 1 + s2x

v(x ,0) =
k0

k1
u(x ,0) +

s1

k1

PetscErrorCode FormInitialSolution(TS ts, Vec X, void *ctx) {
TSGetDM(ts, &da);
DMDAGetLocalInfo(da, &info);
DMDAVecGetArray(da, X, &x);
/* Compute function over the locally owned part of the grid */
for (i = info.xs; i < info.xs+info.xm; ++i) {

PetscReal r = (i+1)*hx;
PetscReal ik = user->k[1] != 0.0 ? 1.0/user->k[1] : 1.0;
x[i][0] = 1 + user->s[1]*r;
x[i][1] = user->k[0]*ik*x[i][0] + user->s[1]*ik;

}
DMDAVecRestoreArray(da, X, &x);

}

M. Knepley (UC) PETSc MSI ’13 171 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Initial conditions

TS ex22.c

u(x ,0) = 1 + s2x

v(x ,0) =
k0

k1
u(x ,0) +

s1

k1

PetscErrorCode FormInitialSolution(TS ts, Vec X, void *ctx) {
TSGetDM(ts, &da);
DMDAGetLocalInfo(da, &info);
DMDAVecGetArray(da, X, &x);
/* Compute function over the locally owned part of the grid */
for (i = info.xs; i < info.xs+info.xm; ++i) {

PetscReal r = (i+1)*hx;
PetscReal ik = user->k[1] != 0.0 ? 1.0/user->k[1] : 1.0;
x[i][0] = 1 + user->s[1]*r;
x[i][1] = user->k[0]*ik*x[i][0] + user->s[1]*ik;

}
DMDAVecRestoreArray(da, X, &x);

}

M. Knepley (UC) PETSc MSI ’13 171 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

Stiff linear advection-reaction test problem
Examples

TS ex22.c
./ex22 -da_grid_x 200 -ts_monitor_draw_solution -ts_arkimex_type 4

-ts_adapt_type none

./ex22 -da_grid_x 200 -ts_monitor_draw_solution -ts_type rosw

-ts_dt 1e-3 -ts_adapt_type none

./ex22 -da_grid_x 200 -ts_monitor_draw_solution -ts_type rosw

-ts_rosw_type sandu3 -ts_dt 5e-3 -ts_adapt_type none

./ex22 -da_grid_x 200 -ts_monitor_draw_solution -ts_type rosw

-ts_rosw_type ra34pw2 -ts_adapt_monitor

M. Knepley (UC) PETSc MSI ’13 172 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex22.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Equations

TS ex25.c

ut − αuxx = A − (B + 1)u + u2v

vt − αvxx = Bu − u2v

Boundary conditions:

u(0, t) = u(1, t) = 1
v(0, t) = v(1, t) = 3

M. Knepley (UC) PETSc MSI ’13 173 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Equations

TS ex25.c

ut − αuxx = A − (B + 1)u + u2v

vt − αvxx = Bu − u2v

FormIFunction(TS ts, PetscReal t, Vec X, Vec Xdot, Vec F, void *ptr) {
DMGlobalToLocalBegin(da, X, INSERT_VALUES, Xloc);
DMGlobalToLocalEnd(da, X, INSERT_VALUES, Xloc);
for (i = info.xs; i < info.xs+info.xm; ++i) {
if (i == 0) {

f[i].u = hx * (x[i].u - uleft);
f[i].v = hx * (x[i].v - vleft);

} else if (i == info.mx-1) {
f[i].u = hx * (x[i].u - uright);
f[i].v = hx * (x[i].v - vright);

} else {
f[i].u = hx * xdot[i].u - alpha * (x[i-1].u - 2.*x[i].u + x[i+1].u) / hx;
f[i].v = hx * xdot[i].v - alpha * (x[i-1].v - 2.*x[i].v + x[i+1].v) / hx;

}
}

} M. Knepley (UC) PETSc MSI ’13 173 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Equations

TS ex25.c

ut − αuxx = A − (B + 1)u + u2v

vt − αvxx = Bu − u2v

FormIJacobian(TS ts, PetscReal t, Vec X, Vec Xdot, PetscReal a, Mat *J,
Mat *Jpre, MatStructure *str, void *ptr) {

for (i = info.xs; i < info.xs+info.xm; ++i) {
if (i == 0 || i == info.mx-1) {

const PetscInt row = i,col = i;
const PetscScalar vals[2][2] = {{hx,0},{0,hx}};
MatSetValuesBlocked(*Jpre,1,&row,1,&col,&vals[0][0],INSERT_VALUES);

} else {
const PetscInt row = i,col[] = {i-1,i,i+1};
const PetscScalar dL = -alpha/hx,dC = 2*alpha/hx,dR = -alpha/hx;
const PetscScalar v[2][3][2] = {{{dL,0},{a*hx+dC,0},{dR,0}},

{{0,dL},{0,a*hx+dC},{0,dR}}};
MatSetValuesBlocked(*Jpre,1,&row,3,col,&v[0][0][0],INSERT_VALUES);

}
}

} M. Knepley (UC) PETSc MSI ’13 173 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Equations

TS ex25.c

ut − αuxx = A − (B + 1)u + u2v

vt − αvxx = Bu − u2
2v

FormRHSFunction(TS ts, PetscReal t, Vec X, Vec F, void *ptr) {
TSGetDM(ts, &da);
DMDAGetLocalInfo(da, &info);
DMDAVecGetArray(da, X, &x);
DMDAVecGetArray(da, F, &f);
for (i = info.xs; i < info.xs+info.xm; ++i) {
PetscScalar u = x[i].u, v = x[i].v;
f[i].u = hx*(A - (B+1)*u + u*u*v);
f[i].v = hx*(B*u - u*u*v);

}
DMDAVecRestoreArray(da, X, &x);
DMDAVecRestoreArray(da, F, &f);

}

M. Knepley (UC) PETSc MSI ’13 173 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Parameters

TS ex25.c

A = 1, B = 3, α = 1/50

M. Knepley (UC) PETSc MSI ’13 174 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Initial conditions

TS ex25.c

u(x ,0) = 1 + sin(2πx)
v(x ,0) = 3

PetscErrorCode FormInitialSolution(TS ts, Vec X, void *ctx) {
TSGetDM(ts, &da);
DMDAGetLocalInfo(da, &info);
DMDAVecGetArray(da, X, &x);
/* Compute function over the locally owned part of the grid */
for (i = info.xs; i < info.xs+info.xm; ++i) {

PetscReal xi = i*hx;
x[i].u = uleft*(1-xi) + uright*xi + sin(2*PETSC_PI*xi);
x[i].v = vleft*(1-xi) + vright*xi;

}
DMDAVecRestoreArray(da, X, &x);

}

M. Knepley (UC) PETSc MSI ’13 175 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Initial conditions

TS ex25.c

u(x ,0) = 1 + sin(2πx)
v(x ,0) = 3

PetscErrorCode FormInitialSolution(TS ts, Vec X, void *ctx) {
TSGetDM(ts, &da);
DMDAGetLocalInfo(da, &info);
DMDAVecGetArray(da, X, &x);
/* Compute function over the locally owned part of the grid */
for (i = info.xs; i < info.xs+info.xm; ++i) {

PetscReal xi = i*hx;
x[i].u = uleft*(1-xi) + uright*xi + sin(2*PETSC_PI*xi);
x[i].v = vleft*(1-xi) + vright*xi;

}
DMDAVecRestoreArray(da, X, &x);

}

M. Knepley (UC) PETSc MSI ’13 175 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

1D Brusselator reaction-diffusion
Examples

TS ex25.c
./ex25 -da_grid_x 20 -ts_monitor_draw_solution -ts_type rosw

-ts_dt 5e-2 -ts_adapt_type none

./ex25 -da_grid_x 20 -ts_monitor_draw_solution -ts_type rosw

-ts_rosw_type 2p -ts_dt 5e-2

./ex25 -da_grid_x 20 -ts_monitor_draw_solution -ts_type rosw

-ts_rosw_type 2p -ts_dt 5e-2 -ts_adapt_type none

M. Knepley (UC) PETSc MSI ’13 176 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex25.c.html

Advanced Solvers Timestepping

Second Order TVD Finite Volume Method
Example

TS ex11.c
./ex11 -f $PETSC_DIR/share/petsc/datafiles/meshes/sevenside.exo

./ex11 -f

$PETSC_DIR/share/petsc/datafiles/meshes/sevenside-quad-15.exo

./ex11 -f $PETSC_DIR/share/petsc/datafiles/meshes/sevenside.exo

-ts_type rosw

M. Knepley (UC) PETSc MSI ’13 177 / 178

http://www.mcs.anl.gov/petsc/petsc-current/src/ts/examples/tutorials/ex11.c.html

Conclusions

Conclusions

PETSc can help you:
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition, fieldsplit, and multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

M. Knepley (UC) PETSc MSI ’13 178 / 178

Conclusions

Conclusions

PETSc can help you:
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition, fieldsplit, and multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

M. Knepley (UC) PETSc MSI ’13 178 / 178

Conclusions

Conclusions

PETSc can help you:
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition, fieldsplit, and multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

M. Knepley (UC) PETSc MSI ’13 178 / 178

Conclusions

Conclusions

PETSc can help you:
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition, fieldsplit, and multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

M. Knepley (UC) PETSc MSI ’13 178 / 178

Conclusions

Conclusions

PETSc can help you:
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition, fieldsplit, and multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

M. Knepley (UC) PETSc MSI ’13 178 / 178

	Getting Started with PETSc
	Who uses PETSc?
	Stuff for Windows
	How can I get PETSc?
	How do I Configure PETSc?
	How do I Build PETSc?
	How do I run an example?
	How do I get more help?

	PETSc Integration
	Initial Operations
	Vector Algebra
	Matrix Algebra
	Algebraic Solvers
	Debugging PETSc
	Profiling PETSc

	DM
	Structured Meshes (DMDA)

	Advanced Solvers
	Fieldsplit
	Multigrid
	Nonlinear Solvers
	Timestepping

	Conclusions

